首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ESR spectrometry has been used to study fatty acid spin-labeled phosphatidylcholine exchange from single bilayer donor vesicles to various acceptor systems, such as intact or differently treated mitochondria, phospholipid multilamellar vesicles or single bilayer vesicles. This exchange is catalyzed by soluble non-specific rat liver protein, first investigated by Bloj and Zilversmit in 1977 (J. Biol. Chem. 252, 1613–1619). Non-catalyzed phosphatidylcholine exchange has also been studied. Full inhibition of both mechanisms occurs with lipid-depleted acceptor mitochondria, while N-ethylmaleimide-treated mitochondria behave as good acceptors during catalyzed exchange but are in no way effective during spontaneous exchange. Non-catalyzed exchange does not take place with phospholipase D-treated mitochondria as acceptors, while the pure catalyzed mechanism is inhibited by 28%. Neither multilamellar nor single bilayer phospholipid vesicles exchange spin-labeled phosphatidylcholine in the absence of protein, the former being a poorer acceptor system than the latter during catalyzed exchange, when this activity is 31 and 80%, respectively, of that of intact mitochondria. The hypothesis is made that the spontaneous mechanism is active among intact natural membranes and could be of some importance in vivo. Furthermore, the biomembrane protein moiety is assumed to be involved in the catalyzed exchange more as a phospholipid spacer than as a binder between the exchange protein and the membrane involved. Phospholipids, on the contrary, appear to be important for both functions.  相似文献   

2.
K W Wirtz  P F Devaux  A Bienvenue 《Biochemistry》1980,19(14):3395-3399
2-Stearoyl spin-labeled phosphatidylcholine (PC*) has been introduced into the phosphatidylcholine exchange protein from bovine liver and its electron spin resonance (ESR) spectrum determined. The spin-labeled group in the PC*- exchange protein complex was strongly immobilized. Addition of sodium deoxycholate micelles released PC* from its binding site, producing a mobile signal. This was also observed when micelles of lysophosphatidylcholine and vesicles of phosphatidic acid were added, indicating that the exchange protein can insert its endogenous PC* into interfaces devoid of phosphatidylcholine. ESR spectroscopy was used to measure transfer of PC* from spin-labeled "donor" vesicles to unlabeled "acceptor" vesicles as described by Machida & Ohnishi [Machida, K., & Ohnishi, S. (1978) Biochim. Biophys. Acta 507, 156-164]. The donor vesicles consisted of PC* and phosphatidic acid (75:25 mol%) and the acceptor vesicles of phosphatidylethanolamine and phosphatidic acid (81:19 mol%). Addition of exchange protein catalyzed a net transfer of PC* from donor to acceptor vesicles. This transfer proceeded until the acceptor vesicles contained approximately 2 mol% of PC*. A spontaneous transfer of PC* was not observed. As for the mode of action, it appears that the exchange protein, after insertion of its endogenous PC* into the acceptor, leaves the interface without a bound phospholipid molecule yet continues to shuttle PC* from donor to acceptor.  相似文献   

3.
Bovine liver phospholipid exchange protein catalyzes the transfer of phosphatidylcholine between donor and acceptor populations of single bilayer phospholipid vesicles. In comparing egg and dimyristoylphosphatidylcholine vesicles, larger transfer rates are found for the unsaturated phospholipid. The bidirectional transfer rates measured from donor to acceptor and from acceptor to donor, are equivalent, suggesting that the protein facilitates an exchange rather than a net transfer of phosphatidylcholine.  相似文献   

4.
Phosphatidylcholine specific exchange protein from beef liver was found to catalyze the exchange of phosphatidylcholine between intact rat and human erythrocytes and various artificial membranes. Both multilamellar liposomes and single bilayer vesicles prepared from egg lecithin, cholesterol and phosphatidic acid (46:50:4, mol/mol) appeared to be effective phospholipid donor systems. Some merits and disadvantages of the various donor systems are discussed.  相似文献   

5.
The rate of transfer of spin-labeled phospholipid from donor vesicles of sonicated 1-acyl-2-(10-doxylstearoyl)-sn-glycero-3-phosphocholine to other vesicle was determined as a function of content of cytochrome P-450 and the phosphatidylcholine/phosphatidylethanolamine ratio in the acceptor vesicles. The transfer rate was measured as an increase in intensity that resulted from a decrease in the line width in the EPR spectrum of the spin-labeled phospholipids as they was transferred to the nonspin-labeled acceptor vesicles. A lower transfer rate was observed for acceptor vesicles of pure egg phosphatidylcholine vesicles than for vesicles for a mixture of phosphatidylcholine and phosphatidylethanolamine. The presence of cytochrome P-450 in the acceptor vesicles further increased the transfer rate. Those alterations in the mole ratios of the protein and the two phospholipids that made the bilayer of the reconstituted vesicles more like the membrane of the endoplasmic reticulum resulted in an increase in phospholipid-transfer rate. The mole ratios of components that produce high phospholipid-transfer rates were similar to those that in an earlier study produced a 31P-NMR spectrum characteristic of a nonbilayer phase. These findings suggest that, in the membrane of the endoplasmic reticulum, phospholipid exchange may be an important element in function and interaction with other intracellular organelles.  相似文献   

6.
7.
The exchange of phosphatidylcholine between [32P]phosphatidylcholine liposomes and unlabeled mitochondria was catalyzed by a purified phospholipid exchange protein from bovine heart cytosol. The loss of [32P]phosphatidylcholine from the liposomes appeared to proceed in two stages: with 100 units of phospholipid exchange protein per ml the half-time of initial stage was about 10 min and that of the final stage 4 days or greater. Agarose-gel chromatography of the liposomes showed an elution compatible with a homogeneous pool of small single walled vesicles. Treatment of phosphatidyl [14C]choline liposomes with phospholipase D (phosphatidylcholine phosphatidohydrolase) showed that labeled phospholipid removable during the rapid exchange phase was subject to hydrolysis by the phospholipase, but that the labeled phospholipid left after the rapid exchange was completed could not be hydrolyzed by phospholipase D. It is proposed that the rapidly exchanging phosphatidylcholine constitutes the outer layer of the liposome bilayer. The long half-lives of 4 days or more probably represent the transposition of Phosphatidylcholine from the inner to the outer layer of the liposome bilayer.  相似文献   

8.
The rate of transfer of spin-labeled phospholipid from donor vesicles of sonicated 1-acyl-2-(10-doxylstearoyl)-sn-glycero-3-phosphocholine to other vesicles was determined as a function of content of cytochrome P-450 and the phosphatidylcholine/phosphatidylethanolamine ratio in the acceptor vesicles. The transfer rate was measured as an increase in intensity that resulted from a decrease in the line width in the EPR spectrum of the spin-labeled phospholipids as they were transferred to the nonspin-labeled acceptor vesicles. A lowe transfer rate was observed for acceptor vesicles of pure egg phosphatidylcholine vesicles than for vesicles of a mixture of phosphatidylcholine and phosphatidylethanolamine. The presence of cytochrome P-450 in the acceptor vesicles further increased the transfer rate. Those alterations in the mole ratios of the protein and the two phospholipids that made the bilayer of the reconstituted vesicles more like the membrane of the endoplasmic reticulum resulted in an increase in phospholipid-transfer rate. The mole ratios of components that produce high phospholipid-transfer rates were similar to those that in an earlier study produced a 31P-NMR spectrum characteristic of a nonbilayer phase. These findings suggest that, in the membrane of the endoplasmic reticulum, phospholipid exchange may be an important element in function and interaction with other intracellular organelles.  相似文献   

9.
A novel method has been developed for the study of phospholipid exchange and fusion of phospholipid vesicles. Two homogeneous populations of single bilayer phosphatidylcholine vesicles of similar size but markedly different density have been prepared. /ldDense/rd vesicles were made from brominated dioleoyl phosphatidylcholine. /ldLight/rd vesicles were prepared from dioleoyl phosphatidylcholine. The two populations were easily separated by density gradient centrifugation. Phosphatidylcholine exchange protein from beef liver was used to promote lecithin exchange between the vesicle populations. Only the lecithin of the external monolayers of the vesicles was available for exchange by exchange protein, implying that flip-flop of vesicle phosphatidylcholine did not take place at a detectable frequency. No spontaneous intervesicle phosphatidylcholine exchange was observed. However, the dense and light vesicles did spontaneously fuse, over several hours, to produce particles of hybrid density.  相似文献   

10.
Effect of bilayer membrane curvature of substrate phosphatidylcholine and inhibitor phosphatidylserine on the activity of phosphatidylcholine exchange protein has been studied by measuring transfer of spin-labeled phosphatidylcholine between vesicles, vesicles and liposomes, and between liposomes. The transfer rate between vesicles was more than 100 times larger than that between vesicles and liposomes. The transfer rate between liposomes was still smaller than that between vesicles and liposomes and nearly the same as that in the absence of exchange protein. The markedly enhanced exchange with vesicles was ascribed to the asymmetric packing of phospholipid molecules in the outer layer of the highly curved bilayer membrane. The inhibitory effect of phosphatidylserine was also greatly dependent on the membrane curvature. The vesicles with diameter of 17 nm showed more than 20 times larger inhibitory activity than those with diameter of 22 nm. The inhibitory effect of liposomes was very small. The size dependence was ascribed to stronger binding of the exchange protein to membranes with higher curvatures. The protein-mediated transfer from vesicles to spiculated erythrocyte ghosts was about four times faster than that to cup-shaped ghosts. This was ascribed to enhanced transfer to the highly curved spiculated membrane sites rather than greater mobility of phosphatidylcholine in the spiculated ghost membrane.  相似文献   

11.
Lung lamellar bodies and liver mitochondria were used to demonstrate that soluble phospholipid transfer proteins from lung transfer phosphatidylcholine to both of these acceptors. The initial rate of transfer to lung lamellar bodies is about half that of the rate of transfer to the liver mitochondria when both acceptor membranes are present at saturating concentrations. Phosphatidylcholine unilamellar vesicles were used to demonstrate that the fatty acyl composition of the membrane phosphatidylcholine is a significant determinant of the rate of phosphatidylcholine transfer catalyzed by these proteins. The lamellar bodies have a unique phosphatidylcholine composition, and these studies suggest that this is an important factor in determining the lower initial rate of transfer to lamellar bodies. The studies have also characterized two phospholipid transfer proteins in rat lung in terms of isoelectric point. Isoelectric points for the two proteins which transfer phosphatidylcholine were found to be 5.6 ± 0.08 and 6.2 ± 0.03.  相似文献   

12.
The efflux of [3H]cholesterol from prelabelled human erythrocytes having modified phosphatidylcholine compositions was measured during 24-h incubations in the presence of unlabelled acceptor liposomes composed of equimolar amounts of egg phosphatidylcholine and cholesterol. The cells were modified by replacement of part of the native phosphatidylcholine with either dipalmitoylphosphatidylcholine, palmitoyloleoylphosphatidylcholine or dilinoleoylphosphatidylcholine catalyzed by phosphatidylcholine-specific transfer protein from bovine liver. The results indicated that the efflux of [3H]cholesterol was faster from erythrocytes in which the dipalmitoylphosphatidylcholine content was increased from 7 to 25% of the total, than from cells enriched in palmitoyloleoylphosphatidylcholine or dioleoylphosphatidylcholine. Incorporation of dilinoleoylphosphatidylcholine to a level of 13% of the total phosphatidylcholine slowed the rate of efflux of [3H]sterol. The phosphatidylcholine replacements produced no significant differences in cholesterol/phospholipid ratio before or after 24 h of incubation with the acceptor egg phosphatidylcholine-cholesterol vesicles. Using vesicles prepared from erythrocyte lipid, modified to reflect the changes in the phosphatidylcholine composition induced in the whole cells, the same influence of composition on the rate of cholesterol exchange was evident. Enhancement of the dipalmitoylphosphatidylcholine content from 7 to 25% of the total phosphatidylcholine pool increased the rate of [3H]cholesterol efflux, while the addition of the same amount of dilinoleoylphosphatidylcholine slowed it compared to controls. The magnitude of the effect was comparable in intact cells and erythrocyte lipid vesicles enriched in dipalmitoylphosphatidylcholine, while the influence of dilinoleoylphosphatidylcholine was more marked in the intact cells. These results demonstrate that changes in the molecular species composition of the phosphatidylcholine pool can influence the rate of exchange of cholesterol but not necessarily the cellular content of sterol in the human erythrocyte. The influence of this phospholipid appears to be expressed independently of the presence of membrane protein or an underlying cytoskeleton.  相似文献   

13.
B Mütsch  N Gains  H Hauser 《Biochemistry》1986,25(8):2134-2140
The kinetics of lipid transfer from small unilamellar vesicles as the donor to brush border vesicles as the acceptor have been investigated by following the transfer of radiolabeled or spin-labeled lipid molecules in the absence of exchange protein. The labeled lipid molecules studied were various radiolabeled and spin-labeled phosphatidylcholines, radiolabeled cholesteryl oleate, and a spin-labeled cholestane. At a given temperature and brush border vesicle concentration similar pseudo-first-order rate constants (half-lifetimes) were observed for different lipid labels used. The lipid transfer is shown to be an exchange reaction leading to an equal distribution of label in donor and acceptor vesicles at equilibrium (time t----infinity). The lipid exchange is a second-order reaction with rate constants being directly proportional to the brush border vesicle concentration. The results are only consistent with a collision-induced exchange of lipid molecules between small unilamellar phospholipid vesicles and brush border vesicles. Other mechanisms such as collision-induced fusion or diffusion of lipid monomers through the aqueous phase are negligible at least under our experimental conditions.  相似文献   

14.
Spin-labeled phosphatidylcholine was incorporated into the membrane of isolated "inner membrane+matrix" particles of rat liver mitochondria by incubation with sonicated spin-labeled phosphatidylcholine vesicles at 22 degrees C. When the spin label was on the acyl chain the incorporation of phosphatidylcholine into the membrane was stimulated by the presence of the phosphatidylcholine exchange protein extracted from rat or beef liver. On the other hand no stimulation was observed when the nitroxide was on the polar head-group. When spin-labeled phosphatidycholine was incorporated into the mitochondrial membrane in the absence of phosphatidylcholine exchange protein, ascorbate treatment at 0 degrees C reduced the EPR signal of the spin-labeled membranes by approximately 50%, indicating that fusion incorporates molecules equally on both sides of the membrane. On the other hand when spin-labeled phosphatidylcholine was incorporated in the presence of the exchange protein most of the EPR signal could be destroyed by the ascorbate treatment at 0 degrees C, indicating that the spin-labeled phosphatidylcholine had been selectively incorporated in the outer layer of the membrane. Finally when the label is on the polar head-group the inner content of mitochondria reduces the label facing the matrix, thus creating again an anisotropy of the labeling. The anisotropic distribution of spin-labeled phosphatidylcholine in the mitochondrial membrane was found to be stable at 25 degrees C for more than 2 h. It is therefore concluded that the rate of outside-inside and inside-outside transitions are extremely slow (half-life greater than 24 h).  相似文献   

15.
A new, simple and versatile method to measure phospholipid transfer has been developed, based on the use of a fluorescent phospholipid derivative, 1-acyl-2-parinaroylphosphatidylcholine. Vesicles prepared of this phospholipid show a low level of fluorescence due to interactions between the fluorescent groups. When phospholipid transfer protein and vesicles consisting of non-labeled phosphatidylcholine are added the protein catalyzes an exchange of phosphatidylcholine between the labeled donor and non-labeled acceptor vesicles. The insertion of labeled phosphatidylcholine into the non-labeled vesicles is accompanied by an increase in fluorescence due to abolishment of self-quenching. The initial rate of fluorescence enhancement was found to be proportional to the amount of transfer protein added. This assay was applied to determine the effect of membrane phospholipid composition on the activity of the phosphatidylcholine-, phosphatidylinositol- and non-specific phospholipid transfer proteins. Using acceptor vesicles of egg phosphatidylcholine and various amounts of phosphatidic acid it was observed that the rate of phosphatidylcholine transfer was either stimulated, inhibited or unaffected by increased negative charge depending on the donor to acceptor ratio and the protein used. In another set of experiments acceptor vesicles were prepared of phosphatidylcholine analogues in which the ester bonds were replaced with ether bonds or carbon-carbon bonds. Assuming that only a strictly coupled exchange between phosphatidylcholine and analogues gives rise to the observed fluorescence increase, orders of substrate preference could be established for the phosphatidylcholine- and phosphatidylinositol transfer proteins.  相似文献   

16.
The work presented here demonstrates that the phenomenon of spontaneous vesiculation is not restricted to charged lipids and lipid mixtures, but occurs also in isoelectric phospholipid mixtures consisting of egg phosphatidylcholine (EPC) and egg lysophosphatidylcholine (lyso-EPC). 1H high-resolution NMR and freeze-fracture electron microscopy have been used to characterize the mixed EPC/lyso EPC dispersions in excess H2O. The predominant phase in these mixed phospholipid dispersions is smectic (lamellar) at least up to approximately 70% lysophosphatidylcholine. The type of phospholipid aggregate formed in excess H2O depends on the mole ratio diacyl to monoacyl phosphatidylcholine. The dispersive (lytic) action of lysophosphatidylcholine on phosphatidylcholine bilayers becomes effective at lysophospholipid contents in excess of approximately 10%. Large multilamellar liposomes are disrupted and replaced by smaller particles, mainly unilamellar vesicles. Between 30 and 70% lysophosphatidylcholine a significant proportion of the total phospholipid is present as small unilamellar vesicles (SUV) of a diameter of 23 nm (range: 20-70 nm). At even higher lysophosphatidylcholine contents the fraction of phospholipid present as small mixed micelles with a diameter smaller than about 14 nm grows at the expense of the vesicular structures. There is a second effect of increasing the quantity of lysophosphatidylcholine in phosphatidylcholine bilayers: the presence of lysophosphatidylcholine in excess of 10% renders the phospholipid bilayer more permeable to ions as compared to pure phosphatidylcholine bilayers. The key factor in inducing spontaneous vesiculation is probably not the charge but the wedge-like shape of the lysophospholipid molecule. The molecular shape may give rise to an asymmetric distribution of lysophosphatidylcholine between the two halves of the bilayer, thus stabilizing highly curved bilayers as present in SUV.  相似文献   

17.
The non-specific phospholipid transfer protein purified from bovine liver has been used to modify the phospholipid content and phospholipid composition of the membrane of intact human erythrocytes. Apart from an exchange of phosphatidylcholine between the red cell and PC-containing vesicles, the protein appeared to facilitate net transfer of phosphatidylcholine from the donor vesicles to the erythrocyte and sphingomyelin transfer in the opposite direction. Phosphatidylcholine transfer was accompanied by an equivalent transfer (on a molar basis) of cholesterol. An increase in phosphatidylcholine content in the erythrocyte membrane from 90 to 282 nmol per 100 microliters packed cells was observed. Phospholipase C treatment of modified cells showed that all of the phosphatidylcholine which was transferred to the erythrocyte was incorporated in the lipid bilayer. The nonspecific lipid transfer protein used here appeared to be a suitable tool to modify lipid content and composition of the erythrocyte membrane, and possible applications of this approach are discussed.  相似文献   

18.
Spin-labeled phosphatidylcholine was incorporated into the membrane of isolated “inner membrane+matrix” particles of rat liver mitochondria by incubation with sonicated spin-labeled phosphatidylcholine vesicles at 22°C. When the spin label was on the acyl chain the incorporation of phosphatidylcholine into the membrane was stimulated by the presence of the phosphatidylcholine exchange protein extracted from rat or beef liver. On the other hand no stimulation was observed when the nitroxide was on the polar head-group.When spin-labeled phosphatidylcholine was incorporated into the mitochondrial membrane in the absence of phosphatidylcholine exchange protein, ascorbate treatment at O°C reduced the EPR signal of the spin-labeled membranes by approximately 50%, indicating that fusion incorporates molecules equally on both sides of the membrane. On the other hand when spin-labeled phosphatidylcholine was incoporated in the presence of the exchange protein most of the EPR signal could be destroyed by the ascorbate treatment at 0°C, indicating that the spin-labeled phosphatidylcholine had been selectively incorporated in the outer layer of the membrane. Finally when the label is on the polar head-group the inner content of mitochondria reduces the label facing the matrix, thus creating again an anisotropy of the labeling.The anisotropic distribution of spin-labeled phosphatidylcholine in the mitochondrial membrane was found to be stable at 25°C for more than 2 h. It is therefore concluded that the rate of outside-inside and inside-outside transitions are extremely slow (half-life greater than 24 h).  相似文献   

19.
Specificity of the phosphatidylcholine exchange protein from bovine liver   总被引:1,自引:0,他引:1  
The phosphatidylcholine exchange protein from bovine liver stimulates the specific transfer of phosphatidylcholine (PC) from rat liver microsomes to mitochondria or phospholipid vesicles (Wirtz, K.W.A., Kamp, H.H., and van Deenen, L.L.M. (1972), Biochim. Biophys. Acta 274, 606). In the present study, it has been established which components of the PC molecule are essential to the specific interaction with the protein. Radiochemically labeled analogues of PC have been synthesized with modifications in the polar and apolar moiety, and their transfer was measured between donor and acceptor vesicles. Relative to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine (egg yolk PC), transfer is inhibited or abolished when (a) the distance between phosphorus and nitrogen is decreased or increased and (b) a methyl group on the quaternary nitrogen is removed or substituted by an ethyl or propyl group. Transfer is much less affected when (a) the ester bonds are replaced by ether or carbon-carbon bonds, (b) the PC molecule contains two saturated fatty acids, and (c) the D stereoisomer is used. It is concluded that the protein has a binding site which interacts specifically with the phosphorylcholine head group and which cannot accommodate substantial configurational changes. Interaction with the apolar moiety of PC is less specific. However, lyso-PC is not transferred, suggesting that two hydrocarbon chains are required to stabilize the exchange protein-phospholipid complex. Interaction of [14C]PC-labeled exchange protein with vesicles of different phospholipid compositon has been analyzed by measuring the release of [14C]PC into these vesicles. Vesicles of egg PC or dimethylphosphatidylethanolamine function as acceptors, in contrast to vesicles of sphingomyelin or phosphatidylethanolamine.  相似文献   

20.
The incorporation of rifampicin into multilayer phospholipid vesicles depending on the concentration of antibiotic and phospholipid content was studied. The extent of incorporation of rifampicin into monolayer vesicles (liposomes), obtained by the homogenization of multilamellar vesicles, was determined by the method of gel filtration. It was found that rifampicin better penetrates and is retained in membranes consisting of a mixture of phosphatidylcholine and cardiolipin, the maximum incorporation of rifampicin into liposomes being 17%. It was shown by 31P NMR spectroscopy that, during the interaction of rifampicin with the phospholipid membrane, the bilayer packing of phospholipids is destroyed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号