首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of cAMP and cGMP phosphodiesterases (EC 3.1.4.1), adenylate cyclase (EC 4.6.1.1) and protein carboxyl-methylase (EC 2.1.1.24) were measured in the particulate and soluble (105 000 g supernatant) fractions of washed spermatozoa isolated from five segments of the adult rat epididymis. The activities of both phosphodiesterases decreased during epididymal transit, whereas adenylate cyclase and protein carboxyl-methylase underwent a progressive increase, the latter showing the most marked alteration. Both cAMP and cGMP phosphodiesterases as well as the adenylate cyclase were all associated primarily with the particulate fraction, and the extent to which these enzymes were associated with the membranes increased as the spermatozoa passed through the epididymis. Sperm protein carboxyl-methylase activity was, on the other hand, predominantly soluble in all segments of the epididymis. Adenylate cyclase, cAMP phosphodiesterase and protein carboxyl-methylase activities were found predominantly in the sperm tails, whereas cGMP phosphodiesterase was equally distributed between heads and tails. These observations imply that the acknowledged increase in intracellular cAMP levels which occurs in spermatozoa during epididymal transit may be a consequence of both increased synthesis (adenylate cyclase) and reduced hydrolysis (phosphodiesterase).  相似文献   

2.
We have studied cAMP metabolism in rat livers undergoing carcinogenesis induced by dietary 3'-methyl-4-dimethylaminoazobenzene. A correlation between the biochemical and the histological changes described in the companion paper has been made. In this study, we saw 100% incidence of cholangiocarcinoma by 10 weeks. During weeks 1--10, the biochemistry of tumor-free areas of the livers only was studied; during weeks 11-13, the increased size of the tumors made possible a biochemical study of the tumor tissue as well as the non-tumor tissue, and a comparison between the two was made. Alterations in all parameters of cAMP metabolism were seen from the earliest stages of treatemnt. Most striking were those of adenylate cyclase activity which preceded and accompanied tumor formation, and were seen in both non-tumor and tumor tissue. In the first few weeks of treatment, small acidophilic glycogen-deficient hepatocytes appeared in the periportal areas of the liver lobules. During this time, there was an increase in maximal isoproterenol stimulation of adenylate cyclase and to a lesser extent in the basal activity of the enzyme; increases in phosphodiesterase activity were seen, and were greatest in weeks 1, 2; cAMP levels were diminished in weeks 1, 2 and slightly but not significantly elevated at week 3. From week 4 onwards an even smaller glycogen-deficient cell population appeared in perilobular areas amongst the acidophilic hepatocytes, and tumors began to appear elsewhere in the livers; at this time, there were further marked increases in the basal activity and isoproterenol responsiveness of adenylate cyclase, and the appearance of increased Gpp(NH)p responsiveness of the enzyme; the increase in phosphodiesterase activities seen at week 3 (smaller than that seen in weeks 1, 2) was sustained but did not further increase; cAMP levels were now significantly elevated also, but they did not rise steadily as did the activity of adenylate cyclase. There was a marked difference between the adenylate cyclase activities in non-tumor tissue from tumor-bearing and non-tumor-bearing livers in weeks 4--10, but there was no difference between the phosphodiesterase activities or cAMP levels in these two groups. Adenylate cyclase activity was extremely high in both non-tumor tissue of tumor-bearing livers from weeks 4--10 and tumors from weeks 11--13. Although phosphodiesterase activities were most elevated in the tumors, there were extremely high cyclic AMP levels in these tissues. The difference between the cAMP levels of tumor and non-tumor tissue was striking. Our findings are discussed with respect to the two-state model of carcinogenesis...  相似文献   

3.
The prostaglandin endoperoxide PGH2 (15-hydroxy-9alpha, 11alpha-peroxidoprosta-5,13-dienoic acid), at a concentration of 2.8 x 10(-5) M inhibited basal adenylate cyclase activity 11% and epinephrine-stimulated activity 30 to 35%. PGH2 inhibited epinephrine-stimulated enzyme activity in the presence of 10 mM theophylline, 2.5 mM adenosine 3':5'-monophosphate (cAMP), or in the absence of inhibitors or substrates of the cAMP phosphodiesterase. When the cAMP phosphodiesterase was assayed directly using 62 nM and 1.1 muM cAMP, PGH2 did not affect the 100,000 x g particulate cAMP phosphodiesterase from fat cells. The inhibition of adenylate cyclase by PGH2 was readily reversible. A 6-min preincubation of ghost membranes with PGH2, followed by washing, did not alter subsequent epinephrine-stimulated adenylate cyclase activity. During epinephrine stimulation, the PGH2 inhibition was apparent on initial rates of cAMP synthesis, and the addition of PGH2 to the enzyme system at any point during an assay markedly reduced the rate of cAMP synthesis. Between 2.8 x 10(-7) M and 2.8 x 10(-5) M, PGH2 inhibited epinephrine-stimulated enzyme activity in a concentration-dependent manner. The stimulation of adenylate cyclase by thyroid-stimulating hormone, glucagon, and adrenocorticotropic hormone as well as by epinephrine was antagonized by PGH2, suggesting that PGH2 may be an endogenous feedback regulator of hormone-stimulated lipolysis in adipose tissue.  相似文献   

4.
The subcellular localization of calmodulin, cyclic nucleotide phosphodiesterase, and adenylate cyclase was studied in bovine adrenal medulla. Approximately 70% of the calmodulin and 90% of the cAMP phosphodiesterase activities were found colocalized in the cytoplasm. The subcellular distribution of adenylate cyclase closely paralleled the distribution of acetylcholinesterase, a marker for plasma membranes. The fraction of calmodulin which is particulate in nature has a distribution profile very similar to that of adenylate cyclase. The chromaffin granule fraction contained only 0.86% of the total cAMP phosphodiesterase, 0.41% of the total adenylate cyclase, and 1.4% of the total calmodulin.  相似文献   

5.
Basal adenylate cyclase values for corpora lutea (CL) removed from cyclic gilts on Days 3, 8, 13 and 18 were 178 +/- 61, 450 +/- 46, 220 +/- 25 and 208 +/- 18 pmol cAMP formed/min/mg protein, respectively. Basal activity was significantly elevated on Day 8 (P less than 0.001). LH-stimulatable adenylate cyclase values for CL from Days 3, 8, 13 and 18 were 242 +/- 83, 598 +/- 84, 261 +/- 27 and 205 +/- 17 pmol cAMP formed/min/mg protein respectively. Serum progesterone concentrations of 12 gilts bled every 2 days through one complete oestrous cycle ranged from 1.1 to 26.9 ng/ml with highest values between Days 8 and 12. The decline in serum progesterone concentrations was coincident with the decrease in basal adenylate cyclase activity. There was no LH-stimulatable adenylate cyclase activity present in the CL at the specific times of the oestrous cycle examined. We conclude that progesterone secretion by the pig CL is apparently dependent on basal activity of adenylate cyclase.  相似文献   

6.
Adenylate cyclase activity was measured in broken cell preparations of whole endometrial tissue from rabbits on Days 0, 1, 6.5, 9 and 15 of pseudopregnancy and in endometrial epithelial and stromal cells on Days 1 and 6.5 to assess the specific response of individual cell types. In dispersed cells, adenylate cyclase activity was higher (P less than 0.01) in stromal than in epithelial cells and reduced on Day 6.5 compared to Day 1 in both cell types. The response of adenylate cyclase to isoproterenol appeared more important relative to the PGE-2 response in epithelial than in stromal cells and strongly reduced in the former on Day 6.5. In endometrium, the overall adenylate cyclase activity was increased significantly on Day 1 of pseudopregnancy compared to Day 0 (oestrus), only 18 h after injection of hCG. On the following days, the activity decreased progressively on Days 6.5 and 9 and exhibited a recovery on Day 15. Adenylate cyclase response to isoproterenol (% over GTP) was comparable on Days 0, 1 and 6.5, abolished on Day 9 and recovered on Day 15. Maximal response to PGE-2 (% over GTP) was observed on Day 6.5, at the time of implantation, maintained on Day 9 and reduced on Day 15 towards the low levels measured in oestrus and Day 1 of pseudopregnancy. Our results demonstrate a dramatic alteration of adenylate cyclase activity in rabbit endometrium during pseudopregnancy. It suggests a possible involvement of catecholamines and prostaglandin E-2 in the regulation of endometrial receptivity through a cAMP-mediated process.  相似文献   

7.
Cyclic AMP has been implicated in the regulation of the immunologic release of histamine from lung and other tissues and cell types. The mechanism whereby intracellular levels of cAMP are altered during mediator release was investigated. Measurements of histamine, adenylate cyclase, and cAMP phosphodiesterase activities were made in actively and passively sensitized guinea pig lung after challenge with antigen. A transient decrease in basal adenylate cyclase activity occurred which returned to control levels after histamine release. There was no change in cAMP phosphodiesterase activity determined at substrate concentrations of 1 mM and 0.01 mM. The adenylate cyclase response did not occur under the following conditions: 1) incubation of nonsensitized lung with antigen, 2) incubation of sensitized lung with antigen in the absence of extracellular calcium, and 3) incubation of nonsensitized lung with compound 48/80. These observations indicate 1) the adenylate cyclase response and the immunologic release of histamine are intimately related, and 2) the reduction in intracellular levels of cAMP which have been reported to occur during immunologic histamine release are mediated via adenylate cyclase.  相似文献   

8.
The extracellular levels of cyclic AMP (cAMP), cAMP phosphodiesterase activity, and adenylate cyclase activity were measured at various intervals during growth and morphogenesis of Arthrobacter crystallopoietes. There was a significant rise in the extracellular cAMP level at the onset of stationary phase, and this rise coincided with a decrease in intracellular cAMP. The phosphodiesterase activity measured in vitro increased in the early exponential phase of growth as intracellular cAMP decreased, and, conversely, prior to the onset of stationary phase the phosphodiesterase activity decreased as the intracellular cAMP levels increased. Adenylate cyclase activity was greater in cell extracts prepared from cells grown in a medium where morphogenesis was observed. Pyruvate stimulated adenylate cyclase activity in vitro. A morphogenetic mutant, able to grow only as spheres in all media tested, was shown to have altered adenylated cyclase activity, whereas no significant difference compared to the parent strain was detectable in either the phosphodiesterase activity or the levels of extracellular cAMP. The roles of the two enzymes, adenylate cyclase and phosphodiesterase, and excretion of cAMP are discussed with regard to regulation of intracellular cAMP levels and morphogenesis.  相似文献   

9.
The levels of cyclic adenosine monophosphate (cAMP) and two forms of cAMP phosphodiesterase with low (PDE1) and high (PDE2) affinity for the substrate were determined in homogenates from mouse liver and transplanted hepatoma 22. The level of cAMP in the tumour is 3 times lower than that in liver. By te kinetic parameters (Vmax, Km, pH optimum) adenylate cyclase from tumour does not show any significant differences as compared to the liver enzyme; the enzyme from hepatoma is, however, more sensitive to activation by F- ions. The activities of adenylate cyclase in liver and tumour cells are the same. Phosphodiesterases of cAMP from tumour and liver cells are similar in their Km values (3,3-10(-4) M for PDE1 and 2-10(-6) M for PDE2); however, the maximal and real rates of cAMP hydrolysis in hepatoma are much higher than in liver. The fact that both cAMP phosphodiesterase activities have similar dependence on Mg2+ and Ca2+ concentrations, suggests that PDE1 is a latent form of PDE2. In tumour cells the equilibrium between these two forms is probably shifted towards the enzyme with high affinity for the substrate. The results suggest that a decreased cAMP level in hepatoma cells (as compared to the liver) is due to the activation of PDE2.  相似文献   

10.
Intracellular levels of cAMP and specific activities of adenylate cyclase, cAMP phosphodiesterase and cAMP-dependent protein kinase were measured during filamentation in the dimorphic fungus Candida albicans. Enzymatic assays were performed in permeabilized cells under conditions prevented endogenous proteolysis. The variations observed in cAMP levels were mainly accounted for by variations in the specific activities of adenylate cyclase and cAMP phosphodiesterase at different stages during germ tube formation. cAMP-dependent protein kinase, measured with kemptide as exogenous substrate, was developmental regulated. Some properties of the enzymatic activities from cell-free extracts are described.  相似文献   

11.
The potentiation of corticotropin-releasing factor (CRF)-stimulated cAMP production by vasopressin (VP) in the pituitary cell was investigated by studies on the interaction of CRF, VP, and the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA) on cAMP, adenylate cyclase and phosphodiesterase. Addition of VP or PMA (0.01-100 nM) alone did not alter cellular cAMP content, but markedly increased the effect of 10 nM CRF with ED50 of about 1 nM. Treatment of the cells with 200 ng/ml pertussis toxin for 4 h increased CRF-stimulated cAMP accumulation by 3.2-fold, an effect that was not additive to those of VP and PMA. Incubation of pituitary cells with 2 mM 1-methyl-3-isobutylxanthine increased CRF-stimulated cAMP accumulation and decreased the relative effect of VP and PMA, suggesting that the actions of VP and PMA are partially due to inhibition of phosphodiesterase. This was confirmed by the demonstration of a 30% inhibition of the low-affinity phosphodiesterase activity in cytosol and membranes prepared from cells preincubated with VP or PMA. In intact cells, following [3H]adenine prelabeling of endogenous ATP pools, measurement of adenylate cyclase in the presence of 1-methyl-3-isobutylxanthine showed no effect of VP and PMA alone, but did show a 2-fold potentiation of the effect of CRF. Measurement of adenylate cyclase in pituitary homogenates by conversion of [alpha-32P]ATP to [32P]cAMP showed a paradoxical GTP-dependent inhibition by VP of basal and CRF-stimulated adenylate cyclase activity, suggesting that the VP receptor is coupled to an inhibitory guanyl nucleotide-binding protein. Pertussis toxin pretreatment of the cells prevented the VP inhibition of adenylate cyclase activity observed in pituitary cell homogenates. These findings indicate that besides inhibition of phosphodiesterase, VP has a dual interaction with the pituitary adenylate cyclase system; a direct inhibitory effect, manifested only in broken cells, that is mediated by a receptor-coupled guanyl nucleotide-binding protein, and a physiologically predominant indirect stimulatory effect in the intact cell, mediated by protein kinase C phosphorylation of one of the components of the CRF-activated adenylate cyclase system.  相似文献   

12.
Adenylate cyclase and cyclic AMP (cAMP) phosphodiesterase have been identified and partially characterized in bacteroids of Bradyrhizobium japonicum 3I1b-143. Adenylate cyclase activity was found in the bacteroid membrane fraction, whereas cAMP phosphodiesterase activity was located in both the membrane and the cytosol. In contrast to other microorganisms, B. japonicum adenylate cyclase remained firmly bound to the membrane during treatment with detergents. Adenylate cyclase was activated four- to fivefold by 0.01% sodium dodecyl sulfate (SDS), whereas other detergents gave only slight activation. SDS had no effect on the membrane-bound cAMP phosphodiesterase but strongly inhibited the soluble enzyme, indicating that the two enzymes are different. All three enzymes were characterized by their kinetic constants, pH optima, and divalent metal ion requirements. With increasing nodule age, adenylate cyclase activity increased, the membrane-bound cAMP phosphodiesterase decreased, and the soluble cAMP phosphodiesterase remained largely unchanged. These results suggest that cAMP plays a role in symbiosis.  相似文献   

13.
Refinement of a perfusion technique permitted the simultaneous measurement of cAMP-elicited [3H]cAMP secretion and intracellular [3H]cAMP levels in sensitive D. discoideum amoebae. These data were compared with measurements of the rate of [32P]cAMP synthesis by extracts of amoebae sonicated at different times during the cAMP signaling response. cAMP stimulation of intact cells led to a transient activation of adenylate cyclase, which was blocked if 10(-4) M NaN3 was added with the stimulus. During responses elicited by 10(-6) M cAMP, 10(-8) M cAMP, and an increment in cAMP from 10(-8) M to 10(-7) M, the rate of cAMP secretion was proportional to the intracellular cAMP concentration. Removal of a 10(-6) M cAMP stimulus 2 min after the initiation of the response led to a precipitous decline in intracellular cAMP. This decline was more rapid than could be accounted for by secretion alone, suggesting intracellular phosphodiesterase destruction of newly synthesized cAMP. Employing these data and a simple rate equation, estimates of the time-course of the transient activation of adenylate cyclase and the rate constants for cAMP secretion and intracellular phosphodiesterase activity were obtained. The calculated rate of cAMP synthesis rose for approximately 1 to 2 min, peaked, and declined to approach prestimulus levels after 3 to 4 min. This time-course agreed qualitatively with direct measurements of the time-course of activation, indicating that the activation of adenylate cyclase is a major in determining the time-course of the cAMP secretion response.  相似文献   

14.
Particulate cell fractions of mycelium of Mucor rouxii contain adenylate cyclase activity which can be partially solubilized by 2% Lubrol PX. The enzyme requires Mn2+ and its activity is not modified by NaF or guanosine nucleotides. Mycelial extracts also contain cyclic adenosine 3′:5′-monophosphate phosphodiesterase activity, 60% of which is soluble. This activity shows characteristic low Km (1 μm) for cyclic AMP and does not hydrolyze cyclic guanosine 3′:5′-monophosphate. It requires Mn2+ ions for maximal activity and is not inhibited by methylxanthines or activated by imidazole. Both enzymatic activities vary during the aerobic life cycle of the fungus. The spores have the highest levels of adenylate cyclase and cAMP phosphodiesterase, which decrease during the aerobic development. At the round cell stage, phosphodiesterase activity reaches 40% of the activity of the spores and varies only slightly thereafter. At this stage the specific activity of adenylate cyclase is 25% of the activity of ungerminated spores, and from this stage on, the activity increases up to the end of the logarithmic phase. Intracellular levels of cyclic AMP have been measured during aerobic germination. The variations of the intracellular level are tentatively explained by unequal variations in the activities of adenylate cyclase and cyclic AMP phosphodiesterase. A continuous increase of the extracellular cyclic AMP level during aerobic development has also been found, which cannot be accounted for solely by variations in the cyclase and diesterase activities.  相似文献   

15.
Forskolin, a plant cardiotonic diterpene, stimulated proteoglycan biosynthesis by chondrocytes in monolayer culture. The quantitative increase in proteoglycans was dependent on the concentration of forskolin, but was relatively independent of the presence of serum. At forskolin concentrations that stimulated proteoglycan synthesis, a significant stimulation of adenylate cyclase and cAMP was also measured. The quantitative increase in proteoglycans was characterized, qualitatively, by an increased deposition of newly synthesized proteoglycan in the cell-associated fraction. An analysis of the most dense proteoglycans (fraction dA1) in the cell-associated fraction showed that more of the proteoglycans eluted in the void volume of a Sepharose CL-2B column, indicating that an increased amount of proteoglycan aggregate was synthesized in forskolin-treated cultures. The proteoglycan monomer dA1D1 secreted into the culture medium of forskolin-stimulated cultures overlapped in hydrodynamic size with that of control cultures, although cultures stimulated with forskolin and phosphodiesterase inhibitors produced even larger proteoglycans. The hydrodynamic size of 35SO4 and 3H-glucosamine-labelled glycosaminoglycans isolated from the dA1D1 fraction of the culture medium was greater in forskolin-treated chondrocytes, especially from those in which phosphodiesterase inhibitors had been added. These results indicated that forskolin, a direct activator of chondrocyte adenylate cyclase mimicked the effects of cAMP analogues on chondrocyte proteoglycan synthesis previously reported. These results implicate activation of adenylate cyclase as a regulatory event in the biosynthesis of cartilage proteoglycans, and more specifically in the production of hydrodynamically larger glycosaminoglycans.  相似文献   

16.
L-Histidine and imidazole (the histidine side chain) significantly increase cAMP accumulation in intact LLC-PK1 cells. This effect is completely inhibited by isobutylmethylxanthine (IBMX). Histidine and imidazole stimulate cAMP phosphodiesterase activity in soluble and membrane fractions of LLC-PK1 cells suggesting that the IBMX-sensitive effect of these agents to stimulate cAMP formation is not due to inhibition of cAMP phosphodiesterase. Histidine and imidazole but not alanine (the histidine core structure) increase basal, GTP-, forskolin-, and AVP-stimulated adenylate cyclase activity in LLC-PK1 membranes. Two other amino acids with charged side chains (aspartic and glutamic acids) increase AVP-stimulated but neither basal- nor forskolin-stimulated adenylate cyclase activity. This suggests that multiple amino acids with charged side chains can regulate selected aspects of adenylate cyclase activity. To better define the mechanism of histidine regulation of adenylate cyclase, membranes were detergent-solubilized which prevents histidine and imidazole potentiation of forskolin-stimulated adenylate cyclase activity and suggests that an intact plasma membrane environment is required for potentiation. Neither pertussis toxin nor indomethacin pretreatment alter imidazole potentiation of adenylate cyclase. IBMX pretreatment of LLC-PK1 membranes also prevents imidazole to potentiate adenylate cyclase activity. Since IBMX inhibits adenylate cyclase coupled adenosine receptors, LLC-PK1 cells were incubated in vitro with 5'-N-ethylcarboxyamideadenosine (NECA) which produced a homologous pattern of desensitization of NECA to stimulate adenylate cyclase activity. Despite homologous desensitization, histidine and imidazole potentiation of adenylate cyclase was unaltered. These data suggest that histidine, acting via an imidazole ring, potentiates adenylate cyclase activity and thereby increases cAMP formation in cultured LLC-PK1 epithelial cells. This potentiation requires an intact plasma membrane environment, occurs independent of a pertussis toxin-sensitive substrate and of products of cyclooxygenase, and is inhibited by IBMX. This IBMX-sensitive pathway does not involve either inhibition of cAMP phosphodiesterase activity or a stimulatory adenosine receptor coupled to adenylate cyclase.  相似文献   

17.
Cyclic AMP dependent regulation of mitosis in human lymphoid cells   总被引:6,自引:0,他引:6  
Intracellular levels of cyclic AMP (cAMP), cAMP-dependent phosphodiesterase activity, and adenylate cyclase activity are examined in an established line of human lymphoid cells synchronized by either excess thymidine or by colcemid treatment. cAMP levels and adenylate cyclase activities during the two G periods are high when compared with the values in M. cAMP-dependent phosphodiesterase activity, which is low during early G 2, is shown to increase during G 2 and reach a maximum activity during M. Agents such as dibutyryl cAMP, 1-methyl-3-isobutyl xanthine, noradrenaline, and isopropyl noradrenaline, which increase the levels of intracellular cAMP were examined to determine their effects on mitosis and on DNA synthesis. In thymidine-synchronized cells the onset of mitosis is prevented by increasing or maintaining high levels of cAMP during G 2. The specificity of inhibition of DNA synthesis or mitosis by dibutyryl cAMP is a function of the time, during the cell cycle, when the analogue is added. The elevation of cAMP by methyl xanthine results in a more general inhibition of nucleic acid synthesis and mitosis. Although both catecholamine hormones inhibit mitosis, isopropylnoradrenaline also inhibits DNA synthesis while noradrenaline treatment does not result in such inhibition.  相似文献   

18.
Mitogenic effect of prostaglandin E1 in Swiss 3T3 cells: role of cyclic AMP   总被引:3,自引:0,他引:3  
Addition of prostaglandin E1 (PGE1) to quiescent cultures of Swiss 3T3 cells rapidly elevates the intracellular levels of cAMP and increases the activity of adenylate cyclase in particulate fractions of these cells. In the presence of insulin, PGE1 stimulates the reinitiation of DNA synthesis. Both effects (increase in cellular cAMP and stimulation of DNA synthesis) are markedly potentiated by 1-methyl-3-isobutyl xanthine (IBMX) or by 4-(3-butoxy-4 methoxy benzyl)-2-imidazolidine (Ro 20-1724), both of which are potent inhibitors of cyclic nucleotide phosphodiesterase activity. In the presence of 50 microM IBMX, PGE1 caused a dose-dependent increase in cAMP levels and in [3H]thymidine incorporation into acid-insoluble material at concentrations (5-50 ng/ml) that are orders of magnitude lower than those used in previous studies (50 micrograms/ml) to demonstrate growth-inhibitory effects. Thus, the inhibitory effects produced by adding high concentrations of PGE1 on the initiation of DNA synthesis in Swiss 3T3 cells are not mediated by cAMP and should be regarded as nonspecific. In contrast, the mitogenic activity of PGE1 parallels its ability to increase the intracellular levels of cAMP. The findings support the proposition that a sustained increase in the level of this cyclic nucleotide acts as a mitogenic signal for confluent and quiescent Swiss 3T3 cells.  相似文献   

19.
Cyclic AMP phosphodiesterase activity was measured in vivo after microinjection of [3H]cAMP into intact Xenopus oocytes. This activity was inhibited by extracellular application of methylxanthines, and the dose-dependent inhibition of phosphodiesterase activity correlated with the abilities of isobutylmethylxanthine and theophylline to inhibit oocyte maturation induced by progesterone, with IC50 values of approximately 0.3 and 1.5 mM, respectively. Insulin stimulated in vivo phosphodiesterase activity measured after microinjection of 200 microM [3H]cAMP in a time- and dose-dependent fashion without affecting phosphodiesterase activity measured after microinjection of 2 microM [3H]cAMP. Although progesterone alone had no effect on in vivo phosphodiesterase activity, low concentrations of progesterone (0.01 microM) accelerated the time course of insulin stimulation of both phosphodiesterase activity and oocyte maturation. The EC50 for stimulation of in vivo phosphodiesterase activity by insulin correlated with the IC50 for inhibition of oocyte membrane adenylate cyclase activity measured in vitro (2 and 4 nM, respectively). Twenty-fold higher concentrations of insulin were required to stimulate oocyte maturation. In contrast, insulin-like growth factor 1 stimulated in vivo phosphodiesterase, inhibited in vitro adenylate cyclase, and induced oocyte maturation at concentrations of 0.3-1.0 nM. These results demonstrate a dual regulation of oocyte phosphodiesterase and adenylate cyclase by insulin and insulin-like growth factor 1.  相似文献   

20.
To test the hypothesis that phosphatidic acid (PhA) is involved in the carbachol inhibition of hormone stimulated accumulation of cAMP we observed the effects of PhA on PGE1-stimulation of cAMP in WI-38 fibroblasts. PhA inhibited PGE1-stimulated cAMP accumulation of WI-38 fibroblasts; maximum inhibition (approximately 50-80%) occurred at a PhA concentration of 1.0 microM and significant inhibition was observed with a concentration of 0.1 microM. The full effects of PhA were evident within 15 sec after the co-addition of PGE1 and PhA. Addition of PhA to cells which had been pre-stimulated with PGE1 resulted in the rapid decay of cAMP levels to a new steady state level with a t 1/2 of approximately 65 sec. The inhibition produced by PhA did not appear to be simply attributable to a depolarization or increased intracellular Ca2+, since addition of either KCl or the Ca2+ ionophore A23187 did not lower PGE1-stimulated cAMP accumulation. When intact cells were pretreated with PhA then lysed and adenylate cyclase immediately assayed, no detectable changes in broken cell adenylate cyclase activities were observed. Also, PhA added directly to adenylate cyclase assays at concentrations as high as 100 microM produced no detectable inhibition of the membrane fraction adenylate cyclase activities. Nonetheless, our results suggest that adenylate cyclase activity in intact cells may be directly affected by physiological levels of PhA . Further, the similarities of carbachol [Butcher, R. W., Journal of Cyclic Nucleotide Research, 4:411 (1978)] and PhA inhibition support the hypothesis that carbachol (acetylcholine) exerts its effect on adenylate cyclase through alterations of the plasma membrane phospholipid composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号