首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After Listeria is phagocytosed by a macrophage, it dissolves the phagosomal membrane and enters the cytoplasm. The Listeria then nucleates actin filaments from its surface. These actin filaments rearrange to form a tail with which the Listeria moves to the macrophage surface as a prelude to spreading. Since individual actin filaments appear to remain in their same positions in the tail in vitro after extraction with detergent, the component filaments must be cross-bridged together. From careful examination of the distribution of actin filaments attached to the surface of Listeria and in the tail, and the fact that during and immediately after division filaments are not nucleated from the new wall formed during septation, we show how a cloud of actin filaments becomes rearranged into a tail simply by the mechanics of growth. From lineage studies we can relate the length of the tail to the age of the surface of Listeria and make predictions as to the ratio of Listeria with varying tail lengths at a particular time after the initial infection. Since we know that division occurs about every 50 min, after 4 h we would predict that if we started with one Listeria in a macrophage, 16 bacteria would be found, two with long tails, two with medium tails, four with tiny tails, and eight with no tails or a ratio of 1:1:2:4. We measured the lengths of the tails on Listeria 4 h after infection in serial sections and confirmed this prediction. By decorating the actin filaments that make up the tail of Listeria with subfragment 1 of myosin we find (a) that the filaments are indeed short (maximally 0.3 microns in length); (b) that the filament length is approximately the same at the tip and the base of the tail; and (c) that the polarity of these filaments is inappropriate for myosin to be responsible or to facilitate movement through the cytoplasm, but the polarity insures that the bacterium will be located at the tip of a pseudopod, a location that is essential for spreading to an adjacent cell. Putting all this information together we can begin to unravel the problem of how the Listeria forms the cytoskeleton and what is the biological purpose of this tail. Two functions are apparent: movement and pseudopod formation.  相似文献   

2.
Ruetz T  Cornick S  Guttman JA 《PloS one》2011,6(5):e19940
Various enteric bacterial pathogens target the host cell cytoskeletal machinery as a crucial event in their pathogenesis. Despite thorough studies detailing strategies microbes use to exploit these components of the host cell, the role of the spectrin-based cytoskeleton has been largely overlooked. Here we show that the spectrin cytoskeleton is a host system that is hijacked by adherent (Entropathogenic Escherichia coli [EPEC]), invasive triggering (Salmonella enterica serovar Typhimurium [S. Typhimurium]) and invasive zippering (Listeria monocytogenes) bacteria. We demonstrate that spectrin cytoskeletal proteins are recruited to EPEC pedestals, S. Typhimurium membrane ruffles and Salmonella containing vacuoles (SCVs), as well as sites of invasion and comet tail initiation by L. monocytogenes. Spectrin was often seen co-localizing with actin filaments at the cell periphery, however a disconnect between the actin and spectrin cytoskeletons was also observed. During infections with S. Typhimurium ΔsipA, actin-rich membrane ruffles at characteristic sites of bacterial invasion often occurred in the absence of spectrin cytoskeletal proteins. Additionally, early in the formation of L. monocytogenes comet tails, spectrin cytoskeletal elements were recruited to the surface of the internalized bacteria independent of actin filaments. Further studies revealed the presence of the spectrin cytoskeleton during SCV and Listeria comet tail formation, highlighting novel cytoplasmic roles for the spectrin cytoskeleton. SiRNA targeted against spectrin and the spectrin-associated proteins severely diminished EPEC pedestal formation as well as S. Typhimurium and L. monocytogenes invasion. Ultimately, these findings identify the spectrin cytoskeleton as a ubiquitous target of enteric bacterial pathogens and indicate that this cytoskeletal system is critical for these infections to progress.  相似文献   

3.
The bacterium Listeria monocytogenes uses the energy of the actin polymerization to propel itself through infected tissues. In steady state, it continuously adds new polymerized filaments to its surface, pushing on its tail, which is made from previously cross-linked actin filaments. In this paper we introduce an elastic model to describe how the addition of actin filaments to the tail results in the propulsive force on the bacterium. Filament growth on the bacterial surface produces stresses that are relieved at the back of the bacterium as it moves forward. The model leads to a natural competition between growth from the sides and growth from the back of the bacterium, with different velocities and strengths for each. This competition can lead to the periodic motion observed in a Listeria mutant.  相似文献   

4.
Listeria monocytogenes and Shigella flexneri are two unrelated facultative intracellular pathogens which spread from cell to cell by using a similar mode of intracellular movement based on continuous actin assembly at one pole of the bacterium. This process requires the asymmetrical expression of the ActA surface protein in L. monocytogenes and the lcsA (VirG) surface protein in S. flexneri . ActA and lcsA share no sequence homology. To assess the role of the two proteins in the generation of actin-based movement, we expressed them in the genetic context of two non-actin polymerizing, non-pathogenic bacterial species, Listeria innocua and Escherichia coli . In the absence of any additional bacterial pathogenicity determinants, both proteins induced actin assembly and propulsion of the bacteria in cytoplasmic extracts from Xenopus eggs, as visualized by the formation of characteristic actin comet tails. E. coli expressing lcsA moved about two times faster than Listeria and displayed longer actin tails. However, actin dynamics (actin filament distribution and filament half-lives) were similar in lcsA- and ActA-induced actin tails suggesting that by using unrelated surface molecules, L. monocytogenes and S. flexneri move intracellularly by interacting with the same host cytoskeleton components or by interfering with the same host cell signal transduction pathway.  相似文献   

5.
《The Journal of cell biology》1989,109(4):1597-1608
Listeria monocytogenes was used as a model intracellular parasite to study stages in the entry, growth, movement, and spread of bacteria in a macrophage cell line. The first step in infection is phagocytosis of the Listeria, followed by the dissolution of the membrane surrounding the phagosome presumably mediated by hemolysin secreted by Listeria as nonhemolytic mutants remain in intact vacuoles. Within 2 h after infection, each now cytoplasmic Listeria becomes encapsulated by actin filaments, identified as such by decoration of the actin filaments with subfragment 1 of myosin. These filaments are very short. The Listeria grow and divide and the actin filaments rearrange to form a long tail (often 5 microns in length) extending from only one end of the bacterium, a "comet's tail," in which the actin filaments appear randomly oriented. The Listeria "comet" moves to the cell surface with its tail oriented towards the cell center and becomes incorporated into a cell extension with the Listeria at the tip of the process and its tail trailing into the cytoplasm behind it. This extension contacts a neighboring macrophage that phagocytoses the extension of the first macrophage. Thus, within the cytoplasm of the second macrophage is a Listeria with its actin tail surrounded by a membrane that in turn is surrounded by the phagosome membrane of the new host. Both these membranes are then solubilized by the Listeria and the cycle is repeated. Thus, once inside a host cell, the infecting Listeria and their progeny can spread from cell to cell by remaining intracellular and thus bypass the humoral immune system of the organism. To establish if actin filaments are essential for the spread of Listeria from cell to cell, we treated infected macrophages with cytochalasin D. The Listeria not only failed to spread, but most were found deep within the cytoplasm, rather than near the periphery of the cell. Thin sections revealed that the net of actin filaments is not formed nor is a "comet" tail produced.  相似文献   

6.
7.
The bacterial pathogens Listeria monocytogenes and enteropathogenic Escherichia coli (EPEC) generate motile actin-rich structures (comet tails and pedestals) as part of their infectious processes. Nexilin, an actin-associated protein and a component of focal adhesions, has been suggested to be involved in actin-based motility. To determine whether nexilin is commandeered during L. monocytogenes and EPEC infections, we infected cultured cells and found that nexilin is crucial for L. monocytogenes invasion as levels of internalized bacteria were significantly decreased in nexilin-targeted siRNA-treated cells. In addition, nexilin is a component of the machinery that drives the formation of L. monocytogenes comet tails and EPEC pedestals. Nexilin colocalizes with stationary bacteria and accumulates at the distal portion of comet tails and pedestals of motile bacteria. We also show that nexilin is crucial for efficient comet tail formation as cells pre-treated with nexilin siRNA generate malformed comet tails, whereas nexilin is dispensable during EPEC pedestal generation. These findings demonstrate that nexilin is required for efficient infection with invasive and adherent bacteria and is key to the actin-rich structures these microbes generate.  相似文献   

8.
Mathematical modeling is an important tool to assessing quantitative conjectures and to answer specific questions. In the modeling, we assume that a competitor represented by a lactic acid bacterium produces antimicrobial compounds (substances that kill microorganisms or inhibit their growth), such as lactic acid and bacteriocins, with some cost to its own growth. Bacteriocins are protein compounds with antimicrobial effect against related species and bacteria such as Listeria monocytogenes, which is foodborne pathogen that cause listeriosis. From the analysis of the model, we found the thresholds which determine the existence of multiple equilibria and we studied their stability, in order to evaluate the interaction between lactic acid bacteria and L. monocytogenes.  相似文献   

9.
The facultative intracellular bacterium Burkholderia pseudomallei induces actin rearrangement within infected host cells leading to formation of actin tails and membrane protrusions. To investigate the underlying mechanism we analysed the contribution of cytoskeletal proteins to B. pseudomallei-induced actin tail assembly. By using green fluorescent protein (GFP)-fusion constructs, the recruitment of the Arp2/3 complex, vasodilator-stimulated phosphoprotein (VASP), Neural Wiskott-Aldrich syndrome protein (N-WASP), zyxin, vinculin, paxillin and alpha-actinin to the surface of B. pseudomallei and into corresponding actin tails was studied. In addition, antibodies against the same panel of proteins were used for immunolocalization. Whereas the Arp2/3 complex and alpha-actinin were incorporated into B. pseudomallei-induced actin tails, none of the other proteins were detected in these structures. The overexpression of an Arp2/3 binding fragment of the Scar1 protein, shown previously to block actin-based motility of Listeria, had no effect on B. pseudomallei tail formation. Infections of either N-WASP- or Ena/VASP-defective cells showed that these proteins are not essential for B. pseudomallei-induced actin polymerization. In conclusion, our results suggest that B. pseudomallei induces actin polymerization through a mechanism that differs from those evolved by Listeria, Shigella, Rickettsia or vaccinia virus.  相似文献   

10.
A role for cofilin and LIM kinase in Listeria-induced phagocytosis   总被引:9,自引:0,他引:9       下载免费PDF全文
The pathogenic bacterium Listeria monocytogenes is able to invade nonphagocytic cells, an essential feature for its pathogenicity. This induced phagocytosis process requires tightly regulated steps of actin polymerization and depolymerization. Here, we investigated how interactions of the invasion protein InlB with mammalian cells control the cytoskeleton during Listeria internalization. By fluorescence microscopy and transfection experiments, we show that the actin-nucleating Arp2/3 complex, the GTPase Rac, LIM kinase (LIMK), and cofilin are key proteins in InlB-induced phagocytosis. Overexpression of LIMK1, which has been shown to phosphorylate and inactivate cofilin, induces accumulation of F-actin beneath entering particles and inhibits internalization. Conversely, inhibition of LIMK's activity by expressing a dominant negative construct, LIMK1(-), or expression of the constitutively active S3A cofilin mutant induces loss of actin filaments at the phagocytic cup and also inhibits phagocytosis. Interestingly, those constructs similarly affect other actin-based phenomenons, such as InlB-induced membrane ruffling or Listeria comet tail formations. Thus, our data provide evidence for a control of phagocytosis by both activation and deactivation of cofilin. We propose a model in which cofilin is involved in the formation and disruption of the phagocytic cup as a result of its local progressive enrichment.  相似文献   

11.
The core histone tail domains are critical regulators of chromatin structure and function and modifications such as acetylation of lysine residues within the tails are central to this regulation. Studies have shown that the removal of core histone tail domains by trypsinization in which one-half to two-thirds of each core histone tail domain are removed in gross aspects mimics the acetylation of core histone tails. In addition, removal of the tails has been useful in understanding general tail function. Thus, removal of native core histone tails by trypsinization is a widely used method. In addition, many in vitro studies now employ core histones site-specifically modified with photo activatable cross-linking probes or fluorescent probes. However, in our experience, standard methods employing trypsinized donor chromatin for reconstitution of nucleosomes containing certain chemically modified histones lacking the core histone tail domains are not uniformly applicable. Here, we describe various methods for preparing nucleosomes containing a core histone modified with a cross-linking agent, APB, and lacking the core histone tail domains.  相似文献   

12.
Listeria monocytogenes is driven through infected host cytoplasm by a comet tail of actin filaments that serves to project the bacterium out of the cell surface, in pseudopodia, to invade neighboring cells. The characteristics of pseudopodia differ according to the infected cell type. In PtK2 cells, they reach a maximum length of ~15 μm and can gyrate actively for several minutes before reentering the same or an adjacent cell. In contrast, the pseudopodia of the macrophage cell line DMBM5 can extend to >100 μm in length, with the bacteria at their tips moving at the same speed as when at the head of comet tails in bulk cytoplasm. We have now isolated the pseudopodia from PtK2 cells and macrophages and determined the organization of actin filaments within them. It is shown that they possess a major component of long actin filaments that are more or less splayed out in the region proximal to the bacterium and form a bundle along the remainder of the tail. This axial component of filaments is traversed by variable numbers of short, randomly arranged filaments whose number decays along the length of the pseudopodium. The tapering of the tail is attributed to a grading in length of the long, axial filaments.

The exit of a comet tail from bulk cytoplasm into a pseudopodium is associated with a reduction in total F-actin, as judged by phalloidin staining, the shedding of α-actinin, and the accumulation of ezrin. We propose that this transition reflects the loss of a major complement of short, random filaments from the comet, and that these filaments are mainly required to maintain the bundled form of the tail when its borders are not restrained by an enveloping pseudopodium membrane. A simple model is put forward to explain the origin of the axial and randomly oriented filaments in the comet tail.

  相似文献   

13.
During the actin polymerization-based movement of Listeria monocytogenes, individual bacteria are rapidly propelled through the host cell cytoplasm by the growth of a filamentous actin tail. The rate of propulsion varies significantly among individuals and over time. To study this variation, we used a high-throughput tracking technique to record the movement of a large number (approximately 7900) of bacteria in Xenopus frog egg extract. Most bacteria (70%) appeared to maintain an individual characteristic speed over several minutes, suggesting that the major source of variation in average speed is intrinsic to the bacterium. Thirty percent of bacteria had significant changes in speed over time spans of a few minutes, including 17% that appeared to collide with obstacles and 13% that moved with a significant periodic component. For the latter, the peak frequency was proportional to speed, suggesting a mechanism with a fixed spatial scale of approximately 0.6 bacterial length. Near the rear of the bacterium, temporal fluctuations in actin density were positively correlated with fluctuations in speed, whereas near the front the correlation was negative. A comparison of the performance of linear models that predict motion given actin density suggests that the mechanism has a history of 5-10 s, and that fluctuations in actin density near the front of the bacteria contain more predictive information than the rear. Our results are consistent with physical models where bacterial speed is governed by the rate of dissociation of bonds between the bacterial surface and the actin tail, and individual variation is determined by long-lived intrinsic variability in bacterial surface properties.  相似文献   

14.
Shark skin denticles (scales) are diverse in morphology both among species and across the body of single individuals, although the function of this diversity is poorly understood. The extremely elongate and highly flexible tail of thresher sharks provides an opportunity to characterize gradients in denticle surface characteristics along the length of the tail and assess correlations between denticle morphology and tail kinematics. We measured denticle morphology on the caudal fin of three mature and two embryo common thresher sharks (Alopias vulpinus), and we compared thresher tail denticles to those of eleven other shark species. Using surface profilometry, we quantified 3D-denticle patterning and texture along the tail of threshers (27 regions in adults, and 16 regions in embryos). We report that tails of thresher embryos have a membrane that covers the denticles and reduces surface roughness. In mature thresher tails, surfaces have an average roughness of 5.6 μm which is smoother than some other pelagic shark species, but similar in roughness to blacktip, porbeagle, and bonnethead shark tails. There is no gradient down the tail in roughness for the middle or trailing edge regions and hence no correlation with kinematic amplitude or inferred magnitude of flow separation along the tail during locomotion. Along the length of the tail there is a leading-to-trailing-edge gradient with larger leading edge denticles that lack ridges (average roughness = 9.6 μm), and smaller trailing edge denticles with 5 ridges (average roughness = 5.7 μm). Thresher shark tails have many missing denticles visible as gaps in the surface, and we present evidence that these denticles are being replaced by new denticles that emerge from the skin below.  相似文献   

15.
Actin filaments in cells depolymerize rapidly despite the presence of high concentrations of polymerizable G actin. Cofilin is recognized as a key regulator that promotes actin depolymerization. In this study, we show that although pure cofilin can disassemble Listeria monocytogenes actin comet tails, it cannot efficiently disassemble comet tails in the presence of polymerizable actin. Thymus extracts also rapidly disassemble comet tails, and this reaction is more efficient than pure cofilin when normalized to cofilin concentration. By biochemical fractionation, we identify Aip1 and coronin as two proteins present in thymus extract that facilitate the cofilin-mediated disassembly of Listeria comet tails. Together, coronin and Aip1 lower the amount of cofilin required to disassemble the comet tail and permit even low concentrations of cofilin to depolymerize actin in the presence of polymerizable G actin. The cooperative activities of cofilin, coronin, and Aip1 should provide a biochemical basis for understanding how actin filaments can grow in some places in the cell while shrinking in others.  相似文献   

16.
Intracellular Listeria monocytogenes actin-based motility is characterized by significant individual variability, which can be influenced by cytoarchitecture. L. monocytogenes was used as a probe to transmit information about structural variation among subcellular domains defined by mitochondrial density. By analyzing the movement of a large population of L. monocytogenes in PtK2 cells, we found that mean speed and trajectory curvature were significantly larger for bacteria moving in mitochondria-containing domains (generally perinuclear) than for bacteria moving in mitochondria-free domains (generally peripheral). Analysis of bacteria that traversed both mitochondria-containing and mitochondria-free domains revealed that these motile differences were not intrinsic to bacteria themselves. Disruption of mitochondrial respiration did not affect bacterial mean speed, speed persistence, or trajectory curvature. In contrast, microtubule depolymerization lead to decreased mean speed per bacterium and increased mean speed persistence of L. monocytogenes moving in mitochondria-free domains compared with untreated cells. L. monocytogenes were also observed to physically collide with mitochondria and push them away from the bacterial path of motion, causing bacteria to slow down before rapidly resuming their speed. Our results show that subcellular domains along with microtubule depolymerization may influence the actin cytoskeleton to affect L. monocytogenes speed, speed persistence, and trajectory curvature.  相似文献   

17.
Actin polymerisation is thought to drive the movement of eukaryotic cells and some intracellular pathogens such as Listeria monocytogenes. The Listeria surface protein ActA synergises with recruited host proteins to induce actin polymerisation, propelling the bacterium through the host cytoplasm [1]. The Arp2/3 complex is one recruited host factor [2] [3]; it is also believed to regulate actin dynamics in lamellipodia [4] [5]. The Arp2/3 complex promotes actin filament nucleation in vitro, which is further enhanced by ActA [6] [7]. The Arp2/3 complex also interacts with members of the Wiskott-Aldrich syndrome protein (WASP) [8] family - Scar1 [9] [10] and WASP itself [11]. We interfered with the targeting of the Arp2/3 complex to Listeria by using carboxy-terminal fragments of Scar1 that bind the Arp2/3 complex [11]. These fragments completely blocked actin tail formation and motility of Listeria, both in mouse brain extract and in Ptk2 cells overexpressing Scar1 constructs. In both systems, Listeria could initiate actin cloud formation, but tail formation was blocked. Full motility in vitro was restored by adding purified Arp2/3 complex. We conclude that the Arp2/3 complex is a host-cell factor essential for the actin-based motility of L. monocytogenes, suggesting that it plays a pivotal role in regulating the actin cytoskeleton.  相似文献   

18.
Cortactin is an F-actin binding protein that binds to the Arp2/3 complex, stimulates its actin nucleation activity, and inhibits actin filament debranching. Using RNA interference directed against cortactin, we explored the importance of cortactin for several processes involving dynamic actin assembly. Silencing cortactin expression was efficiently achieved in HeLa and NIH 3T3 cells, with less than 5% of cortactin expression in siRNA-treated cells. Surprisingly, endocytosis in HeLa and NIH 3T3 cells, and cell migration rates, were not altered by RNAi-mediated cortactin silencing. Listeria utilizes actin-based motility to move within and spread among mammalian host cells; its actin-clouds and tails recruit cortactin. We explored the role of cortactin during the Listeria life cycle in cortactin "knockdown" NIH 3T3 cells. Interestingly, cortactin siRNA-treated cells showed a significant reduction in the efficiency of the bacteria invasion in NIH 3T3 cells. However, cortactin depletion did not interfere with assembly of Listeria actin clouds or actin tails, or Listeria intracellular motility or speed. Therefore, our findings suggest that cortactin plays a role in Listeria internalization, but not in the formation of actin clouds and tails, or in bacteria intracellular motility.  相似文献   

19.
Vaccinia virus infection results in large rearrangements of the host actin cytoskeleton including the formation of actin tails that are strikingly similar to those seen inListeria, Shigella andRickettsia infections. Using actin polymerization as the driving force the intracellular enveloped form of the vaccinia virus (IEV) is propelled on the tip of actin tails at a speed of 2.8 μm/min, both intra- and intercellularly. The similarities between the actin-based motility of the vaccinia virus,Listeria, Shigella andRickettsia suggest that intracellular pathogens have developed a common strategy to exploit the actin cytoskeleton of the host to facilitate their intercellular spread. This review focuses on our current understanding of the interactions between the vaccinia virus,and the actin cytoskeleton. Presented at the1st International Minisymposium on Cellular Microbiology: Cell Biology and Signalization in Host-Pathogen Interactions, Prague, October 6, 1997.  相似文献   

20.
Long tail kinetics describe a variety of data from complex, disordered materials that cannot be described by conventional kinetics. It is suggested that the kinetics of diffusive motion in complex biological media, such as cytoplasm or biomembranes, might also have long tails. The effects of long tail kinetics are investigated for two standard biophysical measurements, fluorescence recovery after photobleaching (FRAP), and dynamic light scattering (DLS). It is shown that long tail kinetic data would yield significantly distorted and misleading results when analyzed assuming conventional kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号