首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Synaptophysin and synaptobrevin are abundant membrane proteins of neuronal small synaptic vesicles. In mature, differentiated neurons they form the synaptophysin/synaptobrevin (Syp/Syb) complex. Synaptobrevin also interacts with the plasma membrane-associated proteins syntaxin and SNAP25, thereby forming the SNARE complex necessary for exocytotic membrane fusion. The two complexes are mutually exclusive. Synaptobrevin is a C-terminally membrane-anchored protein with one transmembrane domain. While its interaction with its SNARE partners is mediated exclusively by its N-terminal cytosolic region it has been unclear so far how binding to synaptophysin is accomplished. Here, we show that synaptobrevin can be cleaved in its synaptophysin-bound form by tetanus toxin and botulinum neurotoxin B, or by botulinum neurotoxin D, leaving shorter or longer C-terminal peptide chains bound to synaptophysin, respectively. A recombinant, C-terminally His-tagged synaptobrevin fragment bound to nickel beads specifically bound synaptophysin, syntaxin and SNAP25 from vesicular detergent extracts. After cleavage by tetanus toxin or botulinum toxin D light chain, the remaining C-terminal fragment no longer interacted with syntaxin or SNAP 25. In contrast, synaptophysin was still able to bind to the residual C-terminal synaptobrevin cleavage product. In addition, the His-tagged C-terminal synaptobrevin peptide 68-116 was also able to bind synaptophysin in detergent extracts from adult brain membranes. These data suggest that synaptophysin interacts with the C-terminal transmembrane part of synaptobrevin, thereby allowing the N-terminal cytosolic chain to interact freely with the plasma membrane-associated SNARE proteins. Thus, by binding synaptobrevin, synaptophysin may positively modulate neurotransmission.  相似文献   

2.
A novel, in vitro bioassay for detection of the botulinum type B neurotoxin in a range of media was developed. The assay is amplified by the enzymic activity of the neurotoxin's light chain and includes the following three stages: first, a small, monoclonal antibody-based immunoaffinity column captures the toxin; second, a peptide substrate is cleaved by using the endopeptidase activity of the type B neurotoxin; and finally, a modified enzyme-linked immunoassay system detects the peptide cleavage products. The assay is highly specific for type B neurotoxin and is capable of detecting type B toxin at a concentration of 5 pg ml(-1) (0.5 mouse 50% lethal dose ml(-1)) in approximately 5 h. The format of the test was found to be suitable for detecting botulinum type B toxin in a range of foodstuffs with a sensitivity that exceeds the sensitivity of the mouse assay. Using highly specific monoclonal antibodies as the capture phase, we found that the endopeptidase assay was capable of differentiating between the type B neurotoxins produced by proteolytic and nonproteolytic strains of Clostridium botulinum type B.  相似文献   

3.
Botulinum neurotoxins types B, D, F, and G, and tetanus neurotoxin inhibit vesicular fusion via proteolytic cleavage of VAMP/Synaptobrevin, a core component of the membrane fusion machinery. Thus, these neurotoxins became widely used tools for investigating vesicular trafficking routes. Except for VAMP-1, VAMP-2, and Cellubrevin, no other member of the VAMP family represents a substrate for these neurotoxins. The molecular basis for this discrepancy is not known. A 34 amino acid residue segment of VAMP-2 was previously suggested to mediate the interaction with botulinum neurotoxin B, but the validity of the data was later questioned. To check whether this segment alone controls the susceptibility toward botulinum neurotoxin B, it was used to replace the corresponding segment in TI-VAMP. The resulting VAMP hybrid and VAMP-2 were hydrolysed at virtually identical rates. Resetting the VAMP-2 portion in the hybrid from either end to TI-VAMP residues gradually reduced the cleavability. A hybrid encompassing merely the VAMP-2 segment 71-80 around the Gln76/Phe77 scissile bond was still hydrolysed, albeit at a approximately tenfold lower cleavage rate. The contribution of each non-conserved amino acid of the whole 34-mer segment to the interaction was investigated employing VAMP-2. We find that the eight non-conserved residues of the 71-80 segment are all necessary for efficient cleavage. Mutation of an additional six residues located upstream and downstream of this segment affects substrate hydrolysis as well. Vice versa, a readily cleavable TI-VAMP molecule requires at the least the replacement of Ile158, Thr161, and the section 165-174 by Asp64, Ala67, and the 71-80 segment of VAMP-2, respectively. However, the insensitivity of TI-VAMP to botulinum neurotoxin B relies on at least 12 amino acid changes versus VAMP-2. These are scattered along an interface of 22 amino acid residues in length.  相似文献   

4.
Botulinum neurotoxin B (BoNT/B) produces muscle paralysis by cleaving synaptobrevin/vesicle-associated membrane protein (VAMP), an 18-kDa membrane-associated protein located on the surface of small synaptic vesicles. A capillary electrophoresis (CE) assay was developed to evaluate inhibitors of the proteolytic activity of BoNT/B with the objective of identifying suitable candidates for treatment of botulism. The assay was based on monitoring the cleavage of a peptide that corresponds to residues 44-94 of human VAMP-2 (V51) following reaction with the catalytic light chain (LC) of BoNT/B. Cleavage of V51 generated peptide fragments of 18 and 33 amino acids by scission of the bond between Q76 and F77. The fragments and parent peptide were clearly resolved by CE, allowing accurate quantification of the BoNT/B LC-mediated reaction rates. The results indicate that CE is suitable for assessing the enzymatic activity of BoNT/B LC.  相似文献   

5.
Summary The light chain of tetanus neurotoxin (TeNTL chain) has been shown to be endowed with zine endopeptidase activity, selectively directed towards the Gln76-Phe77 bond of synaptobrevin, a vesicle-associated membrane protein critically involved in neuroexocytosis. In previous reports, truncations at the NH2- and COOH-terminus of synaptobrevin have shown that the sequence 39–88 of synaptobrevin is the minimum substrate of TeNT, suggesting either the requirement of a well-defined three-dimensional structure of synaptobrevin or a role in the mechanism of substrate hydrolysis for residues distal from the cleavage site. In this study, the addition of NH2- and COOH-terminal peptides of synaptobrevin, S 27–55 (S1) and S 82–93 (S2), to the synaptobrevin fragment S 56–81 allowed the cleavage of this latter peptide by TeNT to occur. This appears to result from an activation process mediated by the simultaneous binding of S1 and S2 with complementary sites present on TeNT as shown by surface plasmon resonance experiments. All these results favor an exosite-controlled hydrolysis of synaptobrevin by TeNT probably involving a conformational change of the toxin. This could accound for the high degree of substrate specificity of TeNT and, probably, botulinum neurotoxins.  相似文献   

6.
An amplified enzyme-linked immunosorbent assay (ELISA) for the detection of Clostridium botulinum complex neurotoxins was evaluated for its ability to detect these toxins in food. The assay was found to be suitable for detecting type A, B, E, and F botulinum neurotoxins in a variety of food matrices representing liquids, solid, and semisolid food. Specific foods included broccoli, orange juice, bottled water, cola soft drinks, vanilla extract, oregano, potato salad, apple juice, meat products, and dairy foods. The detection sensitivity of the test for these botulinum complex serotypes was found to be 60 pg/ml (1.9 50% lethal dose [LD50]) for botulinum neurotoxin type A (BoNT/A), 176 pg/ml (1.58 LD50) for BoNT/B, 163 pg/ml for BoNT/E (4.5 LD50), and 117 pg/ml for BoNT/F (less than 1 LD50) in casein buffer. The test could also readily detect 2 ng/ml of neurotoxins type A, B, E, and F in a variety of food samples. For specificity studies, the assay was also used to test a large panel of type A C. botulinum, a smaller panel of proteolytic and nonproteolytic type B, E, and F neurotoxin-producing Clostridia, and nontoxigenic organisms using an overnight incubation of toxin production medium. The assay appears to be an effective tool for large-scale screening of the food supply in the event of a botulinum neurotoxin contamination event.  相似文献   

7.
A novel, in vitro bioassay for detection of the botulinum type B neurotoxin in a range of media was developed. The assay is amplified by the enzymic activity of the neurotoxin’s light chain and includes the following three stages: first, a small, monoclonal antibody-based immunoaffinity column captures the toxin; second, a peptide substrate is cleaved by using the endopeptidase activity of the type B neurotoxin; and finally, a modified enzyme-linked immunoassay system detects the peptide cleavage products. The assay is highly specific for type B neurotoxin and is capable of detecting type B toxin at a concentration of 5 pg ml−1 (0.5 mouse 50% lethal dose ml−1) in approximately 5 h. The format of the test was found to be suitable for detecting botulinum type B toxin in a range of foodstuffs with a sensitivity that exceeds the sensitivity of the mouse assay. Using highly specific monoclonal antibodies as the capture phase, we found that the endopeptidase assay was capable of differentiating between the type B neurotoxins produced by proteolytic and nonproteolytic strains of Clostridium botulinum type B.  相似文献   

8.
Botulism is a neuroparalytic disease caused by Clostridium botulinum, which produces seven (A-G) neurotoxins (BoNTs). The mouse bioassay is the gold standard for the detection of botulinum neurotoxins, however it requires at least 3-4 days for completion. Most of the studies were carried out in botulinum toxin A and less on type B. Attempts have been made to develop an ELISA based detection system, which is potentially an easier and more rapid method of botulinum neurotoxin detection. In the present study, the synthetic BoNT/B LC gene was constructed using PCR overlapping primers, cloned in a pET28a+ vector and expressed in E. coli BL21DE3. The maximum yield of recombinant proteins was optimized after 16 hrs of post induction at 21°C and purified the recombinant protein in soluble form. Antibodies were raised in Mice and Rabbit. The IgG antibody titer in the case of Mice was 1: 1,024,000 and Rabbit was 1: 512,000 with alum as adjuvant via intramascular route. The biological activity of the recombinant protein was confirmed by in-vitro studies using PC12 cells by the synaptobrevin cleavage, the rBoNT/B LC protein showed the maximum blockage of acetylcholine release at a concentration of 150nM rBoNT/B LC in comparison to the control cells. When the cells were incubated with rBoNT/B LC neutralized by the antisera raised against it, the acetylcholine release was equivalent to the control. IgG specific to rBoNT/B LC was purified from raised antibodies. The results showed that the developed antibody against rBoNT/B LC protein were able to detect botulinum toxin type B approximately up to 1 ng/ml. These developed high titer antibodies may prove useful for the detection of botulinum neurotoxins in food and clinical samples.  相似文献   

9.
J Blasi  E R Chapman  S Yamasaki  T Binz  H Niemann    R Jahn 《The EMBO journal》1993,12(12):4821-4828
The anaerobic bacterium Clostridium botulinum produces several related neurotoxins that block exocytosis of synaptic vesicles in nerve terminals and that are responsible for the clinical manifestations of botulism. Recently, it was reported that botulinum neurotoxin type B as well as tetanus toxin act as zinc-dependent proteases that specifically cleave synaptobrevin, a membrane protein of synaptic vesicles (Link et al., Biochem. Biophys. Res. Commun., 189, 1017-1023; Schiavo et al., Nature, 359, 832-835). Here we report that inhibition of neurotransmitter release by botulinum neurotoxin type C1 was associated with the proteolysis of HPC-1 (= syntaxin), a membrane protein present in axonal and synaptic membranes. Breakdown of HPC-1/syntaxin was selective since no other protein degradation was detectable. In vitro studies showed that the breakdown was due to a direct interaction between HPC-1/syntaxin and the toxin light chain which acts as a metallo-endoprotease. Toxin-induced cleavage resulted in the generation of a soluble fragment of HPC-1/syntaxin that is 2-4 kDa smaller than the native protein. When HPC-1/syntaxin was translated in vitro, cleavage occurred only when translation was performed in the presence of microsomes, although a full-length product was obtained in the absence of membranes. However, susceptibility to toxin cleavage was restored when the product of membrane-free translation was subsequently incorporated into artificial proteoliposomes. In addition, a translated form of HPC-1/syntaxin, which lacked the putative transmembrane domain at the C-terminus, was soluble and resistant to toxin action. We conclude that HPC-1/syntaxin is involved in exocytotic membrane fusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
An amplified enzyme-linked immunosorbent assay (ELISA) for the detection of Clostridium botulinum complex neurotoxins was evaluated for its ability to detect these toxins in food. The assay was found to be suitable for detecting type A, B, E, and F botulinum neurotoxins in a variety of food matrices representing liquids, solid, and semisolid food. Specific foods included broccoli, orange juice, bottled water, cola soft drinks, vanilla extract, oregano, potato salad, apple juice, meat products, and dairy foods. The detection sensitivity of the test for these botulinum complex serotypes was found to be 60 pg/ml (1.9 50% lethal dose [LD50]) for botulinum neurotoxin type A (BoNT/A), 176 pg/ml (1.58 LD50) for BoNT/B, 163 pg/ml for BoNT/E (4.5 LD50), and 117 pg/ml for BoNT/F (less than 1 LD50) in casein buffer. The test could also readily detect 2 ng/ml of neurotoxins type A, B, E, and F in a variety of food samples. For specificity studies, the assay was also used to test a large panel of type A C. botulinum, a smaller panel of proteolytic and nonproteolytic type B, E, and F neurotoxin-producing Clostridia, and nontoxigenic organisms using an overnight incubation of toxin production medium. The assay appears to be an effective tool for large-scale screening of the food supply in the event of a botulinum neurotoxin contamination event.  相似文献   

11.
Tetanus and botulinum toxins bind and are internalized at the neuromuscular junction. Botulinum neurotoxins (BoNTs) enter the cytosol at the motor nerve terminal; tetanus neurotoxin (TeNT) proceeds retroaxonally inside the motor axon to reach the spinal cord inhibitory interneurons. Although the major target of BoNTs is the peripheral cholinergic terminals, CNS neurons are susceptible to intoxication as well. We investigated the route of entry and the proteolytic activity of BoNT/B and BoNT/F in cultured hippocampal neurons and astrocytes. We show that, differently from TeNT, which enters hippocampal neurons via the process of synaptic vesicle (SV) recycling, BoNTs are internalized and cleave the substrate synaptobrevin/VAMP2 via a process independent of synaptic activity. Labeling of living neurons with Texas Red-conjugated BoNTs and fluoresceinated dextran revealed that these toxins enter hippocampal neurons via endocytic processes not mediated by SV recycling. Botulinum toxins also exploit endocytosis to enter cultured astrocytes, where they partially cleave cellubrevin, a ubiquitous synaptobrevin/VAMP isoform. These results indicate that, in spite of their closely related protein structure, TeNT and BoNTs use different routes to penetrate hippocampal neurons. These findings bear important implications for the identification of the protein receptors of clostridial toxins.  相似文献   

12.
Botulinum neurotoxin serotype B is a zinc protease that disrupts neurotransmitter release by cleaving synaptobrevin-II (Sb2), one of three SNARE proteins involved in neuronal synaptic vesicle fusion. The three-dimensional crystal structure of the apo botulinum neurotoxin serotype B catalytic domain (BoNT/B-LC) has been determined to 2.2 A resolution, and the complex of cleaved Sb2 with the catalytic domain (Sb2-BoNT/B-LC) has been determined to 2.0 A resolution. A comparison of the holotoxin catalytic domain and the isolated BoNT/B-LC structure shows a rearrangement of three active site loops. This rearrangement exposes the BoNT/B active site. The Sb2-BoNT/B-LC structure illustrates two distinct binding regions, which explains the specificity of each botulinum neurotoxin for its synaptic vesicle protein. This observation provides an explanation for the proposed cooperativity between binding of full-length substrate and catalysis and suggest a mechanism of synaptobrevin proteolysis employed by the clostridial neurotoxins.  相似文献   

13.
Comparison of genes encoding type F botulinum neurotoxin progenitor complex in strains of proteolytic Clostridium botulinum strain Langeland, nonproteolytic Clostridium botulinum strain 202F, and Clostridium barati strain ATCC 43256 reveals an identical organization of genes encoding a protein of molecular mass of approx. 47 kDa (P-47), nontoxic-nonhemagglutinin (NTNH) and botulinum toxin (BoNT). Although homology between the protein components of the complexes encoded by these different species all producing botulinum neurotoxin type F is considerable (approx. 69–88% identity), exceptionally high homology is observed between the C-termini of the P-47s (approx. 96% identity) and the NTNHs (approx. 94% identity) encoded by Clostridium botulinum type F strain Langeland and Clostridium botulinum type A strain Kyoto. Such a region of extremely high sequence identity is strongly indicative of recombination in these strains synthesizing botulinum neurotoxins of different antigenic types. Received: 13 April 1998 / Accepted: 9 May 1998  相似文献   

14.
The dichain type E botulinum neurotoxin, a product of nicking the single chain protein by trypsin, is composed of a heavy and light chains. Sequence of the first 13 and 20 N-terminal residues of these two chains were determined. Also, proof is provided here that (i) the light chain of the nicked (dichain) is derived from the N-terminal one-third of the parent single chain neurotoxin, and (ii) molecular events leading to the activation, of the single chain neurotoxin cannot involve tryptic cleavage at or very close to the N-terminal of the single chain protein. The partial amino acid sequence of the light chain of botulinum type E and tetanus neurotoxins show significant similarity between the two clostridial neurotoxins.  相似文献   

15.
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) inhibit neurotransmitter release by proteolyzing a single peptide bond in one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors SNAP-25, syntaxin, and vesicle-associated membrane protein (VAMP)/synaptobrevin. TeNT and BoNT/B, D, F, and G of the seven known BoNTs cleave the synaptic vesicle protein VAMP/synaptobrevin. Except for BoNT/B and TeNT, they cleave unique peptide bonds, and prior work suggested that different substrate segments are required for the interaction of each toxin. Although the mode of SNAP-25 cleavage by BoNT/A and E has recently been studied in detail, the mechanism of VAMP/synaptobrevin proteolysis is fragmentary. Here, we report the determination of all substrate residues that are involved in the interaction with BoNT/B, D, and F and TeNT by means of systematic mutagenesis of VAMP/synaptobrevin. For each of the toxins, three or more residues clustered at an N-terminal site remote from the respective scissile bond are identified that affect solely substrate binding. These exosites exhibit different sizes and distances to the scissile peptide bonds for each neurotoxin. Substrate segments C-terminal of the cleavage site (P4-P4') do not play a role in the catalytic process. Mutation of residues in the proximity of the scissile bond exclusively affects the turnover number; however, the importance of individual positions at the cleavage sites varied for each toxin. The data show that, similar to the SNAP-25 proteolyzing BoNT/A and E, VAMP/synaptobrevin-specific clostridial neurotoxins also initiate substrate interaction, employing an exosite located N-terminal of the scissile peptide bond.  相似文献   

16.
Tetanus and botulinum neurotoxins selectively invade neurons following binding to complex gangliosides. Recent biochemical experiments demonstrate that two ganglioside binding sites within the tetanus neurotoxin HC-fragment, originally identified in crystallographic studies to bind lactose or sialic acid, are required for productive binding to target cells. Here, we determine by mass spectroscopy studies that the HC-fragment of botulinum neurotoxins A and B bind only one molecule of ganglioside GT1b. Mutations made in the presumed ganglioside binding site of botulinum neurotoxin A and B abolished the formation of these HC-fragment/ganglioside complexes, and drastically diminished binding to neuronal membranes and isolated GT1b. Furthermore, correspondingly mutated full-length neurotoxins exhibit significantly reduced neurotoxicity, thus identifying a single ganglioside binding site within the carboxyl-terminal half of the HC-fragment of botulinum neurotoxins A and B. These binding cavities are defined by the conserved peptide motif H...SXWY...G. The roles of tyrosine and histidine in botulinum neurotoxins A and B in ganglioside binding differ from those in the analogous tetanus neurotoxin lactose site. Hence, these findings provide valuable information for the rational design of potent botulinum neurotoxin binding inhibitors.  相似文献   

17.
Botulinum neurotoxin type B is a high-weight (150 kDa) protein produced by the anaerobic bacillus Clostridium botulinum. This metallo-protease neurotoxin cleaves synaptobrevin, a protein, which is crucial to neurotransmission, resulting in the muscle paralysis, which characterizes botulism. Inhibition of the metallo-peptidase activity is a possible approach to obtain specific therapeutics to treat botulism. We have previously reported a successful attempt to block the proteolytic activity of this neurotoxin with new, selective amino-thiol inhibitors endowed with Ki values in the 15-20 nanomolar range. With the aim of increasing the affinity and bioavailability of this first series of inhibitors we have optimized the residue that fits the P(1) subsite of the enzyme by comparing a series of ligands that contain subtle but significant variants of the parent structure. In addition, this strategy provided a simplification of the synthesis of BoNT/B inhibitors by reducing the possible number of stereoisomers. As such we were able to enhance the inhibitory potency whilst reducing the size as compared to the initial privileged structure yielding the first pseudo-tripeptide inhibitors with Ki values in the low nanomolar range.  相似文献   

18.
The effects of botulinum neurotoxins or their light and heavy chain subunits were investigated in digitonin-permeabilized adrenal chromaffin cells. Because these cells are permeable to proteins, the toxin had direct access to the cell interior. Botulinum type A neurotoxin and its light chain subunit inhibited Ca2+-dependent catecholamine secretion in a dose-dependent manner. The heavy chain subunit had no effect. Inhibition required introduction of the neurotoxin or light chain into the cell and was not seen when intact cells were incubated with these proteins. The inhibition of secretion by type A neurotoxin and light chain was incomplete, the maximal response being 65%. The inhibition was not overcome by increasing Ca2+ concentrations. The action of the light chain was irreversible and rapid. Botulinum type E neurotoxin also inhibited secretion in a dose-dependent manner. Its potency was increased 30-fold following mild trypsinization, which nicked the single chain protein to the dichain form. In contrast to the results seen with types A and E, botulinum type B neurotoxin did not inhibit secretion, while its light chain totally abolished secretion. Trypsinization of the neurotoxin produced the dichain form, which did not inhibit secretion. Reduction of the trypsinized neurotoxin with dithiothreitol produced inhibition equivalent to that seen with the purified light chain subunit. Isolated type A heavy chain had no effect on the inhibitory action of type A or B light chains. The data demonstrate that the ability of botulinum neurotoxins to inhibit secretion is confined to the light chain region of these proteins. Furthermore, while the botulinum neurotoxin types A, B, and E have similar macrostructures, they are not identical with respect to their biological activities.  相似文献   

19.
Botulinum neurotoxins (BoNTs) cause flaccid paralysis by inhibiting neurotransmission at cholinergic nerve terminals. BoNTs consist of three essential domains for toxicity: the cell binding domain (Hc), the translocation domain (Hn) and the catalytic domain (LC). A functional derivative (LHn) of the parent neurotoxin B composed of Hn and LC domains was recombinantly produced and characterised. LHn/B crystallographic structure at 2.8? resolution is reported. The catalytic activity of LHn/B towards recombinant human VAMP was analysed by substrate cleavage assay and showed a higher specificity for VAMP-1, -2 compared to VAMP-3. LHn/B also showed measurable activity in living spinal cord neurons. Despite lacking the Hc (cell-targeting) domain, LHn/B retained the capacity to internalize and cleave intracellular VAMP-1 and -2 when added to the cells at high concentration. These activities of the LHn/B fragment demonstrate the utility of engineered botulinum neurotoxin fragments as analytical tools to study the mechanisms of action of BoNT neurotoxins and of SNARE proteins.  相似文献   

20.
A novel mechanism for Clostridium botulinum neurotoxin inhibition   总被引:1,自引:0,他引:1  
Clostridium botulinum neurotoxins are zinc endopeptidase proteins responsible for cleaving specific peptide bonds of proteins of neuroexocytosis apparatus. The ability of drugs to interfere with toxin's catalytic activity is being evaluated with zinc chelators and metalloprotease inhibitors. It is important to develop effective pharmacological treatment for the intact holotoxin before the catalytic domain separates and enters the cytosol. We present here evidence for a novel mechanism of an inhibitor binding to the holotoxin and for the chelation of zinc from our structural studies on Clostridium botulinum neurotoxin type B in complex with a potential metalloprotease inhibitor, bis(5-amidino-2-benzimidazolyl)methane, and provide snapshots of the reaction as it progresses. The binding and inhibition mechanism of this inhibitor to the neurotoxin seems to be unique for intact botulinum neurotoxins. The environment of the active site rearranges in the presence of the inhibitor, and the zinc ion is gradually removed from the active site and transported to a different site in the protein, probably causing loss of catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号