首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Revascularization, one of the major components of bone healing, was examined in an experimental model. The radioactive microsphere technique demonstrated that after 4 weeks beneath a musculocutaneous flap, isolated bone segments had significant blood flow, whereas bone beneath a cutaneous flap did not. The muscle flap bone had a blood flow approximately half that of normal control bone. The muscle of the musculocutaneous flap had a blood flow three times that of the skin of the cutaneous flap. The bipedicle cutaneous flap used was designed to have a healthy blood supply, and at 4 weeks it had a blood flow twice that of control skin. Despite this, there was essentially no demonstrable blood flow in the cutaneous flap bone segments at 4 weeks. Only 3 of 17 bone segments underneath cutaneous flaps showed medullary vascularization, whereas 10 of 11 muscle flap bones did. All bone segments underneath muscle flaps showed osteoblasts and osteoclasts at 4 weeks; neither were seen in the cutaneous bone segments. The process of revascularization occurred through an intact cortex and penetrated into the cancellous bone. Because the bone segments were surrounded by an impervious barrier except for one cortical surface, the cellular activity seen is attributed to revascularization by the overlying flap. In this model, a muscle flap was superior to a cutaneous flap in revascularizing isolated bone segments at 4 weeks. This was documented by blood flow measured by the radioactive microsphere technique and by bone histology.  相似文献   

2.
Osteocutaneous flap prefabrication in rats   总被引:2,自引:0,他引:2  
Composite tissue defects may involve skin, mucosa, muscle, and bone together or in combinations of two or three of these tissues. Defects involving bone and skin are frequently encountered. Osteocutaneous flaps may be used to reconstruct these composite tissue defects. Sometimes, it is not possible to obtain a vascular osteocutaneous flap. Another way of producing an osteocutaneous flap that has the desired feature is prefabrication. Prefabrication of osteocutaneous flaps can be performed in two ways: (1) a vascularized osseous flap may be grafted with skin and (2) an osteocutaneous flap can be prefabricated by implanting an osseous graft into an axial island flap. There are many articles describing osteocutaneous flap prefabrication, but there is no comparison of both methods in the literature. As an experimental model for osteocutaneous flap prefabrication, rat tail bone was chosen. For the experiments, five groups were formed. Each group contained 10 rats. In the first experimental group, a vascularized osseous segment was skin grafted and an osteocutaneous flap was prefabricated. In the second experimental group, an osseous graft was implanted into an axial skin flap. To compare viability of skin and bone components of the two prefabrication groups, vascularized tail bone was elevated with overlying skin in the third group, a bone flap was elevated in the fourth group, and a skin flap that had been prefabricated by using vascular implantation was elevated in the fifth group. The authors examined five rats in each group by microangiography at the end of 4 weeks. On microangiographic analysis, all groups showed patency of vascular pedicles. There was no difference among the groups from the point of view of vascular patency and bone appearance. Bone scintigraphy was performed on the five rats in each group. On bone scintigraphic scans, the bone component of flaps was visualized in all groups except for group 5. The mean radioactivity value on the flap side was 10,362 +/- 541.1 in group 1, 10,241 +/- 1173 in group 2, 10,696 +/- 647.1 in group 3, and 10,696 +/- 647.1 in group 4. When the radioactivity values on the flap side were compared, no statistically significant difference among groups was seen, except for group 5 (p < 0.05). To evaluate bone metabolic activity, the bone component of flap and remaining last tail bone was harvested and the radioactivity of each specimen was measured with a well-type gamma counter. The parameter of percentage radioactivity in counts per minute per unit per gram of tissue was calculated. The value of the bone component of the flap side and the value of normal bone were estimated and results were compared. The mean result was 0.86 +/- 0.08 in group 1, 0.88 +/- 0.07 in group 2, 0.87 +/- 0.07 in group 3, and 0.81 +/- 0.04 in group 4. The difference among all groups was not statistically significant. Histologic examination was performed on all rats in each group and demonstrated that the bony component was viable, showing a cellular bone marrow, osteoblasts along bony trabeculae, and vascular channels in bone-containing groups. There were no significant microangiographic, histologic, or scintigraphic differences between the two experimental methods.  相似文献   

3.
Low-energy lasers are currently being used in the therapy of rheumatoid arthritis, chronic pain, muscle strain, and the promotion of wound healing in human and veterinary medicine. This study examined the effects of low-energy laser on skin-flap survival in a controlled interspecies study using the rat and porcine models. Twenty dorsal skin flaps based caudally were performed in 20 rats (10 laser-treated and 10 control flaps). The wounds were closed, and the flaps were sutured over the skin. Forty dorsal pig skin flaps based medially were raised in five pigs. The flaps were treated once per day for 10 days: 4 days preoperatively, the day of surgery, and 5 days postoperatively (30 s/cm3 per day). The average surviving rat flap surface area for the laser-treated flaps was 653 +/- 112 mm (mean +/- SD) and 580 +/- 60 mm in the control flaps, which was not significant (p greater than 0.05). In the porcine model, the average surviving area for the 20 laser-treated flaps was 949 +/- 174 mm, and the control average (n = 20) was 969 +/- 147 mm, also not significant. No beneficial effect was seen with low-energy laser preoperative and postoperative treatment of skin flaps in the rat and porcine models.  相似文献   

4.
The effects of acute hypoxia on motor cortex excitability, force production, and voluntary activation were studied using single- and double-pulse transcranial magnetic stimulation techniques in 14 healthy male subjects. Electrical supramaximal stimulations of the right ulnar nerve were performed, and transcranial magnetic stimulations were delivered to the first dorsal interosseus motor cortex area during short-term hypoxic (HX) and normoxic (NX) condition. M waves, voluntary activation, F waves, resting motor threshold (rMT), recruitment curves (100-140% of rMT), and short-interval intracortical inhibition and intracortical facilitation were measured. Moreover, motor-evoked potentials (MEPs) and cortical silent periods were determined during brief isometric maximum right index finger abductions. Hypoxia was induced by breathing a fraction of inspired oxygen of 12% via a face mask. M waves, voluntary activation, and F waves did not differ between NX and HX. The rMT was significantly lower in HX (55.79 +/- 9.40%) than in NX (57.50 +/- 10.48%) (P < 0.01), whereas MEP recruitment curve, short-interval intracortical inhibition, intracortical facilitation, maximum right index finger abduction, and MEPs were unaffected by HX. In contrast, the cortical silent periods in HX (158.21 +/- 33.96 ms) was significantly shortened compared with NX (169.42 +/- 39.69 ms) (P < 0.05). These data demonstrate that acute hypoxia results in increased cortical excitability and suggest that acute hypoxia alters motor cortical ion-channel function and GABAergic transmission.  相似文献   

5.
We tested for regional differences in perfusion responses, within the renal medulla and cortex, to renal nerve stimulation in pentobarbital sodium-anesthetized rabbits. Laser-Doppler flux (LDF) was monitored at various depths below the cortical surface (1-15 mm). Basal cortical LDF (1-3 mm, approximately 200-450 U) was greater than medullary LDF (5-15 mm, approximately 70-160 U), but there were no statistically significant differences in basal LDF within these regions. The background LDF signal during aortic occlusion was similar in the cortex (2 mm, 31 U) and outer medulla (7 mm, 31 U), but slightly greater in the inner medulla (12 mm, 44 U). During electrical stimulation of the renal nerves (0.5-8 Hz), cortical LDF and total renal blood flow were similarly progressively reduced with increasing stimulus frequency. Medullary LDF (measured between 5 and 15 mm) was overall less responsive than cortical LDF. For example, 4-Hz stimulation reduced inner medullary LDF (9 mm) by 19 +/- 6% but reduced cortical LDF (1 mm) by 54 +/- 11%. However, medullary LDF responses to nerve stimulation were similar at all depths measured. Our results indicate that while the vascular elements controlling medullary perfusion are less sensitive to the effects of electrical stimulation of the renal nerves than are those controlling cortical perfusion, sensitivity within these vascular territories appears to be relatively homogeneous.  相似文献   

6.
Attinger CE  Ducic I  Cooper P  Zelen CM 《Plastic and reconstructive surgery》2002,110(4):1047-54; discussion 1055-7
Local muscle flaps, pioneered by Ger in the late 1960s, were extensively used for foot and ankle reconstruction until the late 1970s when, with the evolution of microsurgery, microsurgical free flaps became the reconstructive method of choice. To assess whether the current underuse of local muscle flaps in foot and ankle surgery is justified, the authors identified from the Georgetown Limb Salvage Registry all patients who underwent foot and ankle reconstruction with local muscle flaps and microsurgical free flaps from 1990 through 1998. By protocol, flap coverage was the reconstructive choice for defects with exposed tendons, joints, or bone. Local muscle flaps were selected over free flaps if the defect was small (3 x 6 cm or less) and within reach of the local muscle flap. During the same time frame, the authors performed 45 free flaps (96 percent success rate) in the same areas when the defects were too large or out of reach of local muscle flaps. Thirty-two consecutive patients underwent local muscle flap reconstruction for 19 diabetic wounds and 13 traumatic wounds. All wounds, after debridement, had exposed bone at their base, with osteomyelitis being present in 52 percent of the diabetic wounds and in 70 percent of the nondiabetic wounds. Wounds were located in the hindfoot (47 percent), midfoot (44 percent), and ankle (9 percent). Vascular disease was more prevalent in the diabetic group, in which 42 percent of the affected limbs required revascularization procedures before reconstruction (versus 7 percent in the nondiabetic group). Subsequently, 83 total operations were required to heal the wounds, of which 46 percent were limited to debridement only. Thirty-four pedicled muscle flaps were used: 19 abductor digiti minimi (56 percent), nine abductor hallucis (26 percent), three extensor digitorum brevis (9 percent), two flexor digitorum brevis (6 percent), and one flexor digiti minimi (3 percent). An additional skin graft for complete coverage was required in 18 patients (53 percent). One patient died and one flap developed distal necrosis, for a 96 percent success rate. The complication rate was 26 percent and included patient death, dehiscence, and partial flap or split-thickness skin graft loss. Twenty-nine of the 32 wounds healed. One patient died in the postoperative period; in two others the wounds failed to heal and required below-knee amputations, for an overall limb salvage rate of 91 percent. Diabetes did not significantly affect healing and limb salvage rates. Diabetes, however, did affect healing times (twofold increase), length of stay (2.7 times as long), and long-term survival (63 percent survival in diabetic patients versus 100 percent in the trauma group). Local muscle flaps provide a simpler, less expensive, and successful alternative to microsurgical free flaps for foot and ankle defects that have exposed bone (with or without osteomyelitis), tendon, or joint at their base. Diabetes does not appear to adversely affect the effectiveness of these flaps. Local muscle flaps should remain on the forefront of possible reconstructive options when treating small foot and ankle wounds that have exposed bone, tendon, or joint.  相似文献   

7.
Swelling and congestion of flaps are frequently seen postoperatively and can cause unexpected necrosis. According to previous reports, venous thrombosis seems to be a more frequent problem than arterial occlusion in both experimental and clinical surgery. Few satisfactory venous trauma models exist, and reports on experimental venous thrombosis are rare. The object of this study was to create a rabbit venous occlusion flap model and to evaluate the effect of low-molecular-weight heparin on this flap. Eight New Zealand rabbits were used in the pilot study, in which the ideal congested flap was investigated using a flap pedicle based on the central auricular artery with a skin pedicle 0, 1, 2, or 3 cm wide. The flap (3 x 6 cm) was designed on the central part of the left ear, and the central auricular vein and nerve, the former for venous return, were cut out at the base of the flap. The flaps with skin pedicles 0, 1, 2, or 3 cm wide showed mean necrosis length of 60.0, 9.3, 4.2, and 0.0 mm, respectively. The flaps with skin pedicles 0, 1, 2, or 3 cm wide showed mean necrosis of 100, 15.5, 7, and 0 percent, respectively. Therefore, the flap, based on a 1-cm-wide skin pedicle and the central auricular artery, was selected as an optimal congested flap model showing 15.5 percent necrosis. The congested flap was then elevated on the left ear of another 10 rabbits. Subcutaneous low-molecular-weight heparin (320 IU/kg) was administered immediately after surgery to five of the rabbits (the low-molecular-weight heparin group), and the remaining five were used as a control group. Fluorescein was injected 15 minutes after surgery to evaluate the circulatory territory of the flap, and the circulatory territory was measured 5 minutes after injection. The flaps were assessed 7 days after surgery by angiography, histology, and clinical findings. The circulatory territory was significantly greater in the low-molecular-weight heparin group (mean +/- SD, 39.2 +/- 3.0 mm) than the control group (mean +/- SD, 48.0 +/- 1.0 mm) (p < 0.001) assessed 7 days after surgery. The longest flap survival length in group A and group B ranged from 40 to 55 mm (mean +/- SD. 49.4 +/- 5.6 mm) and complete survival (mean +/- SD, 60.0 +/- 0.0 mm). The improvement in survival was statistically significant for group B compared with group A (p < 0.015). Histologic evaluation revealed moderate to severe venous congestion and inflammation in the control group, whereas there were minimal changes in the low-molecular-weight heparin group. Angiography of the flap revealed obvious venous occlusion in the periphery in the control group compared with the low-molecular-weight heparin group. The authors conclude that subcutaneous administration of low-molecular-weight heparin has a great potential to improve the survival length of a congested flap without major complications.  相似文献   

8.
The delay procedure is known to augment pedicled skin or muscle flap survival. In this study, we set out to investigate the effectiveness of vascular delay in two rabbit muscle flap models. In each of the muscle flap models, a delay procedure was carried out on one side of each rabbit (n = 20), and the contralateral muscle was the control. In the latissimus dorsi flap model, two perforators of the posterior intercostal vessels were ligated. In the biceps femoris flap model, a dominant vascular pedicle from the popliteal artery was ligated. After the 7-day delay period, the bilateral latissimus dorsi flaps (based on the thoracodorsal vessels) and the bilateral biceps femoris flaps (based on the sciatic vessels) were elevated. Animals were divided into three groups: part A, assessment of muscle flap viability at 7 days using the tetrazolium dye staining technique (n = 7); part B, assessment of vascular anatomy using lead oxide injection technique (n = 7); and part C, assessment of total and regional capillary blood flow using the radioactive microsphere technique (n = 6). The results in part A show that the average viable area of the latissimus dorsi flap was 96 +/- 0.4 percent (mean +/- SEM) in the delayed group and 84 +/- 0.7 percent (mean +/- SEM) in the control group (p < 0.05, n = 7), and the mean viable area of the biceps femoris flap was 95 +/- 2 percent in the delayed group and 78 +/- 5 percent in the control group (p < 0.05, n = 7). In part B, it was found that the line of necrosis in the latissimus dorsi flap usually appeared at the junction between the second and third vascular territory in the flap. Necrosis of the biceps femoris flap usually occurred in the third territory, and occasionally in both the second and the third territories. In Part C, total capillary blood flow in delayed flaps (both the latissimus dorsi and biceps femoris) was significantly higher than that in the control flaps (p < 0.05). Increased regional capillary blood flow was found in the middle and distal regions, compared with the control (p < 0.05, n = 6). In conclusion, ligation of either the dominant vascular pedicle in the biceps femoris muscle flap or the nondominant pedicle in the latissimus dorsi muscle flap in a delay procedure 1 week before flap elevation improves capillary blood flow and muscle viability. Vascular delay prevents distal flap necrosis in two rabbit muscle flap models.  相似文献   

9.
Conventional osteomyocutaneous flaps do not always meet the requirements of a composite defect. A prefabricated composite flap may then be indicated to custom create the flap as dictated by the complex geometry of the defect. The usual method to prefabricate an osteocutaneous flap is to harvest a nonvascularized bone graft and place it into a vascular territory of a soft tissue, such as skin, muscle, or omentum, before its transfer. The basic problem with this method is that the bone graft repair is dependent on the vascular carrier; the bone needs to be revascularized and regenerate. The bone graft may not be adequately perfused at all, even long after the transfer of the prefabricated flap. This study was designed to prefabricate an osteocutaneous flap where simply the bone nourishes the soft tissues, in contrast to the conventional technique in which the soft tissue supplies a bone graft. This technique is based on the principle of vascular induction, where a pedicled bone flap acts as the vascular carrier to neovascularize a skin segment before its transfer. Using a total of 40 New Zealand White rabbits, two groups were constructed as the experimental and control groups. In the experimental group, a pedicled scapular bone flap was induced to neovascularize the dorsal trunk skin by anchoring the bone flap to the partially elevated skin flap with sutures in the first stage. After a period of 4 weeks, the prefabricated composite flaps (n = 25) were harvested as island flaps pedicled on the axillary vessels. In the control group, nonvascularized scapular bone graft was implanted under the dorsal trunk skin with sutures; after 4 weeks, island composite flaps (n = 15) were harvested pedicled on the cutaneous branch of the thoracodorsal vessels. In both groups, viability of the bony and cutaneous components was evaluated by means of direct observation, bone scintigraphy, measurement of bone metabolic activity, microangiography, dye injection study, and histology. Results demonstrated that by direct observation on day 7, the skin island of all of the flaps in the experimental group was totally viable, like the standard axial-pattern flap in the control group. Bone scintigraphy revealed a normal to increased pattern of radionuclide uptake in the experimental group, whereas the bone graft in the control group showed a decreased to normal pattern of radioactivity uptake. The biodistribution studies revealed that the mean radionuclide uptake (percent injected dose of 99mTc methylene diphosphonate/gram tissue) was greater for the experimental group (0.49+/-0.17) than for the control group (0.29+/-0.15). The difference was statistically significant (p<0.01). By microangiography, the cutaneous component of the prefabricated flap of the experimental group was observed to be diffusely neovascularized. Histology demonstrated that although the bone was highly vascular and cellular in the experimental group, examination of the bone grafts in the control group revealed necrotic marrow, empty lacunae, and necrotic cellular debris. Circulation to the bone in the experimental group was also demonstrated by India ink injection studies, which revealed staining within the blood vessels in the bone marrow. Based on this experimental study, a clinical technique was developed in which a pedicled split-inner cortex iliac crest bone flap is elevated and implanted under the medial groin skin in the first stage. After a neovascularization period of 4 weeks, prefabricated composite flap is harvested based on the deep circumflex iliac vessels and transferred to the defect. Using this clinical technique, two cases are presented in which the composite bone and soft-tissue defects were reconstructed with the prefabricated iliac osteomyocutaneous flap. This technique offers the following advantages over the traditional method of osteocutaneous flap prefabrication. Rich vascularity of the bony component of the flap is preserved following transfer (i.e. (ABSTRACT  相似文献   

10.
Fasciocutaneous flaps: an experimental model in the pig   总被引:2,自引:0,他引:2  
No experimental studies have substantiated the claim that fasciocutaneous flaps are superior to skin flaps. Using fasciocutaneous flaps designed in the pig, both flap survival and blood flow were assessed. The forelimb and hindlimb fasciocutaneous flaps survived to 8.2 +/- 0.3 cm and 7.9 +/- 0.3 cm, respectively, compared with 7.3 +/- 0.3 cm and 6.7 +/- 0.3 cm for the comparable cutaneous flaps, a statistically significant finding (p less than 0.01). Random fasciocutaneous flaps survive 12 to 18 percent longer than skin flaps. Using the radioactive microsphere technique, blood flow was measured after flap elevation, and flap survival was estimated using fluorescein. Again, a significant difference in flap survival was found, but there was no significant difference in measured blood flow. This can be explained by the relatively large interval between blood flow measurements (2 cm) compared with the observed difference in survival length (1.0 +/- 0.3 cm).  相似文献   

11.
Single-pulse magnetic coil stimulation (Cadwell MES 10) over the cranium induces without pain an electric pulse in the underlying cerebral cortex. Stimulation over the motor cortex can elicit a muscle twitch. In 10 subjects, we tested whether motor cortical stimulation could also elicit skin sympathetic nerve activity (SSNA; n = 8) and muscle sympathetic nerve activity (MSNA; n = 5) in the peroneal nerve. Focal motor cortical stimulation predictably elicited bursts of SSNA but not MSNA; with successive stimuli, the SSNA responses did not readily extinguish (94% of discharges to the motor cortex evoked SSNA responses) and had predictable latencies [739 +/- 33 (SE) to 895 +/- 13 ms]. The SSNA responses were similar after stimulation of dominant and nondominant sides. Focal stimulation posterior to the motor cortex elicited extinguishable SSNA responses. In three of six subjects, anterior cortical stimulation evoked SSNA responses similar to those seen with motor cortex stimulation but without detectable movement; in the other subjects, anterior stimulation evoked less SSNA discharge than that seen with motor cortex stimulation. Contrasting with motor cortical stimulation, evoked SSNA responses were more readily extinguished with 1) peripheral stimulation that directly elicited forearm muscle activation accompanied by electromyograms similar to those with motor cortical stimulation; 2) auditory stimulation by the click of the energized coil when off the head; and 3) in preliminary experiments, finger afferent stimulation sufficient to cause tingling. Our findings are consistent with the hypothesis that motor cortex stimulation can cause activation of both alpha-motoneurons and SSNA.  相似文献   

12.
The association of a vascularized periosteal flap with a cancellous bone graft was studied on a group of 20 Wistar rats. Ten rats were sacrificed at 6 weeks and seven at 12 weeks (three died prematurely). The behavior of the cancellous bone graft buried in striated muscle and the osteogenic capacity of a simple vascularized periosteal flap also were observed on the same animals. Results of the study are as follows: In 14 of 17 animals, a vascularized periosteal flap wrapped around a cancellous bone graft resulted in new cortical bone formation with little resorption of the initial cancellous graft. A vascularized musculoperiosteal flap has produced a small amount of new compact bone only in 4 of 17 animals. A cancellous bone graft buried into well-vascularized muscle tissue was resorbed (15 cases) or necrotic (2 cases) at 12 weeks. In conclusion, the association of a vascularized periosteal flap and cancellous bone is a better means to produce compact bone than a vascularized periosteal flap alone or an isolated cancellous bone graft.  相似文献   

13.
A porcine rectus abdominis musculocutaneous (TRAM) flap model was designed and validated in nine pigs. This TRAM flap was based on the deep inferior epigastric (DIE) vessels with an 8 x 18 cm transverse skin paddle at the superior end of the rectus abdominis muscle. The model was subsequently used to test our hypothesis of surgical augmentation of flap viability by vascular territory expansion. Specifically, we observed that ligation of the superior epigastric (SE) vessels at 4, 7, 14, and 28 days (N = 6 to 8) prior to raising the TRAM flaps significantly increased (p less than 0.05) the length and area of the viable skin in the transverse skin paddles of the treatment flaps compared with the contralateral shammanipulated control flaps. This significant increase in skin viability was seen to be accompanied by a significant increase (p less than 0.05) in skin and muscle capillary blood flow in the treatment TRAM flaps compared with the controls (N = 9). The mechanism of vascular territory expansion is unclear. We postulate that hypoxia resulting from the ligation of the superior epigastric vessels prior to the flap surgery may play a role in the triggering of the deep inferior epigastric artery to take over some of the territory previously perfused by the superior epigastric artery. This would then increase the skin and muscle capillary blood flow in the transverse paddle when the TRAM flap was raised on the deep inferior epigastric vascular pedicle.  相似文献   

14.
The aim of this experiment was to design a clinically relevant TRAM flap in the pig and to use this flap model to study the effectiveness of preoperative ligation of the dominant vascular pedicle in augmentation of muscle and skin capillary blood flow and skin viability in the TRAM flap. This TRAM flap model was based on the deep inferior epigastric vascular pedicle, with the center of the transverse skin paddle attached to the underlying rectus abdominis muscle at the superior end of the muscle and extending bilaterally from its attached muscle. The transverse skin paddle (8 x 30 cm) included a contralateral and ipsilateral random portion of skin. This flap model was based on the deep inferior epigastric rather than the superior epigastric vascular pedicle because the deep inferior epigastric vascular pedicle is the smaller of the two in the pig and augmentation of its blood supply by ligation of the dominant superior epigastric vascular pedicle resembles more closely the clinical situation. It was observed that ligation of the dominant superior epigastric vascular pedicle 14 days prior to raising the TRAM flap significantly (p less than 0.05; n = 5) increased the total muscle and skin capillary blood flow and skin viability in the transverse skin paddle compared with the sham-operated control (n = 5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effects of early wound closure using a local muscle flap on the development of periosteal new bone formation in a rat burn model were studied. Following a full-thickness burn to one hind limb, periosteal new bone formation along the tibial diaphysis was measured by the use of the fluorochrome agent calcein and an image-analysis system. Prostaglandin E levels, a known inflammatory mediator, from the bone beneath the burn also were measured. Periosteal new bone formation was inhibited by 50 percent in animals that had debridement and wound closure with a gastrocnemius muscle flap and skin graft on postburn day 2 compared to untreated controls or animals closed with skin grafts only. There was a trend toward reduced prostaglandin E measurements from tibial sections in the early closure group compared to untreated controls. This study demonstrates that early wound closure using a local muscle flap inhibits the periosteal new bone formation which is possibly associated with the inflammation in a rat burn model.  相似文献   

16.
In vivo thermal conductivity of the human forearm tissues   总被引:1,自引:0,他引:1  
The effective thermal conductivities of the skin + subcutaneous (keff skin + fat) and muscle (keff muscle) tissues of the human forearm at thermal steady state during immersion in water at temperatures (Tw) ranging from 15 to 36 degrees C were determined. Tissue temperature (Tt) was continuously monitored by a calibrated multicouple probe during a 3-h immersion of the resting forearm. Tt was measured every 5 mm from the longitudinal axis of the forearm (determined from computed-tomography scanning) to the skin surface. Skin temperature (Tsk), heat loss (Hsk), and blood flow (Q) of the forearm, as well as rectal temperature (Tre) and arterial blood temperature at the brachial artery (Tbla), were measured during the experiments. When the keff values were calculated from the finite-element (FE) solution of the bioheat equation, keff skin + fat ranged from 0.28 +/- 0.03 to 0.73 +/- 0.14 W.degrees C-1.m-1 and keff muscle varied between 0.56 +/- 0.05 and 1.91 +/- 0.19 W.degrees C-1.m-1 from 15 to 36 degrees C. The values of keff skin + fat and keff muscle, calculated from the FE solution for Tw less than or equal to 30 degrees C, were not different from the average in vitro values obtained from the literature. The keff values of the forearm tissues were linearly related (r = 0.80, P less than 0.001) to Q for Tw greater than or equal to 30 degrees C. It was found that the muscle tissue could account for 92 +/- 1% of the total forearm insulation during immersion in water between 15 and 36 degrees C.  相似文献   

17.
Sarcomere shortening during contraction was measured by using laser diffraction, in thin, rabbit right ventricular (RV) trabeculae from normal hearts (N) (n = 5) and from hearts subjected to RV pressure overload by pulmonary banding (H) (n = 5). Banding resulted in substantial RV hypertrophy after 2 wk. Hypertrophied preparations had the same resting muscle length (H = 3.15 +/- 0.29 mm) and resting sarcomere lengths (H = 2.16 +/- 0.005 micron) as the normal preparations (3.10 +/- 0.37 mm, 2.16 +/- 0.008 micron, respectively). Total tension at the peak of isometric twitches was the same as normal in the hypertrophied muscles (N = 8.06 +/- 1.20, H = 8.51 +/- 1.95 g/mm2). However, the amount of auxotonic sarcomere shortening was much less than normal in the hypertrophied preparations (N = 0.39 +/- 0.028, H = 0.19 +/- 0.034 micron; P less than 0.001). In isotonic contractions in which the ratio of muscle shortening to resting muscle length was the same in both the normal and hypertrophied muscles (ratio of 0.05 in both groups), the extent of sarcomere shortening relative to resting sarcomere length was less in the hypertrophied muscles than in the normal preparations (N = 0.14 +/- 0.01), H = 0.07 +/- 0.01; P less than 0.01). Series elasticity was the same as normal in the hypertrophied muscle P less than 0.05). Less auxotonic sarcomere shortening for a given level of isometric tension development and less isotonic sarcomere shortening per unit muscle shortening indicate that there is less than normal work per sarcomere during contraction in hypertrophied myocardium. These findings may have important implications for intracellular compensatory adaptation in pressure overload cardiac hypertrophy.  相似文献   

18.
K D Wolff  A Grundmann 《Plastic and reconstructive surgery》1992,89(3):469-75; discussion 476-7
The suitability of the thigh as a donor site for a new free flap was examined in 100 cadavers. It was found that the vastus lateralis muscle can be used to form a myocutaneous or fasciomuscular flap, the raising of which causes no technical problems and leads to no functional and only minor aesthetic impairments. Depending on the muscle segment from which the flap is raised, a neurovascular pedicle measuring between 8 and 20 cm with a diameter of 2 to 2.5 mm (artery) or 2.5 to 4 mm (vein) can be formed. The skin island in the myocutaneous flap measures on average 8 x 16 cm and is located above the middle portion of the muscle. The diameter of the supplying perforator vessel is between 0.7 and 1.2 mm. The flap can be raised parallel to head and neck surgery and applied as a myocutaneous flap for coverage of extensive or perforating defects or intraorally as a fasciomuscular flap.  相似文献   

19.
The functioning free-muscle transfer is a microneurovascular technique that has proven effective for patients who have a major muscle or muscle group loss for which no other less complicated procedures are available. A new functioning muscle (lateral half of the soleus) transfer was used for forearm reconstruction. This functioning muscle can be transferred alone, or it can be used with overlying skin or nearby fibular bone or both. It was used in a selective complicated case in which not only were major functional muscles lost, but a bone deficiency and skin loss also were seen. The operation was done in one stage with the composite flap (muscle plus bone plus skin). The recovered transferred muscle provided adequate strength and excursion for a functional hand and forearm.  相似文献   

20.
Fluid flow that arises from the functional loading of bone tissue has been proposed to be a critical regulator of skeletal mass and morphology. To test this hypothesis, the bone adaptive response to a physiological fluid stimulus, driven by low magnitude, high frequency oscillations of intramedullary pressure (ImP), were examined, in which fluid pressures were achieved without deforming the bone tissue. The ulnae of adult turkeys were functionally isolated via transverse epiphyseal osteotomies, and the adaptive response to four weeks of disuse (n=5) was compared to disuse plus 10 min per day of a physiological sinusoidal fluid pressure signal (60 mmHg, 20Hz). Disuse alone resulted in significant bone loss (5.7+/-1.9%, p< or =0.05), achieved by thinning the cortex via endosteal resorption and an increase in intracortical porosity. By also subjecting bone to oscillatory fluid flow, a significant increase in bone mass at the mid-diaphysis (18.3+/-7.6%, p<0.05), was achieved by both periosteal and endosteal new bone formation. The spatial distribution of the transcortical fluid pressure gradients (inverted Delta P(r)), a parameter closely related to fluid velocity and fluid shear stress, was quantified in 12 equal sectors across a section at the mid-diaphyses. A strong correlation was found between the inverted Delta P(r) and total new bone formation (r=0.75, p=0.01); and an inverse correlation (r=-0.75, p=0.01) observed between inverted Delta P(r) and the area of increased intracortical porosity, indicating that fluid flow signals were necessary to maintain bone mass and/or inhibit bone loss against the challenge of disuse. By generating this fluid flow in the absence of matrix strain, these data suggest that anabolic fluid movement plays a regulatory role in the modeling and remodeling process. While ImP increases uniformly in the marrow cavity, the distinct parameters of fluid flow vary substantially due to the geometry and ultrastructure of bone, which ultimately defines the spatial non-uniformity of the adaptive process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号