首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE OF REVIEW: Dietary and blood carotenoids, including alpha-carotene, beta-carotene, lycopene, lutein/zeaxanthin, and beta-cryptoxanthin, have been examined in a number of epidemiological studies in recent years for the risk of cardiovascular disease. This review assimilated the existing and recent literature on carotenoids and cardiovascular disease and considered what research gaps may remain. RECENT FINDINGS: Numerous large cohort studies have been published in largely American men and women that have examined dietary intake or blood levels of total or individual carotenoids with the risk of various cardiovascular endpoints. Overall, early, promising results have grown increasingly inconsistent over time. More recently, studies examining lycopene and lutein/zeaxanthin have offered more promising data on a possible, but not yet established, inverse association with the risk of cardiovascular disease. Recent epidemiological data on beta-cryptoxanthin and cardiovascular disease are lacking. Primary and secondary prevention trials have extensively examined beta-carotene, but not other carotenoids, for the risk of cardiovascular disease as either the primary or secondary endpoint with largely null results. More recent studies have focused on individual carotenoids in relation to cardiovascular disease and require a more careful evaluation of potential mechanisms of effect. SUMMARY: The promise of early epidemiological studies on carotenoids and cardiovascular disease paved the way to largely disappointing results from several large prevention trials of beta-carotene. Emerging recent evidence of potential cardioprotective effects for lycopene and other carotenoids besides beta-carotene in the diet and blood suggest that there is more to be learned in the story of carotenoids and both atherosclerotic progression and clinically manifested cardiovascular disease.  相似文献   

2.
In marginally nourished children, information is scarce regarding the circulating concentrations of carotenoids and tocopherols, and physiological factors influencing their circulating levels. We determined the serum concentrations of carotenoids, tocopherols and retinol at steady state and in response to a 9-week vegetable diet intervention in 9-12-year-old girls (n=54) and boys (n=65) in rural Philippines. We determined cross-sectional relationships of BMI (body mass index) with serum micronutrient levels, and whether BMI is a determinant of serum carotenoid responses to the ingestion of carotenoid-rich vegetables. We measured dietary nutrient intakes and assessed inflammation by measurement of serum C-reactive protein levels. The children had low serum concentrations of carotenoids, tocopherols and retinol as compared with published values for similar-aged children in the U.S.A. The low serum retinol levels can be ascribed to inadequate diets and were not the result of confounding due to inflammation. Significant inverse correlations of BMI and serum all-trans-beta-carotene, 13-cis-beta-carotene, alpha-carotene, lutein, zeaxanthin and alpha-tocopherol (but not beta-cryptoxanthin, lycopene and retinol) were observed among girls at baseline. The dietary intervention markedly enhanced the serum concentrations of all carotenoids. Changes in serum all-trans-beta-carotene and alpha-carotene (but not changes in lutein, zeaxanthin and beta-cryptoxanthin) in response to the dietary intervention were inversely associated with BMI in girls and boys. Thus, in Filipino school-aged children, BMI is inversely related to the steady-state serum concentrations of certain carotenoids and vitamin E, but not vitamin A, and is a determinant of serum beta- and alpha-carotene responses, but not xanthophyll responses, to the ingestion of carotenoid-rich vegetable meals.  相似文献   

3.
Interaction of peroxynitrite, the product of the reaction between nitric oxide and superoxide, with carotenes (lycopene, alpha-carotene, and beta-carotene) and oxocarotenoids (beta-cryptoxanthin, zeaxanthin, and lutein) was studied both in homogeneous solution and in human low-density lipoproteins (LDL). All carotenoids prevented the formation of rhodamine 123 from dihydrorhodamine 123 caused by peroxynitrite, suggesting that the carotenoids react with peroxynitrite. Oxocarotenoids were as effective as biothiols, known scavengers of peroxynitrite, whereas lycopene, alpha-carotene, and beta-carotene exhibited a considerably more pronounced effect. Moreover, peroxynitrite caused a loss of carotenoids in LDL as was revealed by HPLC. The concentration of peroxynitrite causing half-maximal loss of carotenoids in LDL ranged from 13 +/- 3 to 68 +/- 3 microM for lycopene and lutein, respectively. Again, oxocarotenoids were less reactive in this system. A correlation between efficiency of carotenoids in the competitive assay with dihydrorhodamine 123 and the concentration of peroxynitrite causing half-maximal loss of carotenoids in LDL was observed (r(2) = 0.91). These findings suggest that carotenoids can efficiently react with peroxynitrite and perform the role of scavengers of peroxynitrite in vivo.  相似文献   

4.
The accumulation of carotenoids in higher plants is regulated by the environment, tissue type and developmental stage. In Brassica napus leaves, beta-carotene and lutein were the main carotenoids present while petals primarily accumulated lutein and violaxanthin. Carotenoid accumulation in seeds was developmentally regulated with the highest levels detected at 35-40 days post anthesis. The carotenoid biosynthesis pathway branches after the formation of lycopene. One branch forms carotenoids with two beta rings such as beta-carotene, zeaxanthin and violaxanthin, while the other introduces both beta- and epsilon-rings in lycopene to form alpha-carotene and lutein. By reducing the expression of lycopene epsilon-cyclase (epsilon-CYC) using RNAi, we investigated altering carotenoid accumulation in seeds of B. napus. Transgenic seeds expressing this construct had increased levels of beta-carotene, zeaxanthin, violaxanthin and, unexpectedly, lutein. The higher total carotenoid content resulting from reduction of epsilon-CYC expression in seeds suggests that this gene is a rate-limiting step in the carotenoid biosynthesis pathway. epsilon-CYC activity and carotenoid production may also be related to fatty acid biosynthesis in seeds as transgenic seeds showed an overall decrease in total fatty acid content and minor changes in the proportions of various fatty acids.  相似文献   

5.
The stability to autoxidation of the polar carotenoids, lutein and zeaxanthin, was compared to that of the less polar carotenoids, beta-carotene and lycopene at physiologically or pathophysiologically relevant concentrations of 2 and 6 microM, after exposure to heat or cigarette smoke. Three methodological approaches were used: 1) Carotenoids dissolved in solvents with different polarities were incubated at 37 and 80 degrees C for different times. 2) Human plasma samples were subjected to the same temperature conditions. 3) Methanolic carotenoid solutions and plasma were also exposed to whole tobacco smoke from 1-5 unfiltered cigarettes. The concentrations of individual carotenoids in different solvents were determined spectrophotometrically. Carotenoids from plasma were extracted and analyzed using high performance liquid chromatography. Carotenoids were generally more stable at 37 than at 80 degrees C. In methanol and dichloromethane the thermal degradation of beta-carotene and lycopene was faster than that of lutein and zeaxanthin. However, in tetrahydrofuran beta-carotene and zeaxanthin degraded faster than lycopene and lutein. Plasma carotenoid levels at 37 degrees C did not change, but decreased at 80 degrees C. The decrease of beta-carotene and lycopene levels was higher than those for lutein and zeaxanthin. Also in the tobacco smoke experiments the highest autoxidation rates were found for beta-carotene and lycopene at 2 microM, but at 6 microM lutein and zeaxanthin depleted to the same extent as beta-carotene. These data support our previous studies suggesting that oxidative stress degrade beta-carotene and lycopene faster than lutein and zeaxanthin. The only exception was the thermal degradation of carotenoids solubilized in tetrahydrofuran, which favors faster breakdown of beta-carotene and zeaxanthin.  相似文献   

6.
The antioxidant efficacy of alpha-carotene and comparison with beta-carotene in multilamellar liposomes prepared from egg yolk phosphatidyl choline (EYPC) exposed to the lipid soluble 2,2'-azobis (2,4-dimethyl valeronitrile) (AMVN) was investigated. Lipid peroxidation was measured as thiobarbituric acid reacting substances (TBARS) at 532 nm or as hydroperoxide formation at 234 nm after separation of phosphatidyl choline hydroperoxide (PCOOH) by high-pressure liquid chromatography (HPLC). Lutein and zeaxanthin, the hydroxyl derivatives of alpha- and beta-carotenes, and the chain breaking antioxidant alpha-tocopherol were also included in the study. AMVN being a lipid soluble, non polar azo initiator penetrates into the hydrophobic interior of the phospholipid bilayer, forming peroxyl radicals which peroxidate the phospholipid leading to PCOOH accumulation. All the carotenoids tested at 1 mol% relative to EYPC significantly suppressed the formation of PCOOH compared to control samples. In this system, alpha-carotene retarded PCOOH formation better than beta-carotene. Similarly, lutein was a better antioxidant than is zeaxanthin. But lutein and zeaxanthin were more effective antioxidants than alpha- and beta-carotenes, respectively. After 1 h of incubation of the carotenoid with AMVN, alpha-, beta-carotene, lutein and zeaxanthin limited PCOOH formation by 77%, 68%, 85% and 82%, respectively, while alpha-tocopherol elicited 90% reduction. AMVN incubated with EYPC for 2 h induced the formation of TBARS compared to control (P < 0.001). alpha-Carotene significantly suppressed the TBARS formation by 78% whilst beta-carotene, lutein, zeaxanthin and alpha-tocopherol elicited 60%, 91% and 80% reductions, respectively. Increasing the concentration of the carotenoid > 1 mol% to EYPC did not significantly increase protection of the membrane against free radical attack. Our findings suggest that alpha-carotene is a better antioxidant than is beta-carotene in phosphatidyl choline vesicles. It may, therefore, be useful in limiting free radical mediated peroxidative damage against membrane phospholipids in vivo.  相似文献   

7.
Major carotenoids of human plasma and tissues were exposed to radical-initiated autoxidation conditions. The consumption of lutein and zeaxanthin, the only carotenoids in the retina, and lycopene and beta-carotene, the most effective quenchers of singlet oxygen in plasma, were compared. Under all conditions of free radical-initiated autoxidation of carotenoids which were investigated, the breakdown of lycopene and beta-carotene was much faster than that of lutein and zeaxanthin. Under the influence of UV light in presence of Rose Bengal, by far the highest breakdown rate was found for beta-carotene, followed by lycopene. Bleaching of carotenoid mixtures mediated by NaOCl, addition of azo-bis-isobutyronitril (AIBN), and the photoirradiation of carotenoid mixtures by natural sunlight lead to the following sequence of breakdown rates: lycopene > beta-carotene > zeaxanthin > lutein. The slow degradation of the xanthophylls zeaxanthin and lutein may be suggested to explain the majority of zeaxanthin and lutein in the retina of man and other species. In correspondence to that, the rapid degradation of beta-carotene and lycopene under the influence of natural sunlight and UV light is postulated to be the reason for the almost lack of those two carotenoids in the human retina. Nevertheless, a final proof of that theory is lacking.  相似文献   

8.
Various natural carotenoids were proven to have anticarcinogenic activity. Epidemiological investigations have shown that cancer risk is inversely related to the consumption of green and yellow vegetables and fruits. Since beta-carotene is present in abundance in these vegetables and fruits, it has been investigated extensively as possible cancer preventive agent. However, various carotenoids which co-exist with beta-carotene in vegetables and fruits also have anti-carcinogenic activity. And some of them, such as alpha-carotene, showed higher potency than beta-carotene to suppress experimental carcinogenesis. Thus, we have carried out more extensive studies on cancer preventive activities of natural carotenoids in foods; i.e., lutein, lycopene, zeaxanthin and beta-cryptoxanthin. Analysis of the action mechanism of these natural carotenoids is now in progress, and some interesting results have already obtained; for example, beta-cryptoxanthin was suggested to stimulate the expression of RB gene, an anti-oncogene, and p73 gene, which is known as one of the p53-related genes. Based on these results, multi-carotenoids (mixture of natural carotenoids) seems to be of interest to evaluate its usefulness for practice in human cancer prevention.  相似文献   

9.
Excessive exposure to solar radiation, especially ultraviolet A (UVA: 320-400 nm) and ultraviolet B (UVB: 290-320 nm) radiation, may induce UV-carcinogenesis and erythema in the skin. Although the protective effects of carotenoids against skin lesions are still unclear, beta-carotene has been proposed as an oral sun protectant. The purpose of this study was to determine the magnitude of the protective effects of oral alpha- and beta-carotene supplementation for 24 weeks on UVA- and UVB-induced erythema in humans. While being exposed to UVA and UVB radiation, 22 subjects (11 men and 11 women) were supplemented with natural carotenoids for 24 weeks. Each day for the first 8 weeks, subjects were given 30 mg of natural carotenoids containing 29.4 mg of beta-carotene, 0.36 mg of alpha-carotene, and traces of other carotenoids in vegetable oil. The natural carotenoid dose was progressively raised by 30-mg increments, at every 8 weeks, from 30 mg to 90 mg. Small areas (1 cm2) of the skin were exposed to increasing doses of UV light (16-42 mJ/cm2) to determine the minimal erythema dose (MED). MED was defined as a uniform pink color with well-defined borders. MED readings were obtained by visual inspection 24 hr postirradiation. Blood samples taken during supplementation were used to determine alpha- and beta-carotene serum levels and for a lipid peroxidation analysis. During natural carotenoid supplementation, the MED of solar simulator radiation increased significantly (P<0.05). After 24 weeks of supplementation, serum beta-carotene levels were increased from 0.22 microg/ml (95% CI; 0.16-0.27) to 1.72 microg/ml (95% CI;1.61-1.83). Similarly, alpha-carotene serum levels increased from 0.07 microg/ml (95% CI;0.048-0.092) to 0.36 microg/ml (95% CI; 0.32-0.40). Serum lipid peroxidation was significantly (P<0.05) inhibited in a dose-dependent manner during natural carotenoid supplementation. The present data suggest that supplementation with natural carotenoids may partially protect human skin from UVA- and UVB-induced erythema, although the magnitude of the protective effect is modest.  相似文献   

10.
The authors investigated the carotenoid content in the particular parts of Lota lota in summer, autumn, and winter, i.e. when burbots exhibit the lowest and highest activity. By means of columnar and thin-layer chromatography, the following carotenoids were found to be present: alpha-carotene, beta-carotene, e-carotene, beta-cryptoxanthin, neothxanthin, lutein, 3'-epilutein, zeaxanthin, tunaxanthin, antheraxanthin, lutein epoxide, echinenone, 3'-hydroxyechinenone, idoxanthin, canthaxanthin, alpha-doradexanthin, beta-doradexanthin, astaxanthin, diatoxanthin, parasiloxanthin, monadoxanthin, 7,8-dihydroparasiloxanthin, mutatoxanthin and rhodoxanthin. In the Lota lota individuals examined, the content of carotenoids was found to differ in winter and summer. The total carotenoid content ranged from 0.067 (gonads of males) of to 6.095 micrograms g-1 wet weight (fins of males from December).  相似文献   

11.
The bioavailability of carotenoids from kale was investigated by labeling nutrients in kale with 13C, feeding the kale to seven adult volunteers, and analyzing serial plasma samples for labeled lutein, beta-carotene, and retinol. Ingested doses of labeled carotenoids were 34 micromol for beta-carotene and 33 micromol for lutein. Peak plasma concentrations, areas under the plasma concentration-time curves (AUCs), and percentages of dose recovered at peak plasma concentrations were calculated. Average peak plasma concentrations were 0.38, 0.068, and 0.079 microM for [13C]lutein, [13C]beta-carotene, and [13C]retinol, respectively. Average AUC values (over 28 days) were 42.8, 13.6, 13.2 microM h for [13C]lutein, [13C]beta-carotene, and [13C]retinol, respectively. Percentages of dose recovered at peak plasma concentrations were 3.6, 0.7, and 0.7% for [13C]lutein, [13C]beta-carotene, and [13C]retinol, respectively. A positive relationship was observed between baseline plasma retinol levels and [13C]retinol plasma response. It is possible that this relationship was mediated either through some aspect of beta-carotene absorption or via the common pathways of metabolism for postdose and endogenous retinoid.  相似文献   

12.
Concentrations of retinol, retinyl palmitate, beta-carotene, alpha-carotene, cryptoxanthin, lutein, lycopene, alpha-tocopherol, and gamma-tocopherol were measured in blood samples collected from 15 captive and 55 free-ranging bottlenose dolphins (Tursiops truncatus). From June 1991 to June 1994, blood samples were collected from captive animals residing at two locations; at Seven Seas (Brookfield Zoo, Brookfield, IL) and Hawk's Cay (Marathon Key, FL). Blood samples were collected from free-ranging animals from June 1991 to June 1996. Retinol levels were not significantly different between captive dolphin groups. However, Seven Seas animals had higher (P < 0.01) serum retinol concentrations compared to free-ranging animals (0.061 vs 0.041 microgram/ml). Retinyl palmitate was not detected in the serum of captive or free-ranging dolphins. Alpha-tocopherol levels were significantly (P < 0.05) higher for Seven Seas dolphins (16.4 micrograms/ml) than for Hawk's Cay (13.0 micrograms/ml) and free-ranging dolphins (12.5 micrograms/ml). Gamma-tocopherol concentrations were similar among captive and free-ranging dolphins. Free-ranging dolphins showed levels of circulating carotenoids (lutein and beta-carotene) while the captive animals did not. Additional carotenoids (lycopene, alpha-carotene and cryptoxanthin) were analyzed but not detected in any samples. Serum vitamin differences between captive and free-ranging dolphins may reflect the natural diet or indicate some potential biological or nutritional status significance.  相似文献   

13.

Background

Several genes implicated in high-density lipoprotein (HDL) metabolism have been reported to be associated with age-related macular degeneration (AMD). Furthermore, HDL transport the two carotenoids, lutein and zeaxanthin, which are highly suspected to play a key-role in the protection against AMD. The objective is to confirm the associations of HDL-related loci with AMD and to assess their associations with plasma lutein and zeaxanthin concentrations.

Methods

Alienor study is a prospective population-based study on nutrition and age-related eye diseases performed in 963 elderly residents of Bordeaux, France. AMD was graded according to the international classification, from non-mydriatic colour retinal photographs. Plasma lutein and zeaxanthin were determined by normal-phase high-performance liquid chromatography. The following polymorphisms were studied: rs493258 and rs10468017 (LIPC), rs3764261 (CETP), rs12678919 (LPL) and rs1883025 (ABCA1).

Results

After multivariate adjustment, the TT genotype of the LIPC rs493258 variant was significantly associated with a reduced risk for early and late AMD (OR=0.64, 95%CI: 0.41-0.99; p=0.049 and OR=0.26, 95%CI: 0.08-0.85; p=0.03, respectively), and with higher plasma zeaxanthin concentrations (p=0.03), while plasma lipids were not significantly different according to this SNP. Besides, the LPL variant was associated with early AMD (OR=0.67, 95%CI: 0.45-1.00; p=0.05) and both with plasma lipids and plasma lutein (p=0.047). Associations of LIPC rs10468017, CETP and ABCA1 polymorphisms with AMD did not reach statistical significance.

Conclusion

These findings suggest that LIPC and LPL genes could both modify the risk for AMD and the metabolism of lutein and zeaxanthin.  相似文献   

14.
The objective of this study was to measure the effects on serum lipids and plasma phytosterols of 6.6 g/day phytosterols from three foods (bread, breakfast cereal, and spread) consumed for 12 weeks compared with a diet that was not enriched with phytosterols. Thirty-five subjects undertook a nonrandomized, single-blind study consisting of a 2 week baseline period, 6 weeks on high-phytosterol intake, 6 weeks on high-phytosterol intake plus increased fruit and vegetable intake, and a final 2 week washout period. Serum total cholesterol decreased by 8.3% from 6.59 to 6.04 mmol/l, and LDL cholesterol decreased by 12.6% from 4.44 to 3.88 mmol/l. Plasma phytosterol levels increased by 45% (sitosterol) and 105% (campesterol). Cholesterol-adjusted plasma alpha- and beta-carotene levels decreased by 19-23%, lutein by 14%, and lycopene by 11%. Levels of alpha-carotene and lutein increased with extra fruit and vegetables. Only lycopene failed to increase during the washout phase. There were no significant changes in biochemical parameters. Serum LDL cholesterol lowering with 6.6 g/day ingested phytosterols was in the range seen with 1.6-3.2 g/day phytosterols. Lowering of plasma carotenoids was greater than that seen with lower phytosterol intake and was partially reversed by increased fruit and vegetable intake.  相似文献   

15.
The incorporation efficiencies of lutein, zeaxanthin, canthaxanthin and beta-carotene into Retinal Pigment Epithelial (RPE) cells (the human RPE cell line D 407), liver microsomes and EYPC liposomes are investigated. In RPE cells the efficiency ratio of lutein and zeaxanthin compared to canthaxanthin and beta-carotene is higher than in the other membranes. The preferential interactions of lutein and zeaxanthin with RPE cells are discussed considering special protein binding properties. Incorporation yields were obtained from the UV-Vis spectra of the carotenoids. Membrane modulating effects of the carotenoids were obtained from the fluorescence spectra of co-incorporated Laurdan (6-dodecanoyl-2-dimethylaminonaphtalene). The Laurdan fluorescence quenching efficiencies of the membrane bound carotenoids offer an access to direct determinations of membrane carotenoid concentrations. Fetal calf serum as carrier for carotenoid incorporation appears superior to tetrahydrofuran.  相似文献   

16.
Assessing dietary intake in children is difficult and limited validated tools exist. Plasma carotenoids are nutritional biomarkers of fruit and vegetable intake and therefore suitable to validate reported dietary intakes. The aim of this study was to examine the comparative validity of a food frequency questionnaire (FFQ), completed by parents reporting child fruit and vegetable intake compared to plasma carotenoid concentrations. A sample of children aged 5-12 years (n = 93) from a range of weight categories were assessed. Dietary intake was measured using a 137-item semi-quantitative FFQ. Plasma carotenoids were measured using reverse phase high-performance liquid chromatography. Pearson correlation coefficients between reported dietary intake of carotenoids and plasma carotenoid concentrations were strongest after adjustment for BMI (beta-carotene (r = 0.56, P < 0.05), alpha-carotene (r = 0.51, P < 0.001), cryptoxanthin (r = 0.32, P < 0.001)). Significantly lower levels (P < 0.05) of all plasma carotenoids, except lutein, were found among overweight and obese children when compared to healthy weight children. Parental report of children's carotenoid intakes, using a FFQ can be used to provide a relative validation of fruit and vegetable intake. The lower plasma carotenoid concentrations found in overweight and obese children requires further investigation.  相似文献   

17.

Background

Mounting evidence from experimental and animal studies suggests that vitamin A may have a protective effect on melanoma, but the findings on the association of vitamin A intake with risk of melanoma have been inconsistently reported in epidemiologic studies. We attempted to elucidate the association by performing a meta-analysis.

Methods

Eligible studies were identified by searching PubMed and EMBASE databases, as well as by reviewing the references of retrieved publications. Summary odds ratios (OR) with corresponding 95% confidence interval (CI) were computed with a random-effects model. Study-specific ORs and 95% CIs for the highest vs. lowest categories of vitamin A intake were pooled.

Results

A total of 8 case-control studies and 2 prospective studies comprising 3,328 melanoma cases and 233,295 non-case subjects were included. The summary OR for the highest compared with the lowest intake of total vitamin A, retinol and beta-carotene was 0.86 (95% CI = 0.59–1.25), 0.80 (95% CI = 0.69–0.92) and 0.87 (95%CI = 0.62–1.20), respectively. Significant heterogeneity was observed among studies on vitamin A and beta-carotene intake, but not among studies on retinol intake. Subgroup and sensitivity analyses confirmed these findings. There was no indication of publication bias.

Conclusion

Findings from this meta-analysis suggest that intake of retinol, rather than of total vitamin A or beta-carotene, is significantly associated with reduced risk of melanoma.  相似文献   

18.
Carotenoids induce apoptosis in the T-lymphoblast cell line Jurkat E6.1   总被引:9,自引:0,他引:9  
Epidemiologically, a high-carotenoid intake via a fruit- and vegetable-rich diet is associated with a decreased risk of various forms of cancer. The mechanisms by which carotenoids exert this protective effect are controversial. In this study, we examined the potency of a range of carotenoids commonly found in human plasma to induce apoptosis in Jurkat E6.1 malignant T-lymphoblast cells. At a concentration of 20 microM, the order of potency to induce apoptosis after 24 h was: beta-carotene > lycopene > lutein > beta-cryptoxanthin = zeaxanthin. Canthaxanthin failed to induce apoptosis under these conditions. beta-Carotene induced apoptosis in a time- and concentration-dependent manner with a lowest effective concentration of about 3 microM. Pre-conditioning of beta-carotene for 72 h destroyed its pro-apoptotic activity almost completely, whereas degradation for 6 h or less did not, indicating that either beta-carotene itself and/or an early degradation product of beta-carotene are the death-inducing compounds. Apoptosis induced by beta-carotene was characterized by chromatin condensation and nuclear fragmentation, DNA degradation, PARP cleavage and caspase-3 activation. The antioxidant BO-653 inhibited the degradation of beta-carotene in vitro and significantly increased its cytotoxicity, indicating that a pro-oxidant effect of beta-carotene is unlikely to cause its pro-apoptotic activity. The induction of apoptosis in transformed cells by carotenoids may explain their protective effect against cancer formation in humans. Possible pathways for induction of apoptosis by carotenoids are discussed.  相似文献   

19.
Pure 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) or mixed DPPC:1,2-dipalmitoyl phosphatidyletanolamine (DPPE):1,2-dipalmitoyl diphosphatidylserine (DPPS) (17:5:3) liposomes were incorporated with 5 mol% dietary carotenoids (beta-carotene, lutein and zeaxanthin) or with cholesterol (16 and 48 mol%) in the absence or presence of 15 mol% carotenoids, respectively. The carotenoid incorporation yields ranged from 0.42 in pure to 0.72 in mixed phospholipid liposomes. They decreased significantly, from 3 to 14%, in the corresponding cholesterol-doped liposomes, respectively. Highest incorporation yields were achieved by zeaxanthin and lutein in phospholipid liposomes while in cholesterol-containing liposomes, lutein was highest incorporated. The effects on membrane structure and dynamics were determined by differential scanning calorimetry, steady-state fluorescence and anisotropy measurements. Polar carotenoids and cholesterol cause similar, dose-dependent effects: ordering and rigidification revealed by broadening of the transition peak, and increase of anisotropy. Membrane hydrophobicity is determined by cholesterol content and carotenoid polarity. In cholesterol-doped liposomes, beta-carotene is less incorporated than in cholesterol-free liposomes. Our observations suggest effects of carotenoids, even at much lower effective concentrations than cholesterol (8 to 80-fold), on membrane structure and dynamics. Although they are minor constituents of animal membranes, carotenoids may act as modulators of membrane phase transition, fluidity, polarity and permeability, and therefore, can influence the membrane physiology and pathology.  相似文献   

20.
An improved HPLC method for determination of carotenoids in human serum   总被引:1,自引:0,他引:1  
An HPLC method was developed to determine the various carotenoids in human serum. A C-30 column and a mobile phase of 100% methanol (A) and 100% methylene chloride (B) with the following gradient elution were used: 90% A and 10% B in the beginning, maintained for 5 min, decreased to 78% A at 15 min, 62% A at 30 min, 52% A at 40 min, 41% A at 50 min, 38% A at 55 min, maintained for 3 min, and returned to 100% A at 65 min. A total of 21 carotenoids, including all-trans forms of lutein, zeaxanthin, alpha-cryptoxanthin, beta-cryptoxanthin, alpha-carotene, beta-carotene and lycopene, as well as their 14 cis-isomers were resolved within 51 min at a flow rate of 1.0 mL/min and detection at 476 nm. all-trans-beta-Carotene was found to be present in highest amount (256.3-864.2 ng/mL), followed by all-trans-lycopene (64.4-569.2 ng/mL), all-trans-lutein (137.9-450.3 ng/mL), all-trans-alpha-cryptoxanthin (55.7-188.2 ng/mL), all-trans-beta-cryptoxanthin (43.1-134.5 ng/mL), all-trans-alpha-carotene (20.0-122.1 ng/mL) and all-trans-zeaxanthin (9.1-21.3 ng/mL). Similar trend was observed for cis-isomers of carotenoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号