首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Pampulha Lake has undergone rapid eutrophication. Annual maxima of total phosphorus and conductivity increased steadily from 1993 to 1996. Nitrogen quickly decreased after macrophyte removal in 1994, but increased again in the following years
2. The zooplankton was dominated by Daphnia gessneri , D. laevis , Diaphanosoma birgei and Thermocyclops decipiens . The biomass of major zooplankton organisms, including Daphnia and rotifers, increased during the period covered in this study.
3. Autocorrelation coefficients have confirmed the existence of recurrent seasonal patterns for both chemical and biological variables.
4. Daphnia , calanoid copepods and rotifers showed clear and recurrent seasonal patterns. Cyclopoid copepods and Diaphanosoma had temporal patterns more affected by long‐term trophic changes. Other organisms such as Moina, Ceriodaphnia and Bosmina exhibited high temporal variability with no recurrent patterns.
5. There was a strong and positive correlation between total phosphorus and Daphnia biomass. Seasonal patterns of this cladoceran were also inversely associated with sestonic C:P ratios. Thus, Daphnia may be limited primarily by phosphorus and not by total food availability as expressed by particulate carbon.
6. This study suggests that increasing eutrophication has changed the structure as well as seasonal patterns of the zooplankton community in Pampulha Reservoir.  相似文献   

2.
Environmental control of zooplankton biomass size structure(53–100, 100–202, 202–500 and >500 µm)was investigated in the three limnetic strata of 25 southernQuébec Shield lakes, Canada. Among-lake differences werethe greatest source of variation of zooplankton biomass, whereasthe strong lake–by–stratum interaction observedindicated that the vertical variations of zooplankton biomassand its size fractions were not constant from lake to lake.The analysis of spatial and local factors based on thermal stratais consistent with conceptual models of predation and nutrientcontrol on the biomass and size structure of the zooplankton.Productivity of the aquatic systems, which was driven by lakedepth, flushing rate and total phosphorus concentration, wasthe primary factor influencing total zooplankton biomass andsize structure at among-lake scale in epilimnetic waters. Theeffects of the planktivorous fish on the large zooplankton biomass(>500 µm) was more clearly perceived when the effectof lake depth was removed by partial redundancy analysis. Thisstudy showed that although bottom-up and top-down forces arecomplementary in structuring of zooplankton communities, theycan also act differently on the community attributes (e.g. biomassand size structure). Among-lake zooplankton biomass is predictablefrom lake trophy, but the size structure and vertical distributionof zooplankton communities appear to be controlled by lake stratificationand by inference to interactions with size selective predationby fish. In metalimnetic waters, the 53–100 and 100–202µm zooplankton biomass fractions were primarily dependenton abiotic factors, while the 202–500 and >500 µmfractions were related to planktivory and picophytoplanktonconcentrations. The well-oxygenated and cold hypolimnetic watersof some lakes offered a refuge from surface turbulence and planktivoryto large zooplankton size fractions (202–500 and >500µm).  相似文献   

3.
In 49 unpolluted lakes of north-eastern Poland the biomass of algae in summer is significantly related to the concentration of total phosphorus and to the rate of phosphorus regeneration by zooplankton. Using a model with equations describing these relationships, the biomass of blue-green algae and other phytoplankton groups was predicted for 14 polluted lakes. A good approximation of actual values was obtained only for the biomass of blue-green algae calculated from the estimated rate of P regeneration by zooplankton in these lakes. It is hypothesized that more-or-less edible algae of other classes did not show dependence on the rate of input of regenerated P because their biomass was heavily reduced by grazing of zooplankton.  相似文献   

4.
1. Over the past decade, ecologists have tried to determine how changes in species composition and diversity affect ecosystem structure and function. Until recently, the majority of these studies have been conducted in terrestrial ecosystems and have not taken into account environmental variability. The purpose of this research was to determine how species identity and diversity in the freshwater zooplankton affected biomass of algae and zooplankton at two levels of nutrient enrichment.
2. Several species of cladocerans were grown alone and together in microcosms at both ambient and raised phosphorus concentrations to determine if the effects of consumer identity and diversity were nutrient dependent.
3. Total zooplankton biomass was greater, while algal biomass was lower, in mixed culture than in monoculture. The effects of zooplankton diversity on algal biomass, however, were only observed at raised phosphorus concentrations, suggesting that diversity effects were nutrient dependent. Specifically, diversity effects appeared to be related with biological mechanisms such as complementarity in resource use and/or facilitation.
4. More diverse communities of zooplankton appear to be better able to control algae than single species of zooplankton at high nutrient concentrations; therefore, zooplankton diversity may provide a buffer against eutrophication in freshwater ecosystems.  相似文献   

5.
The relationship between species diversity and the stability and production of trophic levels continues to receive intense scientific interest. Though facilitation is commonly cited as an essential underlying mechanism, few studies have provided evidence of the impact that indirect facilitation may have on diversity–ecosystem functioning relationships. In this laboratory study, we examined the effect of zooplankton species diversity on trophic structure (total algal and zooplankton biomass) and temporal stability of total zooplankton biomass. We utilized four species of pond zooplankton grown in either monoculture or in polyculture. When comparing responses in polycultures with responses averaged across monocultures, a positive effect of diversity on total zooplankton biomass was observed. This occurred as a result of positive facilitative effects among competing zooplankton. Daphnia pulex , a biomass dominant in monoculture, was negatively affected by the presence of interspecific competitors. In contrast, Diaphanosoma brachyurum , a species that performed poorly in monoculture, was strongly and positively affected by the presence of interspecific competitors, driving positive diversity effects on total zooplankton biomass. Positive temporal covariances among zooplankton were detected in several polyculture replicates, increasing temporal variability of total zooplankton biomass. However, this destabilizing effect was weak relative to effects of high biomass yields in polyculture which caused temporal biomass variability (as measured by the coefficient of variation) to be lower in polyculture relative to monocultures. Zooplankton diversity effects on total algal biomass were not detected. However, increased zooplankton diversity significantly altered the size structure of algae, increasing the relative abundance of large, grazer-resistant algae.  相似文献   

6.
Zooplankton and water quality parameters were investigated ateight mesohaline stations in the lower Chesapeake Bay and ElizabethRiver from January through December 1994 to identify the changesof zooplankton community structure with increased eutrophication.The total micro- and mesozooplankton biomass decreased withthe increase of eutrophication. However, the relative proportionof microzooplankton increased with increased eutrophication.Within highly eutrophied waters, the small oligotrichs (<30µm) and rotifers dominated the total zooplankton biomass(as carbon). However, tintinnids, copepod nauplii and mesozooplanktonsignificantly decreased with the increase of eutrophication.These patterns were consistent throughout the seasons and hadsignificant relationships statistically. These results suggestzooplankton community structures characterize an increasingeutrophication of an ecosystem.  相似文献   

7.
Phytoplankton biomass–nutrient relationship is widely used by lake managers to assess the eutrophication impact and to set the nutrient targets. Submerged vegetation and large zooplankton grazing have long been identified as factors weakening the relationship by decoupling phytoplankton from nutrients. Proving this decoupling unambiguously is difficult because, in natural systems, many factors act together, blurring each other’s effect. In this article, we present the results of continuous monitoring of 13 ponds where the effects of submerged vegetation and zooplankton grazing were enhanced by biomanipulation (fish removal). The monitoring allowed these effects to be assessed and compared with the pre-biomanipulation situations when phytoplankton biomass was mainly nutrient driven. The comparison showed a strong weakening effect of submerged vegetation and large zooplankton grazing on the chlorophyll a–total phosphorus relationship suggesting that a considerable degree of ecological quality of ponds affected by eutrophication can be restored even when nutrient-loading reduction is not feasible.  相似文献   

8.
The importance of top-down effects of piscivorous fish on phytoplankton in natural oligotrophic lakes is still debated. In this study, we analyzed patterns in phytoplankton and zooplankton abundance in 37 oligotrophic Canadian Shield lakes in relation to variations in both piscivorous fish predation and resources (total phosphorus; TP). Zooplankton community structure (but not total biomass) was partially affected by the variation in fish predation while the phytoplankton community structure and total biomass showed no response. Carbon isotope analyses revealed that the lack of top-down effects is due to the uncoupling of the littoral and the pelagic food webs. We found that the fish community depends mostly on benthic resources, suggesting that only low planktivory occurred in our study lakes. Due to the absence of specialized zooplanktivorous fish, zooplankton is poorly exploited in these lakes and thus able to control phytoplankton by grazing. A comparison of our data with published studies on the TP–chlorophyll a relationships in both natural and manipulated systems shows that the phytoplankton biomass per unit of TP is relatively low in Canadian Shield lakes.  相似文献   

9.
Anthropogenic habitat alteration interferes the natural aquatic habitats and the system''s hydrodynamics in the Yangtze River floodplain lakes, resulting in a serious decline in freshwater biodiversity. Zooplankton communities possess major position in freshwater ecosystems, which play essential parts in maintaining biological balance of freshwater habitats. Knowledge of processes and mechanisms for affecting variations in abundance, biomass, and diversity of zooplankton is important for maintaining biological balance of freshwater ecosystems. Here, we analyzed that the temporal and spatial changes in the structure of zooplankton community and their temporal and spatial variations respond to changes in environmental factors in the middle reach of Yangtze River floodplain lakes. The results showed that zooplankton samples were classified into 128 species, and Rotifera was the most common taxa. Significant seasonal differences were found among the abundance and diversity of zooplankton. Similarly, we also found significant seasonal differences among the biomass of zooplankton functional groups. The spatial turnover component was the main contributor to the β diversity pattern, which indicated that study areas should establish habitat restoration areas to restore regional biodiversity. The NMDS plot showed that the structure of zooplankton community exhibited significant seasonal changes, where the community structure was correlated with pH, water temperature, water depth, salinity, total nitrogen, chlorophyll‐a, and total phosphorus based on RDA. This study highlights that it is very important to ensure the floodplain ecosystem''s original state of functionality for maintaining the regional diversity of the ecosystem as a whole.  相似文献   

10.
Zooplankton are relatively small in size in the subtropical regions. This characteristic has been attributed to intense predation pressure, high nutrient loading and cyanobacterial biomass. To provide further information on the effect of predation and cyanobacteria on zooplankton size structure, we analyzed data from 96 shallow aquaculture lakes along the Yangtze River. Contrary to former studies, both principal components analysis and multiple regression analysis showed that the mean zooplankton size was positively related to fish yield. The studied lakes were grouped into three types, namely, natural fishing lakes with low nutrient loading (Type1), planktivorous fish-dominated lakes (Type 2), and eutrophic lakes with high cyanobacterial biomass (Type 3). A marked difference in zooplankton size structure was found among these groups. The greatest mean zooplankton size was observed in Type 2 lakes, but zooplankton density was the lowest. Zooplankton abundance was highest in Type 3 lakes and increased with increasing cyanobacterial biomass. Zooplankton mean size was negatively correlated with cyanobacterial biomass. No obvious trends were found in Type 1 lakes. These results were reflected by the normalized biomass size spectrum, which showed a unimodal shape with a peak at medium sizes in Type 2 lakes and a peak at small sizes in Type 3 lakes. These results indicated a relative increase in medium-sized and small-sized species in Types 2 and 3 lakes, respectively. Our results suggested that fish predation might have a negative effect on zooplankton abundance but a positive effect on zooplankton size structure. High cyanobacterial biomass most likely caused a decline in the zooplankton size and encouraged the proliferation of small zooplankton. We suggest that both planktivorous fish and cyanobacteria have substantial effects on the shaping of zooplankton community, particularly in the lakes in the eastern plain along the Yangtze River where aquaculture is widespread and nutrient loading is high.  相似文献   

11.
珠三角高产养殖池塘浮游动物群落结构及水质评价   总被引:1,自引:0,他引:1  
为进一步了解珠三角高产池塘养殖环境状况, 分析珠三角高产池塘浮游动物群落特征及与池塘水质的相关性, 研究于2016年7—8月对珠三角地区6种主要高产养殖模式30口池塘的浮游动物和环境因子进行了调查。研究结果表明: (1)共采集浮游动物55种, 其中原生动物17种、轮虫29种、枝角类4种、桡足类5种。6种养殖模式池塘中, 大口黑鲈S池塘浮游动物种类数最多, 为34种; 草鱼池塘最少, 为18种。(2)30口池塘共记录优势种8种, 其中原生动物和轮虫各4种, 枝角类和桡足类均不占优势。在6种养殖模式池塘中, 优势种也仅包括原生动物和轮虫, 优势种种类数变化范围为5—8种。(3)30口池塘浮游动物平均密度和生物量均较高, 分别为21354 ind./L和9.36 mg/L。方差分析结果表明6种养殖模式池塘浮游动物密度和生物量均不存在显著差异。(4)RDA分析结果表明, TP和pH是影响珠三角池塘浮游动物分布的主要因素。采用浮游动物丰度和生物量对水质的评价结果显示, 6种养殖模式池塘均处于富营养化状态; 运用Shannon-Wiener多样性指数和Margalef多样性指数对水质的评价结果表明, 6种模式养殖池塘均处于α-中污状态, 且以草鱼池塘的污染最为严重。本研究首次利用浮游动物对珠三角高产池塘进行水质评价, 研究结果可为池塘生态修复和管理提供一定的指导意见。  相似文献   

12.
Increases in phytoplankton biomass have been widely observed over the past decades, even in lakes experiencing nutrient reduction. However, the mechanisms giving rise to this trend remain unclear. Here, we unveil the potential mechanisms through quantifying the relative contribution of bottom–up versus top–down control in determining biomasses of phytoplankton assemblages in Lake Geneva. Specifically, we apply nonlinear time series analysis, convergent cross mapping (CCM), to decipher the degree of bottom–up versus top–down control among phytoplankton assemblages via quantifying 1) causal links between environmental factors and various phytoplankton assemblages and 2) the relative importance of bottom–up, top–down, and environmental effects. We show that the recent increase in total phytoplankton biomass, albeit with phosphorus reduction, was mainly caused by a particular phytoplankton assemblage which was better adapted to the re‐oligotrophicated environment characterized by relatively low phosphorus concentrations and warm water temperature, and poorly controlled by zooplankton grazing. Our findings suggest that zooplankton act as a critical driver of phytoplankton biomass and strongly impact the dynamics of recovery from eutrophication. Therefore, our phytoplankton assemblage approach in combination with causal identification of top–down versus bottom–up controls provides insights into the reason why phytoplankton biomass may increase in lakes undergoing phosphorus reduction.  相似文献   

13.
Crustacean zooplankton size structure in 27 aquaculture lakes was studied to test the hypothesis that larger size structure is associated with higher grazing pressure. Mean body length of crustaceans was positively correlated with increasing Chl a (r 2 = 0.40, P = 0.000) and TP (r 2 = 0.38, P = 0.000), contrary to the empirical studies. However, the ratio of zooplankton to phytoplankton biomass decreased significantly with increasing TP (r 2 = 0.27, P = 0.005) and mean body length (r 2 = 0.46, P = 0.000). Meanwhile, size structure showed no significant effect in explaining residual variations of phosphorus–chlorophyll relationship (P = 0.231). These results indicate that larger size structure was not always associated with higher zooplankton grazing pressure. It is likely that in aquaculture lakes crustacean zooplankton size structure was of minor importance in control of phytoplankton biomass, and it was mainly regulated by fish predation. The results showed in our study and the empirical studies might be a reflection of two different stages of lake eutrophication and fish predation intensity. Handling editor: S. Dodson  相似文献   

14.
The water quality of Lake Geneva has declined steadily since the 1960s, due to a continuous increase of external phosphorus loading. Average P level in the lake increased steadily to a peak in 1979, and even 1981 in the case of P content in the trophogenic layer. Since then, reduced external inputs related to the delayed effects of phosphorus removal from waste waters initiated many years previously has led to a decrease in P level, and resulted in present stabilization and even improvement in water quality. Long-term changes in zooplankton abundance correspond quite closely to eutrophication level changes. After increasing since the 1960s, maximum zooplankton biomass was recorded for the first time in 1971; a second main peak appeared in 1981 together with the highest eutrophication level. Over the last seven years, zooplankton abundance has decreased continuously, while water transparency has decreased and phytoplankton production has remained at a high level.  相似文献   

15.
Gross primary production equals 3160 kcal Xm−2 ×yr−1, 38% coming from the littoral. The efficiencies of both nonpredatory and predatory zooplankton production are high. The production of phytoplankton is expended mostly for sedimentation in April, for grazing by zooplankton in June, heterotrophic respiration and cumulation of dissolved and particulate organic matter in August—September and sedimentation in late autumn. Almost total elimination of zooplankton is done by predators, mostly invertebrates. About 10% of autochthonically produced plus allochthonic matter is annually removed from cycling, mostly as permanent bottom deposits. The annual load of phosphorus is 3 times higher than the permissible VOLLENWEIDER'S level. About 70% of phosphorus load, but only two percent of its reserve in the lake is annually removed from cycling. Progressing eutrophication resulted in several times increased phytoplankton biomass, decrease of phytoplankton P/B and share of nannoplankton, increase of decomposition in epilimnion, etc, during 10 years. Inspite of this, pelagic community in spring still has rather mesotrophic than highly eutrophic character. Increased eutrophication due to human impact (deforestation, agriculture, erosion) is also seen in bottom deposits since the 15th century.  相似文献   

16.
北京市妫水河浮游动物群落结构与水质评价   总被引:1,自引:0,他引:1  
林海  王源  李冰 《生态学报》2019,39(20):7583-7591
由于浮游动物对水体环境变化敏感,可表征水体污染程度,因此在2017年对妫水河浮游动物群落结构进行调查研究,分析了浮游动物群落结构时空变化特征及其与环境因子的关系,并利用生物学评价方法对水质进行评价。结果表明:妫水河浮游动物有4门22属88种,其中原生动物种类最多,为42种,主要以轮虫和原生动物为主,浮游动物平均细胞密度和生物量分别为5041.58个/L和2.88 mg/L。浮游动物群落结构与环境因子的CCA分析显示,水温、pH、DO和氨氮是影响妫水河浮游动物群落结构变化的重要因素,其中裂痕龟纹轮虫、冠饰异尾轮虫和螺形龟甲轮虫等对水体中氮磷的相关性极为显著,具有富营养化指示作用,可作为监测水质的指示生物。妫水河浮游动物多样性指数H、均匀度指数J和丰富度指数D全年平均值分别为0.43、0.31和0.41,整体评价结果显示,妫水河水体处于中到富营养型水平,尤其是下段城区段污染严重,表明妫水河水体生态功能遭到破坏,水质还需进一步改善和治理。本研究结果可为妫水河水质评价、水环境监测及水污染治理提供基础数据资料和理论依据。  相似文献   

17.
Organism size is one of the key determinants of community structure, and its relationship with abundance can describe how biomass is partitioned among the biota within an ecosystem. An outdoor freshwater mesocosm experiment was used to determine how warming of~4 °C would affect the size, biomass and taxonomic structure of planktonic communities. Warming increased the steepness of the community size spectrum by increasing the prevalence of small organisms, primarily within the phytoplankton assemblage and it also reduced the mean and maximum size of phytoplankton by approximately one order of magnitude. The observed shifts in phytoplankton size structure were reflected in changes in phytoplankton community composition, though zooplankton taxonomic composition was unaffected by warming. Furthermore, warming reduced community biomass and total phytoplankton biomass, although zooplankton biomass was unaffected. This resulted in an increase in the zooplankton to phytoplankton biomass ratio in the warmed mesocosms, which could be explained by faster turnover within the phytoplankton assemblages. Overall, warming shifted the distribution of phytoplankton size towards smaller individuals with rapid turnover and low standing biomass, resulting in a reorganization of the biomass structure of the food webs. These results indicate future environmental warming may have profound effects on the structure and functioning of aquatic communities and ecosystems.  相似文献   

18.
Restoration of anthropogenically eutrophied lake ecosystems is difficult due to feedback mechanisms that stabilize the trophically degraded state. Here, we show rapid recovery of a eutrophic stratified lake in response to multiple restoration that targeted the feedback mechanisms of high external and internal nutrient loads, lack of a trophic cascade, and lack of structured littoral habitats. Lake Tiefwarensee (Germany) was exposed to aluminium and calcium treatment and fisheries management over 5 years. Within this period, in-lake phosphorus concentrations declined by more than 80%, and transparency, zooplankton biomass and fish assemblage structure and biomass responded immediately and almost linearly to the reduction in phosphorus concentrations. Phytoplankton biomass and chlorophyll a (chl a) concentrations likewise decreased in response to restoration, but the declining trend was interrupted by one recovery year with unusually high phytoplankton biomasses. The zooplankton:phytoplankton biomass ratio and the chl a:phosphorus ratio approached values observed in other stratified lakes during natural recovery from eutrophication. The slow response of Tiefwarensee to the reduction of external load, and the quick response to the chemical treatment suggest that the disruption of internal P recycling and loading was the decisive restoration measure in Tiefwarensee. The external load reduction was a necessary but not sufficient measure, at least in the short-term, whereas the low-effort fisheries management was of minor importance. A comparison with other case studies confirms that measures aiming to inactivate phosphorus are the most efficient approaches to restore stratified lakes in the short-term, but a shift to a permanent near-pristine state is possible only by additional P input control. Author Contributions: T.M. designed the study, analyzed data, and wrote the paper. M.D. analyzed data. T.G. analyzed data. P.K. designed the study and analyzed data. R.K. conceived of and designed the study. L.K, M.R. and M.S. analyzed data. G.W. contributed new methods, analyzed data and wrote parts of the paper. All authors contributed to writing the final version.  相似文献   

19.
Do the effects of piscivorous largemouth bass cascade to the plankton?   总被引:1,自引:1,他引:0  
Ecologists have hypothesized that an increase in the biomass of piscivorous fish in lakes will cause a decrease in populations of planktivorous fish, an increase in the size of herbivorous zooplankton and a decrease in the biomass of phytoplankton. Here we present an experimental test of whether the effects of largemouth bass (Micropterus salmoides) cascade to the planktivorous fish, zooplankton and phytoplankton of a 15-ha water storage reservoir. A pilot study indicated that the reservoir was eutrophic with dense populations of planktivorous fish dominated by threadfin shad (Dorosoma petenense). No piscovorous fish were present in the reservoir. We conducted a one-month mesocosm experiment using water and plankton from the reservoir showing that the presence of threadfin shad reduced large-sized zooplankton and increased the productivity and biomass of phytoplankton. To test whether the effects of piscivorous fish could cascade to the plankton, we assessed the effects of the addition of piscivorous largemouth bass on the planktivorous fish, zooplankton and biomass of phytoplankton of the reservoir by monitoring the reservoir during the year before and the two years after largemouth bass were stocked. In the second year after the addition of largemouth bass, the number of planktivorous fish decreased and the relative abundance of threadfin shad declined. Although the abundance of cladocerans increased after the addition of largemouth bass, the average size of zooplankton did not change. We did not detect changes in chlorophyll a, Secchi depth, or concentrations of total phosphorus and total nitrogen as a result of the addition of largemouth bass.  相似文献   

20.

Copepods are important contributors to the zooplankton community in lakes. Being “sandwiched” between predators and resources, they are sensitive to changes in the environment. It has been proposed that the proportion of calanoids of total copepod abundance or biomass could be a valuable indicator of eutrophication. We investigated relationships between environmental factors and the abundance, biomass and size of calanoid and cyclopoid copepods as well as their proportions in summer in 68 Danish freshwater lakes (587 lake years) with contrasting nutrient levels and pH. When lake pH was?<?6.0, mean lake depth and trophic state were the most important factors and calanoids completely dominated the copepod community. In shallow lakes with a mean depth?<?2.5 m and with pH?>?6.0, the proportion of calanoids in terms of biomass decreased substantially with increasing phosphorus and chlorophyll a concentrations but stayed around 50% at?>?2.5 m depth irrespective of nutrient level. Time series of the lakes, recovering from eutrophication, confirmed this multi-lake pattern although the trajectory varied from lake to lake. We conclude that the proportion of calanoids in terms of biomass might be a valuable indicator of trophic state in shallow but not deep lakes and only when pH?>?6.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号