首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulation of lipids in nonadipose tissues can lead to cell dysfunction and cell death, a phenomenon known as lipotoxicity. However, the signaling pathways and mechanisms linking lipid accumulation to cell death are poorly understood. The present study examined the hypothesis that saturated fatty acids disrupt endoplasmic reticulum (ER) homeostasis and promote apoptosis in liver cells via accumulation of ceramide. H4IIE liver cells were exposed to varying concentrations of saturated (palmitate or stearate) or unsaturated (oleate or linoleate) fatty acids. ER homeostasis was monitored using markers of the ER stress response pathway, including phosphorylation of IRE1alpha and eIF2alpha, splicing of XBP1 mRNA, and expression of molecular chaperone (e.g., GRP78) and proapoptotic (CCAAT/enhancer-binding protein homologous protein) genes. Apoptosis was monitored using caspase activity and DNA laddering. Palmitate and stearate induced ER stress, caspase activity, and DNA laddering. Inhibition of caspase activation prevented DNA laddering. Unsaturated fatty acids did not induce ER stress or apoptosis. Saturated fatty acids increased ceramide concentration; however, inhibition of de novo ceramide synthesis did not prevent saturated fatty acid-induced ER stress and apoptosis. Unsaturated fatty acids rescued palmitate-induced ER stress and apoptosis. These data demonstrate that saturated fatty acids disrupt ER homeostasis and induce apoptosis in liver cells via mechanisms that do not involve ceramide accumulation.  相似文献   

2.
C5b-9-induced glomerular epithelial cell (GEC) injury in vivo (in passive Heymann nephritis) and in culture is associated with damage to the endoplasmic reticulum (ER) and increased expression of ER stress proteins. Induction of ER stress proteins is enhanced via cytosolic phospholipase A(2) (cPLA(2)) and limits complement-dependent cytotoxicity. The present study addresses another aspect of the ER unfolded protein response, i.e. activation of protein kinase R-like ER kinase (PERK or pancreatic ER kinase), which phosphorylates eukaryotic translation initiation factor 2-alpha (eIF2alpha), thereby generally suppressing translation and decreasing the protein load on a damaged ER. Phosphorylation of eIF2alpha was enhanced significantly in glomeruli of proteinuric rats with passive Heymann nephritis, compared with control. In cultured GECs, complement induced phosphorylation of eIF2alpha and reduced protein synthesis, and complement-stimulated phosphorylation of eIF2alpha was enhanced by overexpression of cPLA(2). Ischemia-reperfusion in vitro (deoxyglucose plus antimycin A followed by glucose re-exposure) also stimulated eIF2alpha phosphorylation and reduced protein synthesis. Complement and ischemia-reperfusion induced phosphorylation of PERK (which correlates with activation), and fibroblasts from PERK knock-out mice were more susceptible to complement- and ischemia-reperfusion-mediated cytotoxicity, as compared with wild type fibroblasts. The GEC protein, nephrin, plays a key role in maintaining glomerular permselectivity. In contrast to a general reduction in protein synthesis, translation regulated by the 5'-end of mouse nephrin mRNA during ER stress was paradoxically maintained, probably due to the presence of short open reading frames in this mRNA segment. Thus, phosphorylation of eIF2alpha and consequent general reduction in protein synthesis may be a novel mechanism for limiting complement- or ischemia-reperfusion-dependent GEC injury.  相似文献   

3.
4.
5.
Malfolded proteins in the endoplasmic reticulum (ER) inhibit translation initiation. This response is believed to be mediated by increased phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) and is hypothesized to reduce the work load imposed on the folding machinery during stress. Here we report that mutating the gene encoding the ER stress-activated eIF2alpha kinase PERK abolishes the phosphorylation of eIF2alpha in response to accumulation of malfolded proteins in the ER resulting in abnormally elevated protein synthesis and higher levels of ER stress. Mutant cells are markedly impaired in their ability to survive ER stress and inhibition of protein synthesis by cycloheximide treatment during ER stress ameliorates this impairment. PERK thus plays a major role in the ability of cells to adapt to ER stress.  相似文献   

6.
7.
8.
Hypoxia profoundly influences tumor development and response to therapy. While progress has been made in identifying individual gene products whose synthesis is altered under hypoxia, little is known about the mechanism by which hypoxia induces a global downregulation of protein synthesis. A critical step in the regulation of protein synthesis in response to stress is the phosphorylation of translation initiation factor eIF2alpha on Ser51, which leads to inhibition of new protein synthesis. Here we report that exposure of human diploid fibroblasts and transformed cells to hypoxia led to phosphorylation of eIF2alpha, a modification that was readily reversed upon reoxygenation. Expression of a transdominant, nonphosphorylatable mutant allele of eIF2alpha attenuated the repression of protein synthesis under hypoxia. The endoplasmic reticulum (ER)-resident eIF2alpha kinase PERK was hyperphosphorylated upon hypoxic stress, and overexpression of wild-type PERK increased the levels of hypoxia-induced phosphorylation of eIF2alpha. Cells stably expressing a dominant-negative PERK allele and mouse embryonic fibroblasts with a homozygous deletion of PERK exhibited attenuated phosphorylation of eIF2alpha and reduced inhibition of protein synthesis in response to hypoxia. PERK(-/-) mouse embryo fibroblasts failed to phosphorylate eIF2alpha and exhibited lower survival after prolonged exposure to hypoxia than did wild-type fibroblasts. These results indicate that adaptation of cells to hypoxic stress requires activation of PERK and phosphorylation of eIF2alpha and suggest that the mechanism of hypoxia-induced translational attenuation may be linked to ER stress and the unfolded-protein response.  相似文献   

9.
10.
Mulvey M  Arias C  Mohr I 《Journal of virology》2006,80(15):7354-7363
Via careful control of multiple kinases that inactivate the critical translation initiation factor eIF2 by phosphorylation of its alpha subunit, the cellular translation machinery can rapidly respond to a spectrum of environmental stresses, including viral infection. Indeed, virus replication produces a battery of stresses, such as endoplasmic reticulum (ER) stress resulting from misfolded proteins accumulating within the lumen of this organelle, which could potentially result in eIF2alpha phosphorylation and inhibit translation. While cellular translation is exquisitely sensitive to ER stress-inducing agents, protein synthesis in herpes simplex virus type 1 (HSV-1)-infected cells is notably resistant. Sustained translation in HSV-1-infected cells exposed to acute ER stress does not involve the interferon-induced, double-stranded RNA-responsive eIF2alpha kinase PKR, and it does not require either the PKR inhibitor encoded by the Us11 gene or the eIF2alpha phosphatase component specified by the gamma(1)34.5 gene, the two viral functions known to regulate eIF2alpha phosphorylation. In addition, although ER stress potently induced the GADD34 cellular eIF2alpha phosphatase subunit in uninfected cells, it did not accumulate to detectable levels in HSV-1-infected cells under identical exposure conditions. Significantly, resistance of translation to the acute ER stress observed in infected cells requires HSV-1 gene expression. Whereas blocking entry into the true late phase of the viral developmental program does not abrogate ER stress-resistant translation, the presence of viral immediate-early proteins is sufficient to establish a state permissive of continued polypeptide synthesis in the presence of ER stress-inducing agents. Thus, one or more previously uncharacterized viral functions exist to counteract the accumulation of phosphorylated eIF2alpha in response to ER stress in HSV-1-infected cells.  相似文献   

11.
FAD mutations in presenilin-1 (PS1) cause attenuation of the induction of the endoplasmic reticulum (ER)-resident chaperone GRP78/BiP under ER stress, due to disturbed function of IRE1, the sensor for accumulation of unfolded protein in the ER lumen. PERK, an ER-resident transmembrane protein kinase, is also a sensor for the unfolded protein response (UPR), causing phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) to inhibit translation initiation. Here, we report that the FAD mutant PS1 disturbs the UPR by attenuating both the activation of PERK and the phosphorylation of eIF2alpha. Consistent with the results of a disturbed UPR, inhibition of protein synthesis under ER stress was impaired in cells expressing PS1 mutants. These results suggest that mutant PS1 impedes general translational attenuation regulated by PERK and eIF2alpha, resulting in an increased load of newly synthesized proteins into the ER and subsequently increasing vulnerability to ER stress.  相似文献   

12.
13.
Sorafenib is a multikinase inhibitor that induces apoptosis in human leukemia and other malignant cells. Recently, we demonstrated that sorafenib diminishes Mcl-1 protein expression by inhibiting translation through a MEK1/2-ERK1/2 signaling-independent mechanism and that this phenomenon plays a key functional role in sorafenib-mediated lethality. Here, we report that inducible expression of constitutively active MEK1 fails to protect cells from sorafenib-mediated lethality, indicating that sorafenib-induced cell death is unrelated to MEK1/2-ERK1/2 pathway inactivation. Notably, treatment with sorafenib induced endoplasmic reticulum (ER) stress in human leukemia cells (U937) manifested by immediate cytosolic-calcium mobilization, GADD153 and GADD34 protein induction, PKR-like ER kinase (PERK) and eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation, XBP1 splicing, and a general reduction in protein synthesis as assessed by [35S]methionine incorporation. These events were accompanied by pronounced generation of reactive oxygen species through a mechanism dependent upon cytosolic-calcium mobilization and a significant decline in GRP78/Bip protein levels. Interestingly, enforced expression of IRE1alpha markedly reduced sorafenib-mediated apoptosis, whereas knockdown of IRE1alpha or XBP1, disruption of PERK activity, or inhibition of eIF2alpha phosphorylation enhanced sorafenib-mediated lethality. Finally, downregulation of caspase-2 or caspase-4 by small interfering RNA significantly diminished apoptosis induced by sorafenib. Together, these findings demonstrate that ER stress represents a central component of a MEK1/2-ERK1/2-independent cell death program triggered by sorafenib.  相似文献   

14.
Protein synthesis, in particular peptide-chain elongation, consumes cellular energy. Anoxia activates AMP-activated protein kinase (AMPK, see ), resulting in the inhibition of biosynthetic pathways to conserve ATP. In anoxic rat hepatocytes or in hepatocytes treated with 5-aminoimidazole-4-carboxamide (AICA) riboside, AMPK was activated and protein synthesis was inhibited. The inhibition of protein synthesis could not be explained by changes in the phosphorylation states of initiation factor 4E binding protein-1 (4E-BP1) or eukaryotic initiation factor 2alpha (eIF2alpha). However, the phosphorylation state of eukaryotic elongation factor 2 (eEF2) was increased in anoxic and AICA riboside-treated hepatocytes and in AICA riboside-treated CHO-K1 cells, and eEF2 phosphorylation is known to inhibit its activity. Incubation of CHO-K1 cells with increasing concentrations of 2-deoxyglucose suggested that the mammalian target of the rapamycin (mTOR) signaling pathway did not play a major role in controlling the level of eEF2 phosphorylation in response to mild ATP depletion. In HEK293 cells, transfection of a dominant-negative AMPK construct abolished the oligomycin-induced inhibition of protein synthesis and eEF2 phosphorylation. Lastly, eEF2 kinase, the kinase that phosphorylates eEF2, was activated in anoxic or AICA riboside-treated hepatocytes. Therefore, the activation of eEF2 kinase by AMPK, resulting in the phosphorylation and inactivation of eEF2, provides a novel mechanism for the inhibition of protein synthesis.  相似文献   

15.
16.
17.
Hyperoxia is cytotoxic and depresses many cellular metabolic functions including protein synthesis. Translational control is exerted primarily during initiation by two mechanisms: 1) through inhibition of translation initiation complex formation via sequestration of the cap-binding protein, eukaryotic initiation factor (eIF) 4E, with inhibitory 4E-binding proteins (4E-BP); and 2) by prevention of eIF2-GTP-tRNA(i)(Met) formation and eIF2B activity by phosphorylated eIF2alpha. In this report, exposure of human lung fibroblasts to 95% O2 decreased the incorporation of thymidine into DNA at 6 h and the incorporation of leucine into protein beginning at 12 h. The reductions in DNA and protein synthesis were accompanied by increased phosphorylation of eIF4E protein and reduced phosphorylation of 4E-BP1. At 24 h, hyperoxia shifted 4E-BP1 phosphorylation to lesser-phosphorylated isoforms, increased eIF4E expression, and increased the association of eIF4E with 4E-BP1. Although hyperoxia did not change eIF2alpha expression, it increased its phosphorylation at Ser51, but not until 48 h. In addition, the activation of eIF2alpha was not accompanied by the formation of stress granules. These findings suggest that hyperoxia diminishes protein synthesis by increasing eIF4E phosphorylation and enhancing the affinity of 4E-BP1 for eIF4E.  相似文献   

18.
Sphingosine 1-phosphate (S1P) and ceramide have been implicated in both autophagy and apoptosis. However, the roles of these sphingolipid metabolites in the links between these two processes are not completely understood. Depletion of S1P phosphohydrolase-1 (SPP1), which degrades intracellular S1P, induces the unfolded protein response and endoplasmic reticulum stress-induced autophagy (Lépine, S., Allegood, J. C., Park, M., Dent, P., Milstien, S., and Spiegel, S. (2011) Cell Death Differ. 18, 350-361). Surprisingly, however, treatment with doxorubicin, which by itself also induced autophagy, markedly reduced the extent of autophagy mediated by depletion of SPP1. Concomitantly, doxorubicin-induced apoptosis was greatly enhanced by down-regulation of SPP1. Autophagy and apoptosis seemed to be sequentially linked because inhibiting autophagy with 3-methyladenine also markedly attenuated apoptosis. Moreover, silencing Atg5 or the three sensors of the unfolded protein response, IRE1α, ATF6, and PKR-like eIF2α kinase (PERK), significantly decreased both autophagy and apoptosis. Doxorubicin stimulated calpain activity and Atg5 cleavage, which were significantly enhanced in SPP1-depleted cells. Inhibition or depletion of calpain not only suppressed Atg5 cleavage, it also markedly decreased the robust apoptosis induced by doxorubicin in SPP1-deficient cells. Importantly, doxorubicin also increased de novo synthesis of the pro-apoptotic sphingolipid metabolite ceramide. Elevation of ceramide in turn stimulated calpain; conversely, inhibiting ceramide formation suppressed Atg5 cleavage and apoptosis. Hence, doxorubicin switches protective autophagy in SPP1-depleted cells to apoptosis by calpain-mediated Atg5 cleavage.  相似文献   

19.
20.
Tricyclodecan-9-yl-xanthogenate (D609) is a selective tumor cytotoxic agent. However, the mechanisms of action of D609 against tumor cells have not been well established. Using U937 human monocytic leukemia cells, we examined the ability of D609 to inhibit sphingomyelin synthase (SMS), since inhibition of SMS may contribute to D609-induced tumor cell cytotoxicity via modulating the cellular levels of ceramide and diacylglycerol (DAG). The results showed that D609 is capable of inducing U937 cell death by apoptosis in a dose- and time-dependent manner. The induction of U937 cell apoptosis was associated with an inhibition of SMS activity and a significant increase in the intracellular level of ceramide and decrease in that of sphingomyelin (SM) and DAG, which resulted in an elevation of the ratio between ceramide and DAG favoring the induction of apoptosis. In addition, incubation of U937 cells with C(6)-ceramide and/or H7 (a selective PKC inhibitor) reduced U937 cell viability; whereas pretreatment of the cells with a PKC activator, PMA or 1-oleoyl-2-acetylglycerol (OAG), attenuated D609-induced U937 cell apoptosis. These results suggest that SMS is a potential target of D609 and inhibition of SMS may contribute to D609-induced tumor cell death via modulation of the cellular levels of ceramide and DAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号