首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Homogenates of rat uteri removed 1 and 2 days post partum were centrifuged at 6000 g. Both pellets and supernatants degraded Azocoll, a general proteinase substrate, at pH 7.5. More than 80% of the total activity was in the pellet fraction. 2. Part of the pellet activity was in a latent form. Trypsin and 4-aminophenylmercuric acetate (a thiol-blocking agent) both activated this latent form, indicating that it is an enzyme--inhibitor complex. An endogenous serine proteinase activated part of the latent enzyme during the assay. 3. The enzyme activity was low before parturition and after involution; it was highest during the first 2 days post partum, when the largest losses of uterine wet weight and matrix macromolecules occur. 4. Up to 70% of the enzyme in the pellets was extracted by heating at 60 degrees C for 4 min in 0.1 M-CaCl2/0.05 M-Tris/HCl, pH 7.5. Approx. 30% of the extracted enzyme was still latent. 5. The extracted enzyme was a metalloproteinase, since it was inhibited completely by 1,10-phenanthroline, but not by inhibitors of thiol or serine proteinases. 6. The enzyme was further purified 15--30-fold by gel chromatography and precipitation with (NH4)2SO4. The apparent molecular weight, estimated by gel filtration, was 24000 for the latent form and 12000 for the active form. The pH optimum was 7--7.5. 7. The enzyme also degraded cartilage proteoglycan. This activity was studied by viscometry and the products were analysed by analytical ultracentrifugation. The major product had a mol.wt. of approx. 100000. The sites of cleavage were in the protein core, since no free oligosaccharides were detected. 8. This neutral metalloproteinase is distinct from uterine collagenase and from a uterine metal-dependent endopeptidase that hydrolyses a heptapeptide related to collagen.  相似文献   

2.
1. Total, active and latent collagenase activities were determined by direct assay of tissue homogenates. 2. The rate of collagen breakdown during post-partum involution of the rat uterus is correlated with the total activity of collagenase. Both are low at parturition, reach a maximum within 24h and fall slowly to low values of 5 days post partum. This temporal correlation strongly supports the hypothesis that collagenase participates in collagen breakdown in vivo. 3. Further support for this hypothesis is provided by the finding that oestradiol-17 beta (100 micrograms/day, intraperitoneally injected), which inhibits the breakdown of collagen by 36% during the first 4 days of involution, produces a closely corresponding decrease in total collagenase activity. 3. The effect of oestradiol in lowering collagenase activity is not due to alterations in collagen substrate, collagenase kinetic behaviour or latent-to-active enzyme conversion. 4. Of the total assayable collagenase, about 35% is fully active and 65% is in a latent form. 5. About 70% of this latent form can be activated by a serine proteinase found, together with collagenase, in the insoluble fraction of uterine homogenates.  相似文献   

3.
Bone explants from foetal and newborn rabbits synthesize and release a collagenase inhibitor into culture media. Inhibitor production in the early days of culture is followed first by latent collagenase and subsequently active collagenase in the culture media. A reciprocal relationship exists between the amounts of free inhibitor and latent collagenase in culture media, suggesting strongly that the inhibitor is a component of the latent form of the enzyme. Over 90% of the inhibitory activity of culture media is associated with a fraction of apparent mol.wt. 30000 when determined by gel filtration on Ultrogel AcA 44. The inhibitor blocks the action of rabbit collagenase on both reconstituted collagen fibrils and collagen in solution. It inhibits the action of either active collagenase or latent collagenase activated by 4-aminophenylmercuric acetate. Latent collagenase activated by trypsin is usually much less susceptible to inhibition. The activity of the inhibitor is destroyed by heat, by incubation with either trypsin or chymotrypsin and by 4-aminophenylmercuric acetate. Collagenase activity can be recovered from complexes of enzyme (activated with 4-aminophenylmercuric acetate) with free inhibitor by incubation with either trypsin or 4-aminophenylmercuric acetate, at concentrations similar to those that activate latent collagenase from culture media. The rabbit bone inhibitor does not affect the activity of bacterial collagenase, but blocks the action of collagenases not only from a variety of rabbit tissues but also from other mammalian species.  相似文献   

4.
Collagenase released from embryonic and adult human skin explants has been studied with special reference to the latency of the enzyme. 1) Embryonic human skin explants showed a much higher capacity for collagenase production than did adult skin, on the basis of unit weight of tissue. 2) Culture medium from embryonic skin explants contained latent collagenase at almost twice the concentration of the active form. No appreciable amount of latent enzyme was observed in the adult skin system. 3) The molecular weights of active and latent collagenases were about 40,000 and 50,000, respectively. 4) The latent collagenase was found to be activated by simple passage through a Sephadex G-50 column after adding NaI to a final concentration of 3 M. The degree of activation produced by this treatment was as high as that by limited proteolysis with trypsin. It was concluded that no activating enzyme system was involved in the activation of latent collagenase during NaI treatment, and that the latent enzyme was composed of an enzyme-inhibitor complex. 5) The physiological significance of latent enzyme in the regulation of collagenase activity in vivo is discussed.  相似文献   

5.
The activation of latent pig synovial collagenase   总被引:4,自引:0,他引:4  
Latent pig synovial collagenase (EC 3.4.24.7) can be activated by a variety of different treatments to give an active enzyme form of lower molecular weight which rapidly degrades collagen. Trypsin and plasmin effectively activated the latent collagenase whilst elastase and cathepsin G degraded most of the latent enzyme before it was activated. A number of mercurials were compared and maximum activation was achieved using 4-aminophenylmercuric acetate and phenylmercuric chloride. The latent collagenase bound to a mercurial-Sepharose column and was eluted in the active form with NaCl. The latent collagenase also activated spontaneously and the conditions which encouraged and prevented this activation were studied. High NaCl concentration, diisopropylphosphofluoridate, soybean trypsin inhibitor, low Zn2+ concentration and high and low pH all prevented the spontaneous activation of latent pig synovial collagenase.  相似文献   

6.
Three human matrix degrading leukocyte proteinases, type I collagenase, gelatinase and a new type IV collagenase were isolated in latent and active form. Activation of all three latent enzymes could be achieved by treatment with either organomercurials or with trypsin. In addition the 90 kDa latent type I-collagenase could be activated by disulfides, while a newly discovered 70 kDa latent form could be activated with organomercurials or with trypsin. The active type I collagenase was inhibited by gamma-anticollagenase from human serum (and the leukocyte type I collagenase inhibitor, while the newly found type IV collagenase was inhibited only partially. The complexes formed from gamma-anticollagenase with type I collagenase, i. e. latent enzyme, are not reactive site associated complexes. The binding is not of a substrate-like and competitive manner. After inhibition of the enzyme though inactive against its natural substrates it is still hydrolyzing the synthetic low molecular weight octapeptide DNP-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg-OH.  相似文献   

7.
Effects of proteinase inhibitors on adenylate cyclase.   总被引:1,自引:0,他引:1       下载免费PDF全文
The effects of a number of proteinase inhibitors on rat ovarian and rat hepatic adenylate cyclase preparations were examined. N alpha-tosylarginine methyl ester, 7-amino-1-chloro-3-L-tosylamidoheptan-2-one, 1-chloro-4-phenyl-3-L-tosylamidobutan-2-one, 1-chloro-4-methyl-3-L-tosylamidopentan-2-one and other low-molecular-weight proteinase inhibitors blocked hormonally stimulated adenylate cyclase from either source with hepatic preparations requiring higher concentrations. Addition of nucleotides (ATP, GTP, GDP, CTP or ITP) to inhibited ovarian preparations did not reverse inhibition, nor did dithiothreitol reverse phenylmethanesulphonyl fluoride-inhibited ovarian adenylate cyclase. The kinetics of the inhibition of rat ovarian adenylate cyclase were examined by following the production of cyclic AMP after the addition of inhibitors to membrane preparations preincubated under assay conditions with human choriogonadotropin, guanosine 5'-[beta gamma-imido]triphosphate of NaF. 7-Amino-1-chloro-3-L-tosylamidoheptan-2-one, 1-chloro-4-phenyl-3-L-tosylamidobutan-2-one and 1-chloro-4-methyl-3-L-tosylamidopentan-2-one had two effects on human-choriogonadotropin-stimulated adenylate cyclase. At low concentrations (less than or equal to 0.2 mM) there was an irreversible inhibition of hormonally-stimulated cyclase with maximum first-order inhibitory rate constants of 0.05--0.08 min-1. At higher concentrations the irreversible effect persisted, but, in addition, there was a marked decrease in the cyclase initial velocity to 25--50% of that of control values. N alpha-tosylarginine methyl ester had similar effects; at low concentrations (less than or equal to 2 mM) it inhibited irreversibly, and at higher concentrations it decreased the initial velocity (50% at 10 mM). At high concentrations (greater than 3 mM) N alpha-tosylarginine methyl ester also inhibited NaF- and guanosine 5'-[beta gamma-imidol]-triphosphate-stimulated cyclase but in a reversible manner. 7-Amino-1-chloro-3-L-tosylamidoheptan-2-one inhibited NaF-stimulated adenylate cyclase in two ways, as for human-choriogonadotropin-stimulated adenylate cyclase, but required 10--20-fold higher concentrations. The low-concentration irreversible effect can be explained by a continual inactive in equilibrium active conversion of adenylate cyclase during hormonal stimulation in which the inactive to active conversion is blocked by the inhibitors. The high-concentration effect is a direct one on the active catalytic moiety of the enzyme.  相似文献   

8.
Latent and active collagenase were extracted from human polymorphonuclear leukocytes. Separation of the two forms of the enzyme was performed by gel filtration on Sepharose 6 B. The latent form of the enzyme was detected from chromatographic fractions after a brief treatment with trypsin or exposure of the fractions to the sulfhydryl reagent phenylmercuric chloride. Latent enzyme eluted before active enzyme from the column, indicating a higher apparent molecular weight. Partially purified latent enzyme exhibited an apparent molecular size of 70-75 kDa as estimated by gel filtration. A value of 50-55 kDa was obtained for active enzyme. Without activation the latent enzyme did not degrade soluble collagen substrate. This was demonstrated by a quantitative viscometric assay and also by sodium dodecyl sulfate polyacrylamide gel electrophoresis, when no typical cleavage products of collagen could be seen. Latent enzyme could not be obtained unless serine protease inhibitors were present during the extraction and purification procedures. The effects of the activators trypsin, phenylmercuric chloride, phenylmethyl sulfonyltrypsin, and N-ethylmaleimide on the latent human polymorphonuclear leukocyte collagenase were studied. Contrary to the suggestion that inactive proteases activate latent human polymorphonuclear leukocyte collagenase, the inactive phenylmethyl sulfonyl-trypsin could not activate latent collagenase.  相似文献   

9.
1. Collagenase from bovine nasal hyaline cartilage was extracted with 1 and 3 M NaCl in Tris-CaCl2 buffer. 2. Two peaks of collagenase activity were revealed on DE52 ion exchange column, collagenase 1 and collagenase 2. 3. The apparent mol. wt of collagenase 1 and 2 as determined by SDS-PAGE were 68 and 43 kDa, respectively. 4. Both enzymes degrade native collagen type II into two characteristic products, TCA(3/4) and TCB(1/4), at 25 degrees C and pH 7.6. 5. Trypsin and aminophenylmercuric acetate were capable of increasing the collagenase 1 activity. 6. The two enzymes can be characterized as metalloproteinases since they were inhibited by EGTA and 1,10-phenanthroline. The use of proteinase inhibitors (N-ethylmaleimide, iodoacetic acid, phenylmethylsulphonyl fluoride, soybean trypsin inhibitor, pepstatin, dithiothreitol) showed that the enzymes do not contain serine, cysteine or aspartic acid in their active sites.  相似文献   

10.
C M Kam  K Fujikawa  J C Powers 《Biochemistry》1988,27(7):2547-2557
Trypsin, porcine pancreatic kallikrein, and several blood coagulation enzymes, including bovine thrombin, bovine factor Xa, human factor Xa, human plasma factor XIa, human plasma factor XIIa, and human plasma kallikrein, were inactivated by a number of substituted isocoumarins containing basic functional groups (aminoalkoxy, guanidino, and isothiureidoalkoxy). 3-Alkoxy-4-chloro-7-guanidinoisocoumarins were found to be the most potent inhibitors for the coagulation enzymes tested with kobsd/[I] values in the range of 10(3)-10(5) M-1 s-1. 4-Chloro-3-isothiureidoalkoxyisocoumarins show high inhibitory potency toward porcine pancreatic kallikrein, human plasma kallikrein, human factor XIa, human factor XIIa, and trypsin with kobsd/[I] values of the order of 10(4)-10(5) M-1 s-1. The inhibition of these serine proteases by the substituted isocoumarins are time dependent, and the inactivation of trypsin by 3-alkoxy-4-chloro-7-guanidinoisocoumarins and 7-amino-4-chloro-3-(3-isothiureidopropoxy)isocoumarin occured concurrently with the loss of the isocoumarin absorbance. The complex formed from inactivation of trypsin by these two types of inhibitors was very stable and regained less than 4% activity in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer (pH 7.5) after 1 day at 25 degrees C and regained 8-45% activity upon addition of buffered 0.29 M hydroxylamine. Trypsin inactivated by other inhibitors regained full activity upon standing or addition of hydroxylamine. Thrombin inactivated by 3-alkoxy-4-chloro-7-guanidinoisocoumarins was also quite stable and only regained 9-15% activity under similar conditions. These results are consistent with a proposed mechanism, where serine proteases inactivated by aminoalkoxyisocoumarins or isothiureidoalkoxyisocoumarins form acyl enzymes that will deacylate upon standing or addition of hydroxylamine. However, the acyl enzymes formed from 3-alkoxy-4-chloro-7-guanidinoisocoumarins or 7-amino-4-chloro-3-(3-isothiureidopropoxy)-isocoumarin will decompose further, probably through a quinone imine methide, to give an irreversibly inactivated enzyme by reaction with an active-site nucleophile such as His-57. The quinone imine methide intermediate may also react with a solvent nucleophile to give an acyl enzyme that can be reactivated by hydroxylamine. The inhibitors 4-chloro-7-guanidino-3-methoxyisocoumarin and 4-chloro-3-ethoxy-7-guanidinoisocoumarin have been tested as anticoagulants in human plasma and were effective at prolonging the prothrombin time. However, they are unstable in plasma (t1/2 = 4-8 min), and their in vivo utility may be limited.  相似文献   

11.
Collagenase (EC 3.4.24.3) activity can be measured directly in homogenates of the involuting rat uterus. Latent forms of collagenase are activated by a brief exposure to trypsin; trypsin activity is then blocked with soybean trypsin inhibitor. Homogenizing conditions have been developed that permit 90-95% recovery of the total active and latent collagenase activity in a 6000 X g pellet, where it is presumably bound to its collagen substrate. This insoluble activity can then be extracted by heating to 60 degrees C for 4 min in 0.04 M Tris - HCl buffer, pH 7.5, containing 0.1 M CaCl2. Methods are presented for the estimation of the recovery of collagenase in the extracts; this approximates 65-70% of the total. Small amounts of activity can also be extracted from rat liver and kidney. This extraction procedure should be of use in purifying collagenase without culturing the enzyme-producing tissue and in the direct assay of tissue collagenase activity. The activity extracted from rat uterus has been proven to be collagenase by its characteristic pattern of collagen breakdown products on disc electrophoresis and by the split of tropocollagen at interband 41 as shown by electron microscopy of reconstituted fragments. The activity is inhibited by EDTA, and this inhibition is not reversed by calcium or zinc ions.  相似文献   

12.
Latent collagenase has been isolated in pure form from the rheumatoid synovial fluid. The final preparation, activated by trypsin, yielded a collagenase of specific activity 2,227 units/mg. Electrophoresis in sodium dodecyl sulfate polyacrylamide gels revealed a protein doublet of 54 and 50 kDa. Trypsin or HgCl2 activation resulted in disappearance of the doublet and emergence of a new doublet of 47 and 43 kDa. The latent collagenase could also be activated by leucocyte cathepsin G or plasmin. Neither the latent nor the active collagenase from synovial fluid showed any cross-reactivity with the antibodies against leucocyte collagenase. The trypsin activated collagenase degraded collagen type I, II, III giving typical cleavage products but did not degrade type IV and V collagen.  相似文献   

13.
Chick bone collagenase inhibitor and latency of collagenase   总被引:3,自引:0,他引:3  
Collagenase and collagenase inhibitor were isolated from the culture fluid of embryonic chick bone. The inhibitor, separated as a high molecular weight aggregate (160,000–200,000 daltons) during gel filtration in 1M NaCl, dissociated in 6M urea to species of approx 25,000 daltons. The inhibition of collagenase activity by the addition of inhibitor was not reversed by the addition of trypsin or p-aminophenylmercuric acetate. However, isolated inhibitor alone was inactivated by treatment with either trypsin or p-aminophenylmercuric acetate. The results suggest that the latent form of chick bone collagenase is a proenzyme which converts into an active form without a detectable change in molecular weight and that this occurs after the inactivation of collagenase inhibitor.  相似文献   

14.
1. Active type collagenase was purified as much as 140-fold from the explant medium of bovine dental sacs and showed a single band on disc gel electrophoresis. Purified collagenase cleaved native collagen at only one locus under physiological conditions, but hydrolyzed neither gelatin nor alpha-casein. The optimal pH was about 7.8. 2. The molecular weight of active type enzyme was 35,000 by gel filtration and 34,000 by gel electrophoresis. The activation of latent type of collagenase resulted in the reduction of molecular weight from 45,000 to 38,000 by gel filtration. 3. A small but detectable amount of collagenase was directly extracted from frozen and thawed bovine dental sacs. In explant media of frozen and thawed tissue and fresh tissue with actinomycin D, some activity was detected for the first 2 days, but essentially no collagenase activity was detected in the explant medium after day 3. 4. The latent type collagenase was activated by trypsin, 4-aminophenylmercuric acetate (4-APMA), thiocyanate and deoxycholate (DOC). DOC showed irreversible dissociation of latent type enzyme in similar fashion to that exerted by 4-APMA. 5. The purified collagenase was inhibited by bovine serum, EDTA, o-phenanthroline, cysteine and dithiothreitol.  相似文献   

15.
Latent and active collagenase were demonstrated following direct extraction from normal skin homogenates with 0.1M calcium chloride at 60 degrees C. 83% of the collagenase activity was in latent form and could be maximally activated with trypsin. Partial activation of the latent enzyme could also be demonstrated by incubation of the skin extract without added trypsin. This endogenous activation was inhibited by the addition of soya bean trypsin inhibitor, trasylol, di-isopropylphosphofluoridate and phenylmethanesulphonylfluoride, none of which inhibited collagenase directly. This suggests that the skin extracts contain a collagenase activating enzyme with the inhibition profile of a serine proteinase. A chymotryptic proteinase with a similar inhibition profile was extracted from normal human skin and partially purified. This enzyme activated fibroblast procollagenase derived from tissue culture of normal skin. The procollagenase was also partially activated by plasmin and chymotrypsin. This is the first demonstration of a collagenase activating enzyme in human skin and raises the possibility that collagenase activation by this mechanism may be responsible for collagen degradation in some disease processes.  相似文献   

16.
1. A latent collagenase (EC 3.4.24.3) has been isolated from rheumatoid synovial fluids and purified by (NH4)2SO4 precipitation and column chromatography, utilising Sephadex G-150, DEAE Sephadex A-50 and Sephadex G-100 superfine grade. 2. The final preparation activated by trypsin (EC 3.4.21.4) had a specific activity against thermally reconstituted collagen fibrils of 259 micrograms collagen degraded/min per mg enzyme protein, representing a nearly 800-fold increase over that of the original rheumatoid synovial fluid. 3. The latent collagenase preparation can be activated by trypsin and to some extent by HgCl2 but not by 3 M NaSCN, 3.5 M NaCl, 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) or p-chloromercuribenzoate. 4. Inhibition studies and the acrylamide gel electrophoretic pattern of collagen degradation products showed that the trypsin-activated enzyme has the essential features of a neutral collagenase. 5. The molecular weights, determined by calibrated gel filtration, were 52 000 and 43 000 for the latent and the activated enzyme, respectively. 6. The nature of the latency of synovial fluid collagenase is discussed.  相似文献   

17.
An inactive collagenase was harvested from both serum-free and serum-supplemented fibroblast monolayer cultures in periods of active collagen synthesis. The latent collagenase did not hydrolyze collagen and did not bind the potent collagenase inhibitor alpha2-macroglobulin. Activation with trypsin imparted to the enzyme the ability to hydrolyze collagen at neutral pH in a typical manner and to form an inhibited complex with alpha2-macroglobulin. The molecular weights, determined by calibrated gel filtration, were 78,000 and 60,000 for the latent and active enzymes, respectively. The data indicate that collagenase is released from the cells in inactive form, as a zymogen.  相似文献   

18.
Purification of pig synovial collagenase to high specific activity.   总被引:5,自引:0,他引:5       下载免费PDF全文
1. Pig synovium in tissue culture secretes a specific collagenase in a latent form. 2. The latent enzyme was concentrated by (NH4)2SO4 precipitation and activated with 4-aminophenylmercuric acetate, and the active enzyme was purified by chromatography on Ultrogel AcA44, DEAE-cellulose, heparin-Sepharose and a zinc-chelate medium to a specific activity of 53 400 units/mg. of protein. 3. The enzyme was shown to be essentially homogeneous by polyacrylamide-gel electrophoresis. 4. The purified collagenase digested collagen to give the characteristic three-quarter and one-quarter pieces.  相似文献   

19.
Primary cultures of bovine articular chondrocytes release a latent metalloproteinase which is activated by incubation with organomercurials to degrade proteoglycans. All the enzyme present in the culture medium is latent and binds to columns of heparin-Sepharose. The yield of activity from the heparin-Sepharose columns (measured after organomercurial treatment) is approximately 300–1000% depending on the chondrocyte culture batch. Recombination of column fractions shows that the increase in activity is due to the separation of an inhibitor of the metalloproteinase by the chromatographic step. The metalloproteinase inhibitor has a molecular weight of approximately 35 000 (determined by Bio-Gel P-60 chromatography) and binds reversibly to columns of concavalin A-Sepharose. It is relatively heat stable (30 min at 60°C) and resistant to inactivation by trypsin (2 h, 37°C, 10 μg/ml trypsin). The inhibitor is active against rat uterine collagenase and gelatinase but does not affect bacterial metalloproteinases such as thermolysin and Clostridium histolyticum collagenase.  相似文献   

20.
The separation and further purification of human polymorphonuclear-leucocyte collagenase and gelatinase, using modifications of the method of Cawston & Tyler [(1979) Biochem J. 183, 647-656], are described. The final preparations yielded collagenase of specific activity 260 units/mg and gelatinase of specific activity 13 000 units/mg. Gelatinase was purified to apparent homogeneity in a latent form, and analysis of the activation of 125I-labelled latent enzyme by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel-filtration techniques suggested that no peptide material was lost on conversion into the active form. The purified natural inhibitors alpha 2-macroglobulin, tissue inhibitor of metalloproteinases ('TIMP') and amniotic-fluid inhibitor of metalloproteinases all inhibited the two polymorphonuclear-leucocyte metalloproteinases, but the last two inhibitors were slow to act and complete inhibition was difficult to attain. Collagenase degraded soluble types I and III collagen equally efficiently, but soluble type II collagen less well. Gelatinase alone had little activity on these substrates, although it enhanced the action of collagenase. Gelatinase was capable of degrading soluble types IV and V collagen at 25 degrees C, whereas collagenase was only active at higher temperatures when the collagens were susceptible to trypsin activity. By using tissue preparations of insoluble collagens (type I, II or IV) the activity of leucocyte collagenase was low and gelatinase activity was negligible, as measured by the solubilization of hydroxyproline-containing material. The two enzymes together were two or three times more effective in the degradation of these insoluble collagens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号