首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The monoglycerol acyltransferase (EC 2.3.1.22) (recommended name acylglycerol palmitoltransferase) activities from rat intestinal mucosa and suckling liver microsomes were compared in order to determine why substrate specificities differed in the two tissues. Suckling liver monoacylglycerol acyltransferase activity was highly specific for sn-2-mono-C18:1 glycerol and acylated rac-1-mono-C18:1 glycerol and 1- and 2-mono-C18:1 glycerol ethers poorly. In contrast, the substrate specificity of intestinal monoacylglycerol acyltransferase activity was broad. 1-Acyl- and 1- and 2-alkylglycerols were acylated at rates that were 45-78% of the rate observed with the preferred substrate sn-2-mono-C18:1 glycerol. Partial heat inactivation did not alter these relative specific activities, making it unlikely that intestinal microsomes contained a second acyltransferase capable of acylating the alternate substrates. The hypothesis that intestine and liver contain non-identical monoacylglycerol acyltransferase activities was further tested. Intestinal mucosa monoacylglycerol acyltransferase was much more thermolabile than the liver activity. Incubation with 50 microM diethylpyrocarbonate inactivated liver monoacylglycerol acyltransferase activity 84% but had little effect on the intestinal activity. Hydroxylamine completely reversed diethylpyrocarbonate inactivation, suggesting that critical histidine residues were more accessible in liver monoacylglycerol acyltransferase. 2,4,6-Trinitrobenzene sulfonic acid inactivated hepatic monoacylglycerol acyltransferase more than the intestinal activity, suggesting that critical lysine residues were more accessible. The intestinal and liver activities were also differently affected by acetone, detergents, MgCl2, phospholipids, and bovine serum albumin. Taken as a whole, the data strongly suggest that rat intestinal mucosa and suckling liver contain tissue-specific monoacylglycerol acyltransferase isoenzymes.  相似文献   

2.
The relationship between triacylglycerol and monoacylglycerol hydrolyzing activities of purified rat heart lipoprotein lipase was studied using emulsified trioleoylglycerol and micellar or albumin-bound monooleoylglycerol as substrates. The maximal reaction rates obtained with the two substrates were similar (650 and 550 nmol of fatty acid released per min per mg of protein, respectively). Addition of apolipoprotein C-II or serum increased the maximal reaction rate for the trioleolyglycerol hydrolyzing activity about four-fold, but had no effect on the monooleolyglycerol hydrolyzing activity. Hydolysis of the two substrates apparently takes place at the same active site of the enzyme since (1) mutual competitive inhibition between the substrates could be demonstrated; (2) the rate of inactivation of enzymatic activity with the two substrates in 1.2 M NaCl was the same; (3) similar losses of hydrolytic activity with tri- and monooleoylglycerol were observed in the presence of low concentrations of n-butyl (p-nitrophenyl) carbamide; (4) inhibition of both hydrolytic activities by this compound could be prevented by prior exposure of lipoprotein lipase to either substrate.  相似文献   

3.
The synthesis and use of 1(3)-[3H]oleoyl-2-0-oleylglycerol as a substrate for the assay of diacylglycerol hydrolase activity in adipose tissue is described. Neither the compound nor its reaction product are hydrolyzed by purified adipose tissue monoacylglycerol lipase.  相似文献   

4.
Diacylglycerol lipase (glycerol ester hydrolase, EC 3.1.1.3) activities were investigated in subcellular fractions from neonatal and adult rat liver in order to determine whether one or more different lipases might provide the substrate for the developmentally expressed, activity monoacylglycerol acyltransferase. The assay for diacylglycerol lipase examined the hydrolysis of sn-1-stearoyl,2- [14C]oleoylglycerol to labeled monoacylglycerol and fatty acid. Highest specific activities were found in lysosomes (pH 4.8) and cytosol and microsomes (pH 8). The specific activity from plasma membrane from adult liver was 5.8-fold higher than the corresponding activity in the neonate. In other fractions, however, no developmental differences were observed in activity or distribution. In both lysosomes and cytosol, 75 to 90% of the labeled product was monoacylglycerol, suggesting that these fractions contained relatively little monoacylglycerol lipase activity. In contrast, 80% of the labeled product from microsomes was fatty acid, suggesting the presence of monoacylglycerol lipase in this fraction. Analysis of the reaction products strongly suggested that the lysosomal and cytosolic diacylglycerol lipase activities hydrolyzed the acyl-group at the sn-1 position. The effects of serum and NaCl on diacylglycerol lipase from each of the subcellular fractions differed from those effects routinely observed on lipoprotein lipase and hepatic lipase, suggesting that the hepatic diacylglycerol lipase activities were not second functions of these triacylglycerol lipases. Cytosolic diacylglycerol lipase activity from neonatal liver and adult liver was characterized. The apparent Km for 1-stearoyl,2-oleoylglycerol was 115 microM. There was no preference for a diacylglycerol with arachidonate in the sn-2 position. Bovine serum albumin stimulated the activity, whereas dithiothreitol, N-ethylmaleimide, and ATP inhibited the activity. Both sn-1(3)- and 2-monooleylglycerol ethers stimulated cytosolic diacylglycerol lipase activity 2-3-fold. The corresponding amide analogs stimulated 28 to 85%, monooleoylglycerol itself had little effect, and 1-alkyl- or 1-acyl-lysophosphatidylcholine inhibited the activity. These data provide the first characterization of hepatic subcellular lipase activities from neonatal and adult rat liver and suggest that independent diacylglycerol and monoacylglycerol lipase activities are present in microsomal membranes and that the microsomal and cytosolic diacylglycerol lipase activities may describe an ambipathic enzyme. The data also suggest possible cellular regulation by monoalkylglycerols.  相似文献   

5.
1) Two forms of beta-N-acetylglucosaminidase--known as form A and form B - were purified from bovine spleen homogenates and efficaciously separated by preparative disc electrophoresis on polyacrylamide gel. Studies on the enzymatic specificity revealed that the two forms have different glycoside hydrolase and glycosyl transferase activities towards substrates of natural origin. 2) With the trisaccharide GlcNAc-GlcUA-GlcNAc from hyaluronate as substrate, form A released free N-acetylglucosamine at a rate 35-40 times higher than form B. The B form, however, transferred N-acetyl-[6-3H]glucosamine from phenyl-beta-N-acetyl-D[6-3H]glucosaminide to the tetrasaccharides GlcUA-GalNAc-4-sulfate-GlcUA--GalNAc-4-sulfate or GlcUA-GlcNAc-GlcUA-GlcNAc isolated from chondroitin 4-sulfate or hyaluronate at rates 5-10 times higher than beta-N-acetyl-glucosaminidase A, the corresponding 3H-pentasaccharides being isolated as reaction products. 3) The pH optimum of the glycoside hydrolase activity is 4.5, while optimum glycosyl transfer proceeds at pH 6.5. Under condition optimum for glycoside transferase, hydrolytic activity is still observed with each form, but the B form exhibits about equal glycoside hydrolase and glycoside transferase activity, whereas the A form has a predominant glycoside hydrolase action.  相似文献   

6.
Acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase is the key enzyme in paf-acether (paf) biosynthesis, since it yields the active mediator from its nonacetylated precursor, lyso-paf. In microsomal fractions obtained from the ionophore A23187-stimulated human polymorphonuclear neutrophils, the optimal conditions allowing the full acetylation of lyso-paf were: 2-2.5 mg.ml-1 bovine serum albumin, 40 microM lyso-paf, 200 microM acetyl-CoA and acetyltransferase of high specific activity, at least 18 nmol.min-1.mg protein- -1. The reaction frequently stopped before the substrate was consumed due to spontaneous decay of the enzyme activity at 37 degrees C and inhibition of the enzyme by the paf formed in the reaction. However, low concentrations of acetyltransferase substrates (lyso-paf or lysophosphatidylcholine) and the antioxidant dithiothreitol, but not the inhibitors of proteinases or phosphatases, protected the enzyme against decay. In contrast, high concentrations of those lyso substrates inhibited the enzyme activity in the assay. This inhibition as well as that due to paf was overcome by raising the concentration of the enzyme contained in the microsomal fraction or the bovine serum albumin in the assay. These results suggest that the biosynthesis of paf in cell-free assay and most probably in intact cells might be controlled to a larger extent by the acetyltransferase concentration rather than by that of its substrates.  相似文献   

7.
Structural equivalents of latency for lysosome hydrolases.   总被引:8,自引:5,他引:3       下载免费PDF全文
1. Structure-linked latency, a trait for most lysosome hydrolase activities, is customarily ascribed to the permeability-barrier function performed by the particle-limiting membrane, which shields enzyme sites from externally added substrates. 2. The influence of various substrate concentrations on the reaction rate has been measured for both free (non-latent) and total (completely unmasked by Triton X-100) hydrolase activities in rat liver cell-free preparations. The substrates were: beta-glycerophosphate, phenolphthalein mono-beta-glucuronide. p-nitrophenyl N-acetyl-beta-D-glucosaminide and p-nitrophenyl beta-D-galactopyranoside. The ratio (free activity/total activity) X 100 is called fractional free activity at any given substrate concentration. 3. The fractional free activity of beta-glucuronidase and beta-N-acetylglucosaminidase were clearly independent of substrate concentration, over the range examined, in both homogenates and lysosome-rich fractions. The fractional free activity of acid phosphatase appeared to be either unaffected (homogenate) or even depressed (lysosome-rich fraction) by increasing the beta-glycerophosphate concentration. The fractional free activity of beta-galactosidase consistently showed a non-linear increase with increasing substrate concentration in both homogenates and lysosome-rich fractions. 4. Procedures such as treatment with digitonin, hypo-osmotic shock and acid autolysis, although effective in causing varying degrees of resolution of the latency of lysosome hydrolase activities, were unable to modify appreciably the pattern of dependence or independence of their fractional free activities on substrate concentration, as compared with that exhibited by control preparations. Ouabain did not affect the free beta-N-acetylglucosaminidase activity of liver homogenates at all. 5. Preincubation of control preparations with beta-glycerophosphate or p-nitrophenyl beta-galactoside did not result in any significant stimulation of the free hydrolytic activity toward these substrates. 6. The results consistently support the view that the membrane of "intact" lysosomes is virtually impermeable to all the substrates tested, except for p-nitrophenyl beta-galactoside, for which the evidence is contradictory. Moreover the progressive unmasking of the hydrolase activities produced by these procedures in vitro reflects the increasing proportion of enzyme sites that are fully accessible to their substrates rather than a graded increase in the permeability of the lysosomal membrane.  相似文献   

8.
A simple, sensitive, and specific assay for monoacylglycerol hydrolase activity of rat adipose tissue is described. Monoacyl[(3)H]glycerols with different chain lengths (8-18 carbon atoms) and different degrees of unsaturation in mixed micellar solution with different detergents can be used as substrates. The [(3)H]glycerol that is produced is isolated in a one-step liquid-liquid partition procedure. For routine purposes monooleoyl[(3)H]glycerol was found to be the most suitable substrate. A simple method for the chemical synthesis and purification of this substrate in high yield is given. The assay allows rapid serial sampling of enzymatic activity with a high reproducibility.  相似文献   

9.
An ADP-ribosylarginine hydrolase, which catalyzes the degradation of ADP-ribosyl[14C]arginine to ADP-ribose plus arginine, was separated by ion exchange, hydrophobic, and gel permation chromatography from NAD:arginine ADP-ribosyltransferases, which are responsible for the stereospecific formation of alpha-ADP-ribosylarginine. As determined by NMR, the specific substrate for the hydrolase was alpha-ADP-ribosylarginine, the product of the transferase reaction. The ADP-ribose moiety was critical for substrate recognition; (phosphoribosyl) [14C]arginine and ribosyl[14C]arginine were poor substrates and did not significantly inhibit ADP-ribosyl[14C]arginine degradation. In contrast, ADP-ribose was a potent inhibitor of the hydrolase and significantly more active than ADP greater than AMP greater than adenosine. In addition to ADP-ribosyl[14C]arginine, both ADP-ribosyl[14C]guanidine and (2'-phospho-ADP-ribosyl)[14C]arginine were also substrates; at pH greater than 7, ADP-ribosyl[14C]guanidine was degraded more readily than the [14C]arginine derivative. Neither arginine, guanidine, nor agmatine, an arginine analogue, was an effective hydrolase inhibitor. Thus, it appears that the ADP-ribosyl moiety but not the arginine group is critical for substrate recognition. Although the hydrolase requires thiol for activity, dithiothreitol accelerated loss of activity during incubation at 37 degrees C. Stability was enhanced by Mg2+, which is also necessary for optimal enzymatic activity. The findings in this paper are consistent with the conclusion that different enzymes catalyze ADP-ribosylarginine synthesis and degradation. Furthermore, since the hydrolase and transferases possess a compatible stereospecificity and substrate specificity, it would appear that the two enzymatic activities may serve as opposing arms in an ADP-ribosylation cycle.  相似文献   

10.
Triacylglycerol lipase with maximal activity at pH 5 was present in adult and fetal lung. The activity was inhibited by serum concentrations used to measure lipoprotein lipase and by 0.5 M NaCl. The activity in homogenates from fetal lung was about 40% of the activity in adult lung homogenates. The activity increased to 80% of the adult levels during the first 24–48 h following birth. Acidic triacylglycerol lipase was present in all subcellular fractions from adult lung. However, the major amount of activity appeared to be associated with lysosomes. Fetal lung contained significantly more activity in the cytosolic fraction compared to the adult. The reaction produced free fatty acids (65%), 1,2(2,3)-diacylglycerol (22%) and 2-monoacylglycerol (12%). Minimal amounts of 1,3-diacylglycerol and 1(3)-monoacylglycerol were formed. Diacylglycerol lipase and monoacylglycerol hydrolase activities at pH 5 were independently determined and both were higher than the triacylglycerol lipase activity. The subcellular distribution of diacylglycerol lipase and monoacylglycerol hydrolase differed from that of triacylglycerol lipase. Overall, the results indicated that the lung has considerable intracellular lipase activity and therefore could readily hydrolyze intracellular triacylglycerol to free fatty acids. The reaction also produced significant amounts of 1,2-diacylglycerol which suggests that triacylglycerol could be a direct source of diacylglycerol for phospholipid synthesis.  相似文献   

11.
Endogenous cholesterol esterification in chick liver microsomes was catalyzed by acyl-CoA:cholesterol acyltransferase using palmitoyl-CoA as substrate. An acyl-CoA hydrolase activity was also found in our microsomal preparations. Acyltransferase activity was stable after microsomes storage at -40 degrees C for 6 weeks and increased linearly with the preincubation time between 0 and 45 min. In our assay conditions, cholesteryl ester formation was linear up to 0.3 mg of microsomal protein in the reaction vial and 10 min of incubation. Maximal activity was found in reactions carried out in the presence of 1-2 mM dithiothreitol and 1.2 mg of bovine serum albumin, while acyl-CoA hydrolase was clearly inhibited by increasing albumin amounts.  相似文献   

12.
We previously reported that intact epididymal spermatozoa from bulls and hamsters oxidize [1-14C]acetyl-L-carnitine to 14CO2 at about the same rate as they oxidize [1-14C]acetate. In addition, we showed that acetylcarnitine is hydrolyzed by a hydrolase present in the plasma membrane and that the carnitine moiety does not enter the cell. Here we report the partial purification of the acetylcarnitine hydrolase from bovine spermatozoa and describe some of its properties. The detergent-extracted enzyme was purified by FPLC using an anion-exchange Mono-Q column. The hydrolase activity eluted from the column with the application of 0.22 to 0.30 M NaCl and was separated from acetylcholinesterase activity, which eluted with 0.35 to 0.40 M NaCl. Specific inhibitors of acetylcholinesterase had little effect on acetylcarnitine hydrolase but p-hydroxymercuriphenylsulfonate was a potent inhibitor of the hydrolase. Kinetic studies of the hydrolase yielded a K'm of 6-10 mM for acetylcarnitine and a V'max of 0.16 nmol min-1 mg protein-1. Similar studies with the acetylcholinesterase yielded a K'm for acetylcholine of about 300 microM and a V'max of 165 nmol min-1 mg protein-1. Acetylcarnitine was a poor substrate for the acetylcholinesterase. Several acyl-L-carnitines were tested as substrates for the hydrolase and the preferred substrate was acetylcarnitine. The role of acetylcarnitine hydrolase in the metabolism of acetylcarnitine by epididymal spermatozoa is discussed.  相似文献   

13.
The stereospecificity of monoacylglycerol acyltransferase from rat intestinal mucosa and suckling rat liver microsomes was examined using sn-1,2-diacylglycerol kinase from Escherichia coli. With 2-monooleoyl glycerol and palmitoyl-CoA, 88 and 87.9% of the diacylglycerol synthesized by the intestinal mucosa and suckling liver, respectively, was demonstrated to be the sn-1,2-isomer. Analysis of similar preparations of these diacylglycerol products by gas-liquid chromatography-mass spectrometry indicated that most of the remaining diacylglycerol was the 1,3-isomer that probably arose via acyl-migration. These results indicate that monoacylglycerol acyltransferase is stereospecific. Measurement of acyltransferase activities in microsomes using 1- and 2-monoacyl- and monoalkylglycerols as substrates indicated that the monoacylglycerol acyltransferases from suckling liver and intestinal mucosa have different substrate specificities.  相似文献   

14.
The synthetic nonapeptide Arg-Arg-Lys-Ala-Ser-Gly-Pro-Pro-Val is a substrate for in vitro phosphorylation by a partially purified preparation of rat brain protein kinase C, with Kmapp of about 130 microM. The closely related peptide kemptide was a much weaker substrate, bovine serum albumin was not a substrate and the peptide Arg-Arg-Lys-Ala-Ala-Gly-Pro-Pro-Val was a weak inhibitor of the enzyme. Protein kinase C-catalyzed phosphorylation of histone III-S and the nonapeptide are regulated by identical mechanisms since with both substrates the reaction required added phospholipid and either Ca2+ (1mM) or TPA (200 nM TPA). Our findings show that polypeptides containing multiple basic residues followed by the sequence Ala-Ser can be substrates for TPA-stimulated phosphorylation by protein kinase C.  相似文献   

15.
The effects of the physicochemical properties of the substrate vehicle on the activity of acid cholesteryl ester hydrolase (ACEH; EC 3.1.1.13) isolated from rat liver lysosomes have been studied. In particular, the influence of the physical state of the neutral lipid core of substrate emulsion particles on the enzymatic activity has been probed in the light of previous studies on the clearance of cholesteryl esters (CE) from lipid-loaded cells which indicated that inclusions that are in the isotropic (liquid) state can be hydrolyzed faster than those in the anisotropic (liquid-crystalline) state. In the present study, such lipid inclusions were isolated from cultured cells and used as substrates for the hydrolase. No appreciable difference between the hydrolysis rates of isotropic and anisotropic inclusions was observed; the Vmax values were 93.0 +/- 6.7 and 84.0 +/- 3.3 nmol CE/mg.h, respectively. To elucidate the factors which affect the activity of ACEH, model inclusions were prepared by sonication and used as substrates. The physical state of these models was varied in a systematic way by changes of droplet composition and incubation temperature. The rate of hydrolysis was found to be insensitive to the physical state of the core of the model inclusions in good agreement with the results obtained with cellular inclusions. However, the activity of ACEH is sensitive to such interfacial properties of the lipid droplets as surface area available to the enzyme, net surface charge and surface solubility of the substrate CE molecules. The enzymatic activity is also sensitive to the amount of free cholesterol present in the emulsion droplets. The interfacial concentration and molecular packing of substrate CE molecules in the droplet surface significantly affect the hydrolytic activity of ACEH.  相似文献   

16.
Cyclooxygenase-2 (COX-2) can oxygenate the endocannabinoids, arachidonyl ethanolamide (AEA) and 2-arachidonylglycerol (2-AG), to prostaglandin-H2-ethanolamide (PGH2-EA) and -glycerol ester (PGH2-G), respectively. Further metabolism of PGH2-EA and PGH2-G by prostaglandin synthases produces a variety of prostaglandin-EA's and prostaglandin-G's nearly as diverse as those derived from arachidonic acid. Thus, COX-2 may regulate endocannabinoid levels in neurons during retrograde signaling or produce novel endocannabinoid metabolites for receptor activation. Endocannabinoid-metabolizing enzymes are important regulators of their action, so we tested whether PG-G levels may be regulated by monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH). We found that PG-Gs are poor substrates for purified MGL and FAAH compared to 2-AG and/or AEA. Determination of substrate specificity demonstrates a 30-100- and 150-200-fold preference of MGL and FAAH for 2-AG over PG-Gs, respectively. The substrate specificity of AEA compared to those of PG-Gs was approximately 200-300 fold higher for FAAH. Thus, PG-Gs are poor substrates for the major endocannabinoid-degrading enzymes, MGL and FAAH.  相似文献   

17.
In the present paper we show for the first time monoacylglycerol hydrolase in human platelets. No monoacylglycerol hydrolase activity could be demonstrated in the other blood cells. The monoacylglycerol hydrolase of platelets could not be released from the cells by heparin, thus the enzyme is distinct from the postheparin plasma lipases. The enzyme could be solubilized by a non-ionic detergent, Triton X-100. The solubilized monoacylglycerol hydrolase from platelets was optimally active at pH between 7 and 8 and at ionic strength corresponding to [NaCl] between 0.1 and 0.3 M. The optimal assay temperature was 37 degrees C. The enzyme activity was sensitive to HgCl2 but not to NaF. Accordingly, it was stabilized by 2-mercaptoethanol.  相似文献   

18.
A new type of fluorogenic alkyldiacyl glycerols was synthesized and used as fluorogenic substrates for the analysis of lipase activities and stereoselectivities. These compounds contain perylene as a fluorophore and the trinitrophenylamino (TNP) residue as a quencher. Both substituents are covalently bound to the ω-ends of the sn-2 and sn-1(3) acyl chains, respectively. Upon glycerolipid hydrolysis, the residues are separated from each other thus allowing determination of lipase activity by the continuous increase in fluorescence intensity which is caused by dequenching. Using enantiomeric pairs of these compounds, we were able to analyze lipase stereoselectivity depending on the reaction medium. Mixtures of enantiomeric fluorogenic alkyldiacyl glycerols, selectively labelled with pyrene or perylene as fluorophores, can be used for a dual-wavelength “stereoassay” of lipases. Since absorption and emission maxima of both labels are clearly separated, hydrolysis of the respective enantiomeric substrates can be determined simultaneously, and the difference in the rates of hydrolysis can be taken as a parameter for the stereopreference of a lipase. Hydrolysis rates measured with perylene-substituted lipids are generally lower than those obtained with the pyrene analogs. Thus, with a mixture of perylene and pyrene-substituted lipids, we observe a higher apparent stereoselectivity of lipases since we measure a combination of stereo- and substrate selectivity. In the presence of albumin, all microbial lipases tested so far exhibit stereopreference for the sn-1 glycerol position. In our assay, the apparent stereoselectivities are highest if in the presence of albumin, the sn-1 position carries pyrene and the sn-3 position is substituted with perylene. The lipase stereoselectivity assay described here requires the simultaneous measurement of the fluorescence intensities at two different wavelengths in a single cuvette and can thus be carried out using existing and cheap instrumentation that was developed for the fluorimetric analysis of Ca++ concentrations. © 1996 Wiley-Liss, Inc.  相似文献   

19.
20.
Acyl-CoA : lysolecithin and lysolecithin : lysolecithin acyltransferases, as well as acyl-CoA hydrolase are important enzymes in lung lipid metabolism. They use amphiphylic lipids as substrates and differ in subcellular localization. In this sense, lipid-protein interactions can be an essential factor in their activity. We have studied the effect of albumin, as lipid-binding protein model, in the activities of these enzymes. Acyl-CoA hydrolase was inhibited in the presence of albumin, whereas acyl-CoA : lysolecithin acyltransferase showed a complex effect of activation depending on both albumin concentration and palmitoyl-CoA/lysolecithin molar ratio. Lysolecithin : lysolecithin acyltransferase was affected differentially on its two activities. Hydrolysis remained unaffected and transacylation was inhibited by albumin. These results are consequence of the interaction of albumin with both lipidic substrates that changes their critical micellar concentration.Abbreviations TNS 6-(p-toluidino)-2-naphthalene-sulfonic acid - CMC Critical Micellar Concentration - LP Lysolecithin (1-acyl-sn-glycero-3-phosphocholine) - PalmCoA palmitoyl-CoA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号