首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New drugs introduced to the market every year represent privileged structures for particular biological targets. These new chemical entities (NCEs) provide insight into molecular recognition and also serve as leads for designing future new drugs. This annual review covers the synthesis of thirty-seven NCEs that were approved for the first time in 2014 and one drug which was approved in 2013 and was not covered in a previous edition of this review.  相似文献   

2.
New drugs are introduced to the market every year and each individual drug represents a privileged structure for its biological target. These new chemical entities (NCEs) provide insights into molecular recognition and also serve as leads for designing future new drugs. This review covers the syntheses of 21 NCEs marketed in 2009.  相似文献   

3.
New drugs are introduced to the market every year and each represents a privileged structure for its biological target. These new chemical entities (NCEs) provide insights into molecular recognition and also serve as leads for designing future new drugs. This review covers the synthesis of 26 NCEs that were launched in the world in 2011.  相似文献   

4.
New drugs are introduced to the market every year and each represents a privileged structure for its biological target. These new chemical entities (NCEs) provide insights into molecular recognition and also serve as leads for designing future new drugs. This review covers the synthesis of 15 NCEs that were launched anywhere in the world in 2010.  相似文献   

5.
New drugs introduced to the market every year represent a privileged structure for a particular biological target. These new chemical entities (NCEs) provide insights into molecular recognition and also serve as leads for designing future new drugs. This review covers the synthesis of twenty-six NCEs that were launched or approved worldwide in 2012 and two additional drugs which were launched at the end of 2011.  相似文献   

6.
A lot of resources and efforts have been directed to synthesizing potentially useful new chemical entities (NCEs) by pharmaceutical scientists globally. Detailed physicochemical characterization of NCEs in an industrial setup begins almost simultaneously with preclinical testing. Most NCEs possess poor water solubility posing bioavailability issues during initial preclinical screening, sometimes resulting in dropping out of an NCE with promising therapeutic activity. Selection of right formulation approach for an NCE, based on its physicochemical properties, can aid in improving its solubility-related absorption and bioavailability issues. The review focuses on preclinical formulations stressing upon different preclinical formulation strategies and deciphers the understanding of formulation approaches that could be employed. It also provides detailed information related to a vast pool of excipients available today, which is of immense help in designing preclinical formulations. Few examples mentioned, throw light on key aspects of preclinical formulation development. The review will serve as an important guide for selecting the right strategy to improve bioavailability of NCEs for academic as well as industrial formulation scientists.  相似文献   

7.
In the highly competitive environment of contemporary pharmaceutical research, natural products provide a unique element of molecular diversity and biological functionality which is indispensable for drug discovery. The emergence of strategies to deliver drug leads from natural products within the same time frame as synthetic chemical screening has eliminated a major limitation of the past. At a more functional level, the application of molecular genetics techniques has permitted the manipulation of biosynthetic pathways for the generation of novel chemical species as well as rendering hitherto uncultivatable microorganisms accessible for secondary metabolite generation. These developments augur well for an industry confronted with the challenge of finding lead compounds directed at the plethora of new targets arising from genomics projects. The exploitation of structural chemical databases comprising a wide variety of chemotypes, in conjunction with databases on target genes and proteins, will facilitate the creation of new chemical entities through computational molecular modelling for pharmacological evaluation.  相似文献   

8.
Secondary pharmacodynamic studies of new chemical entities (NCEs) play a critical role in support of efficient drug discovery. In an era in which speed and efficiency are the norm for pharmaceutical discovery, the need to identify NCEs with greater patient tolerability continues to increase. Early use of secondary pharmacodynamic models (in vivo and in vitro) provides the foundation for critical, early decisions regarding lead molecules. Scientifically robust, non-GLP (good laboratory practices) secondary pharmacodynamic studies can eliminate compounds or structural series with undesirable profiles early, and may prove useful in defining structure-activity relationships (SARs) with regards to off-target effects.  相似文献   

9.
Diversity-oriented synthesis (DOS) is an emerging field involving the synthesis of combinatorial libraries of diverse small molecules for biological screening. Rather than being directed toward a single biological target, DOS libraries can be used to identify new ligands for a variety of targets. Several different strategies for library design have been developed to target the biologically relevant regions of chemical structure space. DOS has provided powerful probes to investigate biological mechanisms and also served as a new driving force for advancing synthetic organic chemistry.  相似文献   

10.
Ribosomal protein S1 (RpsA) has been identified as a novel target of pyrazinoic acid (POA), which is the active form of pyrazinamide (PZA), in vivo. RpsA plays a crucial role in trans-translation, which is widespread in microbes. In our investigation, we first described the discovery of promising RpsA antagonists for drug-resistant mycobacterium (MtRpsAd438A) and M. smegmatis, as well as wild-type M. tuberculosis. These antagonists were discovered via structure/ligand-based virtual screening approaches. A total of 21 targeted compounds were selected by virtual screening, combined scores, affinity, similarities and rules for potential as drugs. Next, the affinities of these compounds for three targeted proteins were tested in vitro by applying various technologies, including fluorescence quenching titration (FQT), saturation transfer difference (STD), and chemical shift perturbation (CSP) assays. The results showed that seven compounds had a high affinity for the targeted proteins. Our discovery set the stage for discovering new chemical entities (NCEs) for PZA-resistant tuberculosis and providing key residues for rational drug design to target RpsA.  相似文献   

11.
In the period from January 1981 to December 2010, 1068 small‐molecule new chemical entities (NCEs) were introduced, of which ca. 34% are either a natural product or a close analogue. While this metric reflects the impact natural products have played in delivering new chemical starting points (leads) for the pharmaceutical industry, it does not capture the decline this approach has suffered over the last 20 years as the high‐throughput screening (HTS) of pure compound libraries has become more popular. An impediment to natural‐product drug discovery in the HTS paradigm is the lack of a clear strategy that enables front‐loading of an extract or fraction's chemical constituents so that they are compliant with lead‐ and drug‐like chemical space. To address this imbalance, an approach based on lipophilicity, as measured by clog P has been developed that, together with advances being made in isolation and structural elucidation, can afford natural product leads in timelines compatible with pure compound screening.  相似文献   

12.
Chemical entities that specifically interact with biological molecules can reveal the biological role of their targets. Increasing knowledge of genomes and the intricate mechanisms that regulate their expression has aroused considerable interest in molecules that target nucleic acids. A wide variety of technologies have been developed based on unnatural oligonucleotides for gene silencing, gene-detection or bio-inspired chemical reactions, for example. In contrast to natural oligonucleotides, their unnatural counterparts can exhibit unique functions based on the chemical reactivity of the accessory molecule. This review focuses on the molecular design of chemically reactive accessory molecules of unnatural oligonucleotides, emphasising their application in specific recognition and reaction toward biological targets.  相似文献   

13.
14.
Sustainable chemistry aims at an improved efficiency of using natural resources which are used to meet human needs for chemical products. Chemists in science and industry, have become aware of the importance to design environmentally benign chemicals. One aspect is the biological persistence and the present paper reviews work in this field focussing on the degradation of xenobiotics in the environment. Different structural reasons for chemical and biological persistence are described and strategies to use single bacterial isolates or microbial communities for the elimination of xenobiotic pollutants in the environment are summarized. Perspectives and limitations to evolve and use this catabolic potential are critically discussed with respect to the complexity of mixtures of xenobiotics often found in practice. An interdisciplinary approach for the prospective design of environmentally benign substances is presented and examples for new commodity chemicals that better fit the naturally existing catabolic potential are included.  相似文献   

15.
16.
Chemogenomics aims towards the systematic identification of small molecules that interact with the products of the genome and modulate their biological function. This Opinion article summarizes the different knowledge-based chemogenomics strategies that are followed and outlines the challenges and opportunities that will impact drug discovery. Chemogenomics aims towards the systematic identification of small molecules that interact with the products of the genome and modulate their biological function. While historically the approach is based on efforts that systematically explore target gene families like kinases, today additional knowledge-based systematization principles are followed within early drug discovery projects which aim to biologically validate the targets and to identify starting points for chemical lead optimization. While the expectations of chemogenomics are very high, the reality of drug discovery is quite sobering with very high project attrition rates. This article summarizes the different knowledge-based chemogenomics strategies that are followed and outlines the challenges and potential opportunities that will impact drug discovery.  相似文献   

17.
Small molecules produced in Nature possess exquisite chemical diversity and continue to be an inspiration for the development of new therapeutic agents. In their host organisms, natural products are assembled and modified using dedicated biosynthetic pathways. By rationally reprogramming and manipulating these pathways, unnatural metabolites containing enhanced structural features that were otherwise inaccessible can be obtained. Additionally, new chemical entities can be synthesized by developing the enzymes that carry out these complicated chemical reactions into biocatalysts. In this review, we will discuss a variety of combinatorial biosynthetic strategies, their technical challenges, and highlight some recent (since 2007) examples of rationally designed metabolites, as well as platforms that have been established for the production and modification of clinically important pharmaceutical compounds.  相似文献   

18.
Natural products continue to be a useful source of new leads for the pharmaceutical industry. Actinomycetes are prolific producers of natural products and one strategy to increase the possibility of discovering novel chemical entities is to screen actinomycetes considered 'rare' in the environment and previously under-represented in natural product screening collections. We describe a method using bacteriophage as a marker to detect these actinomycetes in environmental samples. This method allows samples to be pre-screened for the presence of target actinomycetes before lengthy isolation programmes are undertaken.  相似文献   

19.
延缓衰老相关的小分子物质研究进展   总被引:1,自引:0,他引:1  
筛选、研究具有延缓衰老作用的小分子物质,对于发现新的治疗衰老相关性疾病及肿瘤等的有效靶点、开发新型药物、促进人类健康具有重大的现实意义.同时更重要的是,可以这些小分子物质为切入点,对衰老、肿瘤等生命现象的具体分子机制进行深入研究,这对于分子生物学等相关生命科学研究的发展具有重要的推动作用.总结了近一二十年来发现的一些具有代表性的可延缓衰老的小分子物质,并重点论述了其作用的分子机制.  相似文献   

20.
With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure–activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific questions in Nature can be of value to increase the attraction for young students in modern life science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号