首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ricard J 《Comptes rendus biologies》2010,333(11-12):761-768
The set of these two theoretical papers offers an alternative to the hypothesis of a primordial RNA-world. The basic idea of these papers is to consider that the first prebiotic systems could have been networks of catalysed reactions encapsulated by a membrane. In order to test this hypothesis it was attempted to list the main obligatory features of living systems and see whether encapsulated biochemical networks could possibly display these features. The traits of living systems are the following: the ability they have to reproduce; the fact they possess an identity; the fact that biological events should be considered in the context of a history; the fact that living systems are able to evolve by selection of alterations of their structure and self-organization. The aim of these two papers is precisely to show that encapsulated biochemical networks can possess these properties and can be considered good candidates for the first prebiotic systems. In the present paper it is shown that if the proteinoids are not very specific catalysts and if some of the reactions of the network are autocatalytic whereas others are not, the resulting system does not reach a steady-state and tends to duplicate. In the same line, these biochemical networks possess an identity, viz. an information, defined from the probability of occurrence of these nodes. Moreover interaction of two ligands can increase, or decrease, this information. In the first case, the system is defined as emergent, in the second case it is considered integrated. Another property of living systems is that their behaviour is defined in the context of a time-arrow. For instance, they are able to sense whether the intensity of a signal is reached after an increase, or a decrease. This property can be mimicked by a simple physico-chemical system made up of the diffusion of a ligand followed by its chemical transformation catalysed by a proteinoid displaying inhibition by excess substrate. Under these conditions the system reacts differently depending on whether the same ligand concentration is reached after an increase or a decrease.  相似文献   

4.
This review is devoted to describing, summarizing, and analyzing of dynamic proteomics data obtained over the last few years and concerning the role of protein-protein interactions in modeling of the living cell. Principles of modern high-throughput experimental methods for investigation of protein-protein interactions are described. Systems biology approaches based on integrative view on cellular processes are used to analyze organization of protein interaction networks. It is proposed that finding of some proteins in different protein complexes can be explained by their multi-modular and polyfunctional properties; the different protein modules can be located in the nodes of protein interaction networks. Mathematical and computational approaches to modeling of the living cell with emphasis on molecular dynamics simulation are provided. The role of the network analysis in fundamental medicine is also briefly reviewed.  相似文献   

5.
Computational protein design strategies have been developed to reengineer protein-protein interfaces in an automated, generalizable fashion. In the past two years, these methods have been successfully applied to generate chimeric proteins and protein pairs with specificities different from naturally occurring protein-protein interactions. Although there are shortcomings in current approaches, both in the way conformational space is sampled and in the energy functions used to evaluate designed conformations, the successes suggest we are now entering an era in which computational methods can be used to modulate, reengineer and design protein-protein interaction networks in living cells.  相似文献   

6.
7.
In the post-genome era, functional annotation of the predicted gene-sets will be one of the most important upcoming challenges. So-called interactome analysis positions a protein in its subcellular environment by mapping its interaction partners. Such interaction maps are essential for an accurate insight into protein function since many cellular processes are organised to operate in protein complexes. These assemblies have dynamic structures and can interact with each other, two properties which are often controlled by regulated protein expression and modification. Various methods exist to unravel protein interaction circuitries, which can be roughly divided into biochemical and genetic strategies. In this review we focus on the different strategies to study protein-protein interactions in living mammalian cells. Recently developed analytical and screening methods are also addressed.  相似文献   

8.
Complex genetic interactions lie at the foundation of many diseases. Understanding the nature of these interactions is critical to developing rational intervention strategies. In mammalian systems hypothesis testing in vivo is expensive, time consuming, and often restricted to a few physiological endpoints. Thus, computational methods that generate causal hypotheses can help to prioritize targets for experimental intervention. We propose a Bayesian statistical method to infer networks of causal relationships among genotypes and phenotypes using expression quantitative trait loci (eQTL) data from genetically randomized populations. Causal relationships between network variables are described with hierarchical regression models. Prior distributions on the network structure enforce graph sparsity and have the potential to encode prior biological knowledge about the network. An efficient Monte Carlo method is used to search across the model space and sample highly probable networks. The result is an ensemble of networks that provide a measure of confidence in the estimated network topology. These networks can be used to make predictions of system-wide response to perturbations. We applied our method to kidney gene expression data from an MRL/MpJ × SM/J intercross population and predicted a previously uncharacterized feedback loop in the local renin-angiotensin system.  相似文献   

9.
Modularity analysis offers a route to better understand the organization of cellular biochemical networks as well as to derive practically useful, simplified models of these complex systems. While there is general agreement regarding the qualitative properties of a biochemical module, there is no clear consensus on the quantitative criteria that may be used to systematically derive these modules. In this work, we investigate cyclical interactions as the defining characteristic of a biochemical module. We utilize a round trip distance metric, termed Shortest Retroactive Distance (ShReD), to characterize the retroactive connectivity between any two reactions in a biochemical network and to group together network components that mutually influence each other. We evaluate the metric on two types of networks that feature feedback interactions: (i) epidermal growth factor receptor (EGFR) signaling and (ii) liver metabolism supporting drug transformation. For both networks, the ShReD partitions found hierarchically arranged modules that confirm biological intuition. In addition, the partitions also revealed modules that are less intuitive. In particular, ShReD-based partition of the metabolic network identified a 'redox' module that couples reactions of glucose, pyruvate, lipid and drug metabolism through shared production and consumption of NADPH. Our results suggest that retroactive interactions arising from feedback loops and metabolic cycles significantly contribute to the modularity of biochemical networks. For metabolic networks, cofactors play an important role as allosteric effectors that mediate the retroactive interactions.  相似文献   

10.
The evolution of connectivity in metabolic networks   总被引:2,自引:1,他引:2  
Processes in living cells are the result of interactions between biochemical compounds in highly complex biochemical networks. It is a major challenge in biology to understand causes and consequences of the specific design of these networks. A characteristic design feature of metabolic networks is the presence of hub metabolites such as ATP or NADH that are involved in a high number of reactions. To study the emergence of hub metabolites, we implemented computer simulations of a widely accepted scenario for the evolution of metabolic networks. Our simulations indicate that metabolic networks with a large number of highly specialized enzymes may evolve from a few multifunctional enzymes. During this process, enzymes duplicate and specialize, leading to a loss of biochemical reactions and intermediary metabolites. Complex features of metabolic networks such as the presence of hubs may result from selection of growth rate if essential biochemical mechanisms are considered. Specifically, our simulations indicate that group transfer reactions are essential for the emergence of hubs.  相似文献   

11.
Biochemical and statistical network models for systems biology   总被引:2,自引:0,他引:2  
The normal and abnormal behavior of a living cell is governed by complex networks of interacting biomolecules. Models of these networks allow us to make predictions about cellular behavior under a variety of environmental cues. In this review, we focus on two broad classes of such models: biochemical network models and statistical inference models. In particular, we discuss a number of modeling approaches in the context of the assumptions that they entail, the types of data required for their inference, and the range of their applicability.  相似文献   

12.

Background

Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks.

Results

We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015.

Conclusions

Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.  相似文献   

13.
Cells use signalling networks to translate with high fidelity extracellular signals into specific cellular functions. Signalling networks are often composed of multiple signalling pathways that act in concert to regulate a particular cellular function. In the centre of the networks are the receptors that receive and transduce the signals. A versatile family of receptors that detect a remarkable variety of signals are the G protein-coupled receptors (GPCRs). Virtually all cells express several GPCRs that use the same biochemical machinery to transduce their signals. Considering the specificity and fidelity of signal transduction, a central question in cell signalling is how signalling specificity is achieved, in particular among GPCRs that use the same biochemical machinery. Ca(2+) signalling is particularly suitable to address such questions, since [Ca(2+)](i) can be recorded with excellent spatial and temporal resolutions in living cells and tissues and now in living animals. Ca(2+) is a unique second messenger in that both biochemical and biophysical components form the Ca(2+) signalling complex to regulate its concentration. Both components act in concert to generate repetitive [Ca(2+)](i) oscillations that can be either localized or in the form of global, propagating Ca(2+) waves. Most of the key proteins that form Ca(2+) signalling complexes are known and their activities are reasonably well understood on the biochemical and biophysical levels. We review here the information gained from studying Ca(2+) signalling by GPCRs to gain further understanding of the mechanisms used to generate cellular signalling specificity.  相似文献   

14.
The reductionist approach has revolutionized biology in the past 50 years. Yet its limits are being felt as the complexity of cellular interactions is gradually revealed by high-throughput technology. In order to make sense of the deluge of “omic data”, a hypothesis-driven view is needed to understand how biomolecular interactions shape cellular networks. We review recent efforts aimed at building in vitro biochemical networks that reproduce the flow of genetic regulation. We highlight how those efforts have culminated in the rational construction of biochemical oscillators and bistable memories in test tubes. We also recapitulate the lessons learned about in vivo biochemical circuits such as the importance of delays and competition, the links between topology and kinetics, as well as the intriguing resemblance between cellular reaction networks and ecosystems.  相似文献   

15.
A key property of living cells is their ability to react to stimuli with specific biochemical responses. These responses can be understood through the dynamics of underlying biochemical and genetic networks. Evolutionary design principles have been well studied in networks that display graded responses, with a continuous relationship between input signal and system output. Alternatively, biochemical networks can exhibit bistable responses so that over a range of signals the network possesses two stable steady states. In this review, we discuss several conceptual examples illustrating network designs that can result in a bistable response of the biochemical network. Next, we examine manifestations of these designs in bacterial master-regulatory genetic circuits. In particular, we discuss mechanisms and dynamic consequences of bistability in three circuits: two-component systems, sigma-factor networks, and a multistep phosphorelay. Analyzing these examples allows us to expand our knowledge of evolutionary design principles networks with bistable responses.  相似文献   

16.
The study of protein--protein interactions is central to understanding the chemical machinery that makes up the living cell. Until recently, facile methods to study these processes in intact, living cells have not existed. Furthermore, the assignment of function to novel proteins relies on demonstrating interactions of these proteins with proteins of known function. This review describes an experimental strategy, devised to study protein--protein interactions in any intact living cells based on protein-fragment complementation assays. Applications to quantitative analysis of interactions, allosteric processes and cDNA library screening are discussed. Recently, the feasibility of employing this strategy in genome-wide biochemical pathway mapping efforts has been demonstrated.  相似文献   

17.
Cellular identity as defined through morphology and function emerges from intracellular signaling networks that communicate between cells. Based on recursive interactions within and among these intracellular networks, dynamical solutions in terms of biochemical behavior are generated that can differ from those in isolated cells. In this way, cellular heterogeneity in tissues can be established, implying that cell identity is not intrinsically predetermined by the genetic code but is rather dynamically maintained in a cognitive manner. We address how to experimentally measure the flow of information in intracellular biochemical networks and demonstrate that even simple causality motifs can give rise to rich, context‐dependent dynamic behavior. The concept how intercellular communication can result in novel dynamical solutions is applied to provide a contextual perspective on cell differentiation and tumorigenesis.  相似文献   

18.
Switch like responses appear as common strategies in the regulation of cellular systems. Here we present a method to characterize bistable regimes in biochemical reaction networks that can be of use to both direct and reverse engineering of biological switches. In the design of a synthetic biological switch, it is important to study the capability for bistability of the underlying biochemical network structure. Chemical Reaction Network Theory (CRNT) may help at this level to decide whether a given network has the capacity for multiple positive equilibria, based on their structural properties. However, in order to build a working switch, we also need to ensure that the bistability property is robust, by studying the conditions leading to the existence of two different steady states. In the reverse engineering of biological switches, knowledge collected about the bistable regimes of the underlying potential model structures can contribute at the model identification stage to a drastic reduction of the feasible region in the parameter space of search. In this work, we make use and extend previous results of the CRNT, aiming not only to discriminate whether a biochemical reaction network can exhibit multiple steady states, but also to determine the regions within the whole space of parameters capable of producing multistationarity. To that purpose we present and justify a condition on the parameters of biochemical networks for the appearance of multistationarity, and propose an efficient and reliable computational method to check its satisfaction through the parameter space.  相似文献   

19.
The systems genetics is an emerging discipline that integrates high-throughput expression profiling technology and systems biology approaches for revealing the molecular mechanism of complex traits, and will improve our understanding of gene functions in the biochemical pathway and genetic interactions between biological molecules. With the rapid advances of microarray analysis technologies, bioinformatics is extensively used in the studies of gene functions, SNP–SNP genetic interactions, LD block–block interactions, miRNA–mRNA interactions, DNA–protein interactions, protein–protein interactions, and functional mapping for LD blocks. Based on bioinformatics panel, which can integrate “-omics” datasets to extract systems knowledge and useful information for explaining the molecular mechanism of complex traits, systems genetics is all about to enhance our understanding of biological processes. Systems biology has provided systems level recognition of various biological phenomena, and constructed the scientific background for the development of systems genetics. In addition, the next-generation sequencing technology and post-genome wide association studies empower the discovery of new gene and rare variants. The integration of different strategies will help to propose novel hypothesis and perfect the theoretical framework of systems genetics, which will make contribution to the future development of systems genetics, and open up a whole new area of genetics.  相似文献   

20.
The flow of information within a cell is governed by a series of protein–protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed on reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor–ligand binding model and a rule‐based model of interleukin‐12 (IL‐12) signaling in naïve CD4+ T cells. The IL‐12 signaling pathway includes multiple protein–protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based on the available data. The analysis correctly predicted that reactions associated with Janus Kinase 2 and Tyrosine Kinase 2 binding to their corresponding receptor exist at a pseudo‐equilibrium. By contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL‐12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank‐ and flux‐based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule‐based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号