首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A practical synthesis of 3'-phosphoadenosine 5'-phosphosulfate (IV) in yields of 68-72% from adenosine 2',3'-cyclic phosphate 5'-phosphate (II) is described. Reaction of II with triethylamine-N-sulfonic acid affords adenosine 2',3'-cyclic phosphate 5'-phosphosulfate (III) which, on treatment with ribonuclease-T2, provides IV. Spleen phosphodiesterase, on the other hand, converts III to 2'-phosphoadenosine 5'-phosphosulfate (V). The biological activity of IV, measured by sulfate transfer to [6,7-3H2]estrone as mediated by bovine adrenal estrone sulfotransferase (3'-phosphoadenylyl-sulfate:estrone 3-sulfotransferase, EC 2.8.2.4), is identical with that obtained with a sample of IV prepared by an established biochemical procedure. By contrast, V exhibits approximately one-third the activity of the natural isomer.  相似文献   

2.
Heparan sulfate interacts with antithrombin, a protease inhibitor, to regulate blood coagulation. Heparan sulfate 3-O-sulfotransferase isoform 1 performs the crucial last step modification in the biosynthesis of anticoagulant heparan sulfate. This enzyme transfers the sulfuryl group (SO(3)) from 3'-phosphoadenosine 5'-phosphosulfate to the 3-OH position of a glucosamine residue to form the 3-O-sulfo glucosamine, a structural motif critical for binding of heparan sulfate to antithrombin. In this study, we report the crystal structure of 3-O-sulfotransferase isoform 1 at 2.5-A resolution in a binary complex with 3'-phosphoadenosine 5'-phosphate. This structure reveals residues critical for 3'-phosphoadenosine 5'-phosphosulfate binding and suggests residues required for the binding of heparan sulfate. In addition, site-directed mutagenesis analyses suggest that residues Arg-67, Lys-68, Arg-72, Glu-90, His-92, Asp-95, Lys-123, and Arg-276 are essential for enzymatic activity. Among these essential amino acid residues, we find that residues Arg-67, Arg-72, His-92, and Asp-95 are conserved in heparan sulfate 3-O-sulfotransferases but not in heparan N-deacetylase/N-sulfotransferase, suggesting a role for these residues in conferring substrate specificity. Results from this study provide information essential for understanding the biosynthesis of anticoagulant heparan sulfate and the general mechanism of action of heparan sulfate sulfotransferases.  相似文献   

3.
Amine N-sulfotransferase   总被引:1,自引:0,他引:1  
A highly purified amine N-sulfotransferase has been isolated from guinea pig liver that catalyzes sulfuryl group transfer from 3'-phosphoadenosine 5'-phosphosulfate to one of a large number of either primary or secondary amines forming the appropriate sulfamate and adenosine 3',5'-bisphosphate. Amines as different as aniline, 2-naphthylamine, octylamine, 1,2,3,4-tetrahydroisoquinoline and 1,2,3,4-tetrahydroisoquinoline, desmethylimipramine, and cyclohexylamine serve as acceptors; the product of the last of these substrates is the sugar-substitute cyclamate. Amine N-sulfotransferase activity is dependent on the presence of an unprotonated amino group. The purified enzyme preparation also has O-sulfotransferase activities, suggesting that transfer to oxygen could represent an intrinsic function of the N-sulfotransferase.  相似文献   

4.
Adenosine 5'-phosphosulfate (APS) kinase (ATP:APS 3'-phosphotransferase) catalyzes the ultimate step in the biosynthesis of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), the primary biological sulfuryl donor. APS kinase from Escherichia coli is phosphorylated upon incubation with ATP, yielding a protein that can complete the overall reaction through phosphorylation of APS. Rapid-quench kinetic experiments show that, in the absence of APS, ATP phosphorylates the enzyme with a rate constant of 46 s-1, which is equivalent to the Vmax for the overall APS kinase reaction. Similar pre-steady-state kinetic measurements show that the rate constant for transfer of the phosphoryl group from E-P to APS is 91 s-1. Thus, the phosphorylated enzyme is kinetically competent to be on the reaction path. In order to elucidate which amino acid residue is phosphorylated, and thus to define the active site region of APS kinase, we have determined the complete sequence of cysC, the structural gene for this enzyme in E. coli. The coding region contains 603 nucleotides and encodes a protein of 22,321 Da. Near the amino terminus is the sequence 35GLSGSGKS, which exemplifies a motif known to interact with the beta-phosphoryl group of purine nucleotides. The residue that is phosphorylated upon incubation with ATP has been identified as serine-109 on the basis of the amino acid composition of a radiolabeled peptide purified from a proteolytic digest of 32P-labeled enzyme. We have identified a sequence beginning at residue 147 which may reflect a PAPS binding site. This sequence was identified in the carboxy terminal region of 10 reported sequences of proteins of PAPS metabolism.  相似文献   

5.
Chondroitin 4-sulfotransferase (C4ST) catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 4 of N-acetylgalactosamine residue of chondroitin. The enzyme has been previously purified to apparent homogeneity from the serum-free culture medium of rat chondrosarcoma cells (Yamauchi, A., Hirahara, Y., Usui, H., Takeda, Y., Hoshino, M., Fukuta, M., Kimura, J. H., and Habuchi, O. (1999) J. Biol. Chem. 274, 2456-2463). The purified enzyme also catalyzed the sulfation of partially desulfated dermatan sulfate. We have now cloned the cDNA of the mouse C4ST on the basis of the amino acid sequences of peptides obtained from the purified enzyme by protease digestion. This cDNA contains a single open reading frame that predicts a protein composed of 352 amino acid residues. The protein predicts a Type II transmembrane topology. The predicted sequence of the protein contains all of the known amino acid sequence and four potential sites for N-glycosylation, which corresponds to the observation that the purified C4ST is an N-linked glycoprotein. The amino acid sequence of mouse C4ST showed significant sequence homology to HNK-1 sulfotransferase. Comparison of the sequence of mouse C4ST with human HNK-1 sulfotransferase revealed approximately 29% identity and approximately 48% similarity at the amino acid level. When the cDNA was introduced in a eukaryotic expression vector and transfected in COS-7 cells, the sulfotransferase activity that catalyzes the transfer of sulfate to position 4 of GalNAc residue of both chondroitin and desulfated dermatan sulfate was overexpressed. Northern blot analysis showed that, among various mouse adult tissues, 5.7-kilobase message of C4ST was mainly expressed in the brain and kidney.  相似文献   

6.
7.
Chondroitin 4-sulfotransferase (C4ST) catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 4 of the N-acetylgalactosamine residues of chondroitin. We previously reported the cloning of C4ST cDNA from mouse brain. We here report the cloning and expression of human C4ST cDNA. The cDNA was isolated from a human fetal brain cDNA library by hybridization with a DNA probe prepared from rat poly(A)(+) RNA used for the cloning of mouse C4ST cDNA. The cDNA comprises a single open reading frame that predicts a Type II transmembrane protein composed of 352 amino acids. The protein has an amino acid sequence homology of 96% with mouse C4ST. When the cDNA was introduced into a eukaryotic expression vector and transfected in COS-7 cells, the sulfotransferase activity that transfers sulfate to both chondroitin and desulfated dermatan sulfate was overexpressed. Northern blot analysis indicated that human C4ST mRNAs (6.0 and 1.9 kb) are expressed ubiquitously in various adult human tissues. Dot blot analysis has shown that human C4ST is strongly expressed in colorectal adenocarcinoma and peripheral blood leukocytes, whereas strong expression of human chondroitin 6-sulfotransferase (C6ST) is observed in aorta and testis. These observations suggest that the expression of C4ST and C6ST may be controlled differently in human tissues. The C4ST gene was localized to chromosome 12q23.2-q23.3 by fluorescence in situ hybridization.  相似文献   

8.
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of N-acetylgalactosamine 4-sulfate (GalNAc(4SO(4))) in chondroitin sulfate and dermatan sulfate. We have previously purified the enzyme to apparent homogeneity from the squid cartilage. We report here cloning and characterization of human GalNAc4S-6ST. The strategy for identification of human GalNAc4S-6ST consisted of: 1) determination of the amino acid sequences of peptides derived from the purified squid GalNAc4S-6ST, 2) amplification of squid DNA by polymerase chain reaction, and 3) homology search using the amino acid sequence deduced from the squid DNA. The human GalNAc4S-6ST cDNA contains a single open reading frame that predicts a type II transmembrane protein composed of 561 amino acid residues. The recombinant protein expressed from the human GalNAc4S-6ST cDNA transferred sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of the nonreducing terminal and internal GalNAc(4SO(4)) residues contained in chondroitin sulfate A and dermatan sulfate. When a trisaccharide and a pentasaccharide having sulfate groups at position 4 of N-acetylgalactosamine residues were used as acceptors, only nonreducing terminal GalNAc(4SO(4)) residues were sulfated. The nucleotide sequence of the human GalNAc4S-6ST cDNA was nearly identical to the sequence of human B cell recombination activating gene-associated gene.  相似文献   

9.
Adenosine-5'-phosphosulfate kinase (ATP:adenylylsulfate 3'-phosphotransferase), the second enzyme in the pathway of sulfate activation, has been purified (approximately 300-fold) to homogeneity from an Escherichia coli K12 strain, which overproduces the enzyme activity (approximately 100-fold). The purified enzyme has a specific activity of 153 mumol of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) formed/min/mg of protein at 25 degrees C. The enzyme is remarkably efficient with a Vmax/Km(APS) of greater than 10(8) M-1 s-1, indicating that at physiologically low substrate concentrations the reaction is essentially diffusion limited. Upon incubation with MgATP a phosphorylated enzyme is formed; the isolated phosphorylated enzyme can transfer its phosphoryl group to adenosine 5'-phosphosulfate (APS) to form PAPS or to ADP to form ATP. The phosphorylated enzyme exists as a dimer of identical 21-kilodalton subunits, while the dephosphorylated form primarily exists as a tetramer. Divalent cations are required for activity with Mg(II), Mn(II), Co(II), and Cd(II) activating. Studies of the divalent metal-dependent stereoselectivity for the alpha- and beta-phosphorothioate derivatives of ATP indicate metal coordination to at least the alpha-phosphoryl group of the nucleotide. Steady state kinetic studies of the reverse reaction indicate a sequential mechanism, with a rapid equilibrium ordered binding of MgADP before PAPS. In the forward direction APS is a potent substrate inhibitor, competitive with ATP, complicating kinetic studies. The primary kinetic mechanism in the forward direction is sequential. Product inhibition studies at high concentrations of APS suggest an ordered kinetic mechanism with MgATP binding before APS. At submicromolar concentrations of APS, product inhibition by both MgADP and PAPS is more complex and is not consistent with a solely ordered sequential mechanism. The formation of a phosphorylated enzyme capable of transferring its phosphoryl group to APS or to MgADP suggests that a ping-pong pathway in which the rate of MgADP dissociation is comparable to the rate of APS binding might contribute at very low concentrations of APS. The substrate inhibition by APS is consistent with APS binding to the enzyme, to form a dead-end E.APS complex.  相似文献   

10.
An enzyme which catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to gastrin (G17) was identified in rat gastric mucosal cells. The enzyme activity was detected in the 105,000xg supernatant fraction. Formation of gastrin sulfate was shown by using 125I-gastrin and non-radioactive PAPS. The product was sensitive to acid hydrolysis, arylsulfatase treatment and removed by gastrin antibody, but not changed by treatments with chondro-4-sulfatase and chondro-6-sulfatase. The product had a molecular weight of 2050 daltons, close to the molecular weight of G17 sulfate, and, therefore, indicating the sulfated product is not APS derived from the degradation of PAPS. The enzyme activity showed a Km value of 5 microM for PAPS and a pH optimum of 6.0. The activity was not detected in the liver preparation.  相似文献   

11.
A novel sulfotransferase activity was discovered in fetal bovine serum using pig skin dermatan sulfate as an acceptor and [35S]3'-phosphoadenosine 5'-phosphosulfate as a sulfate donor. The enzyme was separated from chondroitin:GalNAc 6-O-sulfotransferase by chromatographic techniques. Enzymatic analysis of the reaction products demonstrated that the enzyme transferred sulfate to the C6 position of the GalNAc residue in the sequence -iduronic acid alpha1-3GalNAc beta1-4iduronic acid-. Thus, the enzyme has been identified as a hitherto unreported dermatan sulfate:GalNAc 6-O-sulfotransferase. The finding is in sharp contrast to the current concept that in dermatan sulfate biosynthesis GalNAc 4-O-sulfation is a prerequisite for iduronic acid formation by C5 epimerase.  相似文献   

12.
A 2-oxoglutarate-dependent dioxygenase [EC 1.14.11-] that catalyzes the 6-hydroxylation of partially methylated flavonols has been purified to near homogeneity from Chrysosplenium americanum. Enzyme purification was achieved by fast protein liquid chromatography on Superose 12 and Mono Q columns as well as by affinity chromatography on 2-oxoglutarate-Sepharose and immunoaffinity columns. The specific activity of the 6-hydroxylase eluted from Mono Q (97.1 pkat/mg) was enriched 538-fold, with a 0.63% recovery. Both affinity chromatography steps resulted in the elimination of most contaminating proteins, but not without loss of enzyme activity and stability. The molecular mass of both the native and denatured enzyme was found to be 42 and 45 kDa, respectively, suggesting a monomeric protein. The enzyme exhibits strict specificity for position 6 of partially methylated flavonols possessing a 7-methoxyl group, indicating its involvement in the biosynthesis of polymethylated flavonols in this plant. The cofactor dependence of the enzyme is similar to that of other plant dioxygenases, particularly its dependence on ferrous ions for catalytic activity and reactivation. Internal amino acid sequence information indicated its relatedness to other plant flavonoid dioxygenases. The results of substrate interaction kinetics and product inhibition studies suggest an ordered, sequential reaction mechanism (TerTer), where 2-oxoglutarate is the first substrate to bind, followed by O2 and the flavonol substrate. Product release occurs in the reverse order where the hydroxylated flavonol is the first to be released, followed by CO2 and succinate. To our knowledge, this is the first reported 2-oxoglutarate-dependent dioxygenase that catalyzes the aromatic hydroxylation of a flavonoid compound.  相似文献   

13.
Sulfation is a major modification of many molecules in eukaryotes that is dependent on the enzymatic synthesis of an activated sulfate donor, 3'-phosphoadenosine 5'-phosphosulfate (PAPS). While sulfate activation has long been assumed to occur in the cytosol, we show in this study that human PAPS synthetase 1 (PAPSS1), a bifunctional ATP sulfurylase/adenosine 5'-phosphosulfate (APS) kinase enzyme sufficient for PAPS synthesis, accumulates in the nucleus of mammalian cells. Nuclear targeting of the enzyme is mediated by its APS kinase domain and requires a catalytically dispensable 21 amino acid sequence at the amino terminus. Human PAPSS1 and Drosophila melanogaster PAPSS localize to the nucleus in yeast and relieve the methionine auxotrophy of ATP sulfurylase- or APS kinase-deficient strains, suggesting that PAPSS1 is fully functional in vivo when targeted to the nucleus. A second PAPS synthetase gene, designated PAPSS2, has recently been described, mutations of which are responsible for abnormal skeletal development in human spondyloepimetaphyseal dysplasia and murine brachymorphism. We found that PAPSS2, which localizes to the cytoplasm when ectopically expressed in mammalian cells, is relocated to the nucleus when coexpressed with PAPSS1. Taken together, these results indicate that a sulfation pathway might exist in the nucleus of eukaryotic cells. -Besset, S., Vincourt, J.-B., Amalric, F., Girard, J.-P. Nuclear localization of PAPS synthetase 1: a sulfate activation pathway in the nucleus of eukaryotic cells.  相似文献   

14.
Sulfotransferases (SOTs) catalyse the transfer of a sulfate group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to an appropriate hydroxy group of various substrates with the parallel formation of 3'-phosphoadenosine 5'-phosphate. In Arabidopsis thaliana, 18 SOT proteins (AtSOT) have been identified. Three of them, AtSOT16, AtSOT17 and AtSOT18, catalyse the sulfation of desulfoglucosinolates. The proteins were expressed in Escherichia coli, purified by affinity chromatography and used for enzyme kinetic studies. By establishing two types of enzyme assay using both 35S-labelled and unlabelled PAPS, separation of the products by HPLC, and detection of the products by monitoring radioactivity or UV absorption, the substrate specificities of the three AtSOT proteins were determined. They show different maximum velocities with several desulfoglucosinolates as substrates and differ in their affinity for desulfobenzylglucosinolate and PAPS. The sequences encoding AtSOT18 were amplified from Arabidopsis ecotypes C24 and Col0; the two expressed proteins differ in two out of 350 amino acids. These amino-acid variations led to different substrate specificities. Exchange of one of the two amino acids in AtSOT18 from C24 to the respective amino acid in AtSOT18 from Col0 gave the C24 protein the same substrate specificity as the wild-type AtSOT18 protein from Col0. All three desulfoglucosinolate AtSOT proteins are localized in the cytoplasm, as demonstrated by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts. Northern blot analysis indicated differential expression of the three AtSOT genes in plant organs and tissues at different developmental stages and during a light/darkness cycle. High (500 microM) and low (50 microM) sulfate concentrations in the medium did not influence the levels of expression.  相似文献   

15.
A heparan sulfate glycosaminoglycan chain, biotinylated at its reducing-end, was bound to a streptavidin-coated biochip. Surface plasmon resonance spectroscopy showed a low affinity interaction with antithrombin III (ATIII) when it was flowed over a surface containing heparan sulfate. ATIII bound tightly with high affinity when the same surface was enzymatically modified to using 3-O-sulfotransferase isoform 1 (3-OST-1) in the presence of 3'-phosphoadenosine 5'-phosphosulfate (PAPS). The 3-OST-1 enzyme is involved in heparan sulfate biosynthesis and introduces a critical 3-O-sulfo group into this glycosaminoglycan affording the appropriate pentasaccharide sequence capable of high affinity binding to ATIII. This experiment demonstrates the specific structural modification of a glycosaminoglycan bound to a biochip using a biosynthetic enzyme, suggesting a new approach to rapid screening glycosaminoglycan-protein interactions.  相似文献   

16.
In mammals, the universal sulfuryl group donor molecule 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is synthesized in two steps by a bifunctional enzyme called PAPS synthetase. The APS kinase domain of PAPS synthetase catalyzes the second step in which APS, the product of the ATP-sulfurylase domain, is phosphorylated on its 3'-hydroxyl group to yield PAPS. The substrate APS acts as a strong uncompetitive inhibitor of the APS kinase reaction. We generated truncated and point mutants of the APS kinase domain that are active but devoid of substrate inhibition. Structural analysis of these mutant enzymes reveals the intrasubunit rearrangements that occur upon substrate binding. We also observe intersubunit rearrangements in this dimeric enzyme that result in asymmetry between the two monomers. Our work elucidates the structural elements required for the ability of the substrate APS to inhibit the reaction at micromolar concentrations. Because the ATP-sulfurylase domain of PAPS synthetase influences these elements in the APS kinase domain, we propose that this could be a communication mechanism between the two domains of the bifunctional enzyme.  相似文献   

17.
(2')3',5'-Bisphosphate nucleotidase   总被引:2,自引:0,他引:2  
(2')3',5'-Bisphosphate nucleotidase has been prepared in electrophoretically homogeneous form from guinea pig liver. The enzyme catalyzes the hydrolysis of the 2'- or 3'-phosphate from the appropriate nucleoside 2',5'- and 3',5'-bisphosphates and is active with 3'-phosphoadenosine 5'-phosphosulfate and with coenzyme A but not with ATP. The 40,000-dalton protein is a monomer that requires Mg2+ for activity.  相似文献   

18.
Pi N  Armstrong JI  Bertozzi CR  Leary JA 《Biochemistry》2002,41(44):13283-13288
A novel and efficient enzyme kinetics assay using electrospray ionization mass spectrometry was developed and applied to the bacterial carbohydrate sulfotransferase (NodST). NodST catalyzes the sulfuryl group transfer from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to chitobiose, generating 3'-phosphoadenosine 5'-phosphate (PAP) and chitobiose-6-OSO(3)(-) as products. Traditional spectrophotometric assays are not applicable to the NodST system since no shift in absorption accompanies sulfuryl group transfer. Alternative assays have employed thin-layer chromatography, but this procedure is time-consuming and requires radioactive materials. The ESI-MS assay presented herein requires no chromophoric substrate or product, and the analysis time is very short. The ESI-MS assay is used to determine NodST kinetic parameters, including K(M), V(max), and K(i) (for PAP). In addition, the mode of inhibition for PAP was rapidly determined. The results were in excellent agreement with those obtained from previous assays, verifying the accuracy and reliability of the ESI-MS assay. This unique technique is currently being used to investigate the enzymatic mechanism of NodST and to identify sulfotransferase inhibitors.  相似文献   

19.
The installation of sulfate groups on the carbohydrate residues of glycoproteins, glycolipids, and glycosaminoglycans is a critical posttranslational modification that occurs in all higher eukaryotes. The Gal/GalNAc/GlcNAc-6-O-sulfotransferases (GSTs) are a recently discovered family of carbohydrate sulfotransferases that share significant sequence homology at the amino acid level and mediate a number of different biological processes such as leukocyte adhesion at sites of chronic inflammation. Structural and mechanistic studies of this family of sulfotransferases have been hindered by the lack of a productive recombinant protein expression system. We developed a baculovirus expression system for five of the seven cloned GSTs and determined their kinetic parameters using both thin-layer chromatography and a recently developed polymer dot-blot assay. We used these tools to perform the first site-directed mutagenesis study of a member of this sulfotransferase family, GST2. Using sequence alignments with other carbohydrate and cytosolic sulfotransferases, we selected residues within the putative binding regions for 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and the carbohydrate substrate for mutagenesis. Kinetic analysis of the mutants identified residues that are essential for catalytic activity. These results should facilitate mechanistic studies and the development of small molecule inhibitors of this enzyme family to ameliorate chronic inflammatory diseases.  相似文献   

20.
An assay method for ATP sulfurylase is presented which employs Na2(35)SO4 as a substrate and measures the production of labeled adenosine 5'-phosphosulfate and 3'-phosphoadenosine 5'-phosphosulfate by low-voltage, hanging paper strip electrophoresis. The method is applicable to crude bacterial or mammalian extracts and accurately measures picomole amounts of product(s). Na2(75SeO4 can also be employed as a substrate, if the unstable radioactive product, adenosine 5'-phosphoselenate, is converted to elemental 75Se degrees by inclusion of reduced glutathione in the reaction mixture. The same paper strip electrophoretic technique can then be used to separate 75Se degrees from the radiolabeled substrate. The method also has utility for measuring any direct reduction by crude microbial extracts of radioactive selenate to selenite, independent of ATP sulfurylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号