首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In modern agriculture, assisted reproductive technologies are being used for out of season oestrus induction, enhancement of reproductive performance and genetic improvement. In addition, they can have substantial contribution in preservation of endangered species or breeds, as well as in eradication programs of various diseases. While their applications are widespread in cattle, in small ruminants it is almost restricted to artificial insemination. The main limitations of a wider application in small ruminants are the naturally occurring anoestrus period, the variability of response to superovulatory treatments, the fertilisation failure and the need of surgery for collection and transfer of gametes and embryos. Nonetheless, during the last 30 years, considerable progress has been made in sheep and goat embryo technologies, especially in the fields of oestrus synchronisation, superovulation and in vitro embryo production. This paper reviews the status of assisted reproductive technologies in sheep, analysing the prospects offered by recent advances in in vivo and in vitro embryo production from mature and juvenile lambs.  相似文献   

2.
State of the art in sheep-goat embryo transfer   总被引:12,自引:0,他引:12  
Cognie Y 《Theriogenology》1999,51(1):105-116
Considerable advances have been made in the last 25 yr in sheep and goat embryo production and transfer technology. This presentation covers the procedures used to overcome the variability of ovarian response after treatment with exogeneous gonadotropins, the asynchrony of ovulations, failure of fertilization in females showing a high ovulatory response, and the side-effects of repeated treatments (surgical trauma, gonadotropins and their antibodies). In the ewe, prior antigonadotrophic pretreatment results in a significant gain in ovulation rate due to the elimination of nonresponses and in a two-fold increase in embryo yield. A better comprehension of the relationships between oocyte quality and follicular characteristics after superovulation can be gained using in vitro techniques. This knowledge will subsequently be used for the optimization of embryo production needed for the genetic improvement of livestock and the development of new biotechnologies.  相似文献   

3.
The aim of this study was to analyze different culture systems on embryo development of prepubertal goat oocytes. We compare (i) the effect of the age of donor (goat) of oocytes on in vitro maturation, fertilization and subsequent embryo development, (ii) the effect of the origin of oviduct cells from coculture of prepubertal goat embryo development, and (iii) the effect of in vivo culture in rabbit oviducts for 1, 2 and 3 days on the development of prepubertal goat embryos produced in vitro. In Experiment 1, at 24 h post-insemination (hpi), oocytes from adult goats were allocated in TCM199 with oviduct cells from adult goats, and oocytes from prepubertal goats were randomly placed in drops with oviduct epithelial cells from adult (aOEC) or prepubertal (pOEC) goats. Cleavage rate and embryo development were evaluated at 48 hpi and after 7 days coculture, respectively. In Experiment 2, at 24 hpi, prepubertal oocytes were allocated in TCM 199 with pOEC. At 40-42 hpi, a group of embryos remained in the coculture (control group), and the rest were transferred to rabbit oviducts (three rabbits for replicate) for culturing in vivo for 24, 48 and 72 h. After these in vivo cultures, embryos were recovered, evaluated and placed in TCM199 with pOEC until Day 8 post-insemination. The maturation, fertilization and blastocyst rates did not differ significantly between oocytes obtained from adult and prepubertal goats. The percentage of blastocysts obtained from prepubertal goat embryos cocultured with aOEC or pOEC was also similar (12.1% versus 12.2%). The transfer of prepubertal goat embryos to rabbit oviducts for 1, 2 and 3 days did not improve the blastocyst rate compared to the control group (9.7, 10.9, 4.1 and 11.5%, respectively). In conclusion, in our conditions, there were no significant differences in embryo development between oocytes obtained from prepubertal and adult goats, and the embryo development from prepubertal goat oocytes were similar in the different culture systems compared.  相似文献   

4.
The objective of this study was to assess the efficacy of a novel intracytoplasmic sperm injection (ICSI) procedure, as well as the in vitro and in vivo developmental competence of goat embryos produced by ICSI. Oocyte-cumulus complexes recovered by LOPU from donors stimulated with gonadotrophins were matured in vitro. Fresh goat semen was used for ICSI following Percoll gradient washing. Tail-cut spermatozoa were microinjected into the ooplasm of goat oocytes using a piezo micropipette-driving system (PiezoDrill). In order to assess developmental competence, the ICSI-derived zygotes were cultured in one of two media systems (mTALP-mKSOM vs G1.3-G2.3) for in vitro development or were transferred into recipients for full-term development. The results suggest that cutting sperm tails using the oocyte-holding pipette coupled with the PiezoDrill is an efficient approach for goat ICSI in terms of oocyte survival, pronuclear development and initial cleavage. The mTALP-mKSOM culture system was more suitable for in vitro development of ICSI-derived goat embryos than G1.3-G2.3. This first report of full-term development of an ICSI-derived goat embryo suggests that ICSI can be applied to assisted reproduction in goats.  相似文献   

5.
The differences in the embryo production potential of four rams used in a commercial embryo transfer program were examined in both in vivo and in vitro embryo production systems. Processing frozen-thawed spermatozoa through Percoll density gradients prior to in vitro insemination eliminated differences in the estimates of sperm viability between the four rams, and yet, differences in embryo production persisted throughout the in vitro culture period. However, there was no effect of ejaculate within ram on embryo production rates. In addition, the timing of the onset of the differences between the rams at each stage of in vitro embryo development were revealed. Ram 2 differed from ram 4 in the proportion of fertilized oocytes at 17 h post-insemination (pi) and by 52 h, ram 3 differed from ram 4 in the proportion of cleaved embryos, and the observed differences between ram 1 and ram 2 in their blastocyst production were initiated prior to activation of the embryonic genome. Once differences in embryo development rates were detected among the four rams, they persisted throughout the in vitro culture period. The reduced in vitro fertilization (IVF) rates from ram 2 compared with the other rams was paralleled in vivo by the significantly lower proportion of embryos recovered from ewes mated to ram 2, and this was further exacerbated by a significantly lower embryo survival rate after transfer. However, the subtle differences observed in the timing of the contribution of each sire to embryo development during in vitro culture were not able to be detected in vivo. However, the higher proportions of transferable quality blastocysts obtained from ewes mated to ram 4 did not result in increased embryo survival throughout the remainder of gestation. Therefore, in this study, the blastocyst production potential for a particular sire, either in vitro or in vivo, does not necessarily reflect the potential for the production of live offspring.  相似文献   

6.
An alternative to conventional in vivo validation of sperm assays might be to assess the fertilization rate of multiple oocytes transferred to the oviducts of inseminated females. Increasing the number of oocytes increases the egg-sperm ratio in the oviduct under an unaltered endocrine milieu, setting the basis for picking up statistical differences between treatments in small populations. The study evaluated the model by transferring oocytes to females inseminated under conditions that are known to modify the fertilization rate in the field. The study then evaluated the use of cattle oocytes to replace goat oocytes for assessing sperm function under this model. In Experiment 1, 12 females were inseminated at estrus with either 100 or 300 million spermatozoa 20 h before transferring homologous oocytes into the oviduct ipsilateral to the ovulation point. In Experiment 2, 10 females were inseminated either once or twice; 10-20 h later, homologous oocytes were transferred into the oviduct ipsilateral to the ovulation point. In Experiment 3, 13 bilateral-ovulated females were inseminated and 20 h later goat and cattle oocytes were transferred to contralateral oviducts. Then, 16-20 h later, oocytes were flushed from the oviduct, cleaned of spermatozoa and stained to assess the fertilization rate. The fertilization rate was improved by increasing sperm numbers at insemination (P < 0.04) and by increasing the number of inseminations (P < 0.02). The results in Experiment 3 showed that fertilization rates were similar for goat and cattle oocyte (P > 0.05) and that fertilization values were highly correlated (r = 0.811, P < 0.001). Results suggest that the model can be used for in vivo validation of in vitro sperm assays by facilitating the expression of statistical differences in small number of animals. In addition, cattle oocytes can be used to replace goat oocytes to study in vivo sperm function in goats.  相似文献   

7.
对关中奶山羊配种后6~7天的桑椹胚和囊胚,分别采用全胚培养法、酶消化法和免疫外科法进行处理.将处理后的胚胎培养于小鼠胎儿成纤维细胞(MEF)饲养层上,分离培养山羊胚胎干细胞(Embryonic stem cell,ESC).对分离传代的山羊ESCs分别进行免疫组化染色,RT-PCR检测和体外诱导分化试验.结果表明.全胚培养法易于胚胎贴壁形成原代集落,采用全胚培养法获得的ESCs有一株目前已传至18代.山羊ESCs Nanong、Oct4、SSEA-3免疫组化染色呈阳性,SSEA-1免疫组化染色呈弱阳性,SSEA-4免疫组化染色呈阴性,RT-PCR检测显示其表达Nanog、Oct4、端粒酶、CD117.山羊ESCs经DMSO体外诱导可以向心肌细胞分化.这些试验均表明该细胞具有ESCs的生物学特性.  相似文献   

8.
The developmental competence of oocytes from prepubertal and adult goats was studied through in vitro maturation, fertilization and embryo culture up to the blastocyst stage. Oocytes were recovered from antral follicles of prepubertal and adult goat ovaries, with or without ovarian stimulation with exogenous FSH. The effect of different sources of granulosa cells during IVM on the developmental competence of prepubertal goat oocytes was also noted. Oocytes were matured for 27 h at 38.5 degrees C in 5% CO(2) in air in 50-microl microdrops in TCM199 supplemented with 20% estrus goat serum, FSH, LH and estradiol-17beta or in 2 ml of the same medium supplemented with granulosa cells. Matured oocytes were inseminated with freshly ejaculated spermatozoa following capacitation At 24 h post-insemination, the oocytes were transferred to a granulosa cell monolayer, and early embryo development was evaluated until Day 10. Results show that the developmental ability of embryos from prepubertal goats after IVM and IVF is similar to those from adult goats. Treatment of the prepubertal and adult goats with FSH did not improve the developmental capacity of the resulting embryos. On studying the addition of different sources of granulosa cells to a maturation system of 2 ml of medium, a significantly positive effect of the cells from primed females was observed on the percentage of maturation, on embryo cleavage and on the percentage of embryos that overcame the in vitro developmental block from 8 to 16 cells.  相似文献   

9.
Bovine morulae and blastocysts were either produced in vitro through maturation, fertilization and culture of immature oocytes recovered from slaughterhouse-derived ovaries, collected in vivo or obtained after 24 h in vitro culture of in vivo collected embryos. The morulae and blastocysts were classified into four categories of embryo quality and two stages of embryonic development. Embryos were frozen by a controlled freezing method using 10% glycerol as a cryoprotectant. The ability of individual embryos to withstand freeze/thawing was measured immediately before and after cryopreservation by changes in CO2 production from (U-14C)glucose during a 2 h incubation period in a non-invasive closed system immediately before and after cryopreservation. Post-thaw survival was assessed by development in vitro during a 48 h culture period. Survival rates and oxidative metabolism after freeze/thawing were similar in embryos of the two developmental stages. However, after freeze/thawing, the rate of CO2 production of in vitro produced embryos was reduced to one half of their pre-freeze levels and was associated with poor survival rates. In vivo collected embryos had a significantly better tolerance to freezing and higher survival rates. However, when in vivo embryos were exposed to in vitro culture conditions, the rates of CO2 production and survival were significantly reduced. Pre-freeze embryo quality affected post-thaw in vitro development and metabolic activity markedly in embryos produced in vitro or pre-exposed to in vitro culture conditions. While there was no relationship between pre-freeze levels of CO2 production and post-thaw in vitro embryo development, all embryos which developed in vitro after freezing/thawing retained at least 58% of the pre-freeze levels of CO2 production regardless of their origin. Results of the present study indicate that embryos produced in vitro or pre-exposed to in vitro culture conditions are more sensitive to cryo-injury. This sensitivity is affected by embryo quality and is similarly reflected at the biochemical level. Determination of oxidative metabolism offers a feasibility for selection of viable morulae/blastocysts after freezing/thawing.  相似文献   

10.
《Small Ruminant Research》2010,90(2-3):144-148
Assisted reproductive technologies (ART) such as artificial insemination (AI) and multiple ovulation and embryo transfer (MOET) have been used to increase reproductive efficiency and accelerate genetic gain. The principal limitations of MOET are due to variable female response to hormonal treatment, fertilization failures and premature regression of Corpora luteum. The in vitro production (IVP) of embryos offers the possibility of overcoming MOET limitations. The method of IVP of embryos involves three main steps: in vitro maturation of oocytes (IVM), in vitro fertilization of oocytes (IVF) with capacitated sperm and in vitro culture (IVC) of embryos up to blastocyst stage. Recovering oocytes from live selected females by laparoscopic ovum pick-up (LOPU) and breeding prepubertal females by juvenile in vitro embryo technology (JIVET) will allow a greater production of valuable goats. Also, IVP of goat embryos will provide an excellent source of embryos for basic research on development biology and for commercial applications of transgenic and cloning technologies. Different protocols of IVP of embryos have been used in goats. However oocyte quality is the main factor for embryos reaching blastocyst stage from IVM/IVF/IVC oocytes. One of the principal determinant factors in the results of blastocyst development is the age of the oocyte donor females. In goats, oocytes from prepubertal and adult females do not show differences in in vitro maturation and in vitro fertilization; however the percentage of oocytes reaching blastocyst stage ranges from 12 to 36% with oocytes from prepubertal and adult goats, respectively.  相似文献   

11.
The effect of glutathione (GSH) addition on the development of 1- or 2-cell goat early embryos in vitro was examined. Embryos were collected from superovulated Korean black goat (Capra hircus aegagrus) and cultured for 6 days in synthetic oviduct fluid medium supplemented with either bovine serum albumin (BSA) or serum. Without GSH addition, almost all embryos could not develop beyond 8- to 16-cell block. However, GSH addition greatly improved in vitro development of early embryos to blastocyst stage, and its action was highly dependent on the presence and source of proteins supplemented into the culture medium. Among the protein-supplemented cultures, GSH effect was most prominent in 10% FBS-supplemented culture, in which the proportion (91%) of blastocysts developed from early embryos was much higher than that of BSA- (42-64% depending on its content) or goat serum (GS)-supplemented cultures (21%), or even than that of somatic cell-supported co-culture (60%). As well as in terms of the morphological development, mean cell number of blastocysts (185 +/- 12) developed from FBS condition was significantly higher than that of blastocysts developed from any other culture conditions and moreover comparable to that of blastocysts developed in vivo (190 +/- 9). The viability of these blastocysts was finally confirmed by their term development (6/12) from embryo transfer. To delineate action time of GSH during embryo development, GSH was treated at 1-day intervals through 6-days culture periods excepting the last day. In the GSH-treated embryos at day 3 of culture, which corresponds to the time of in vitro 8- to 16-cell block stage, the proportion of blastocyst was markedly increased up to 77% of cultured embryos and conversely that of the arrested embryos was decreased to 7%. In the embryos treated later, however, their developmental potency decreased abruptly. Therefore, these results clearly demonstrated that GSH could greatly improve the in vitro development of goat early embryos by specifically acting on the 8- to 16-cell block stage during in vitro development, suggesting that GSH may be one of the important regulators on the development of goat embryos in vivo.  相似文献   

12.
A method of nonsurgical embryo collection in the Shiba goat, a native Japanese miniature goat breeding nonseasonally, was developed. The apparatus used for flushing the uterus was made on the model of the two-way catheter for cows. Embryo collection was performed on days 5 to 7 in 37 females superovulated with PMSG and hCG and resulted in successful recovery of 69 embryos in 19 females (51.4%). The average number of embryos collected from each successful female was 3.6. The recovery rate of embryos calculated on the basis of the number of embryos recovered and corpora lutea observed by culdoscopy in 15 successful females was 89.5%. This nonsurgical method seem to be efficient enough for collecting morulae and blastocysts in Shiba goats.  相似文献   

13.
The aim of this study was to assess the effect of oocyte selection using the brilliant cresyl blue (BCB) test plus the addition of cysteamine to the in vitro maturation (IVM) medium to improve the in vitro embryo development of prepubertal goat oocytes. The oocytes were exposed to 26 microM BCB and classified according to their cytoplasm coloration: BCB+ (oocytes with blue cytoplasm) and BCB- (unstained oocytes). The oocytes were matured in a conventional IVM medium supplemented with cysteamine 100 microM. The control group consisted of oocytes not exposed to BCB and matured without cysteamine. The IVM-oocytes were inseminated and cultured in synthetic oviductal fluid (SOF) for 7 days. The normal fertilisation rate (oocytes showing 2 pronuclei and 1 sperm tail) of BCB+ oocytes (40%) was higher than those of BCB- (21%) and control oocytes (22%). The percentage of morulae plus blastocysts was higher (P < 0.05) in the BCB+ group than in the BCB- group (23.8 vs. 5.1%, respectively). In conclusion, the integration of the BCB test and the addition of cysteamine in the protocol of in vitro embryo production from prepubertal goat oocytes has improved the developmental rates of embryo development.  相似文献   

14.
The preimplantation mammalian embryo from different species appears sensitive to the environment in which it develops, either in vitro or in vivo, for example, in response to culture conditions or maternal diet. This sensitivity may lead to long-term alterations in the characteristics of fetal and/or postnatal growth and phenotype, which have implications for clinical health and biotechnological applications. We review the breadth of environmental influences that may affect early embryos and their responses to such conditions along epigenetic, metabolic, cellular, and physiological directions. In addition, we evaluate how embryo environmental responses may influence developmental potential and phenotype during later gestation. We conclude that a complex of different mechanisms may operate to associate early embryo environment with future health.  相似文献   

15.
Numerous reports on reproductive pathology in all rhinoceros species illustrate the abundance of female infertility in captive populations. In infertile rhinoceroses, oocyte collection and embryo production could represent the best remaining option for these animals to reproduce and to contribute to the genetic pool. We report here on superstimulation, repeated oocyte recovery, and attempted in vitro fertilization (IVF) in white and black rhinoceroses. Four anestrous rhinoceroses (two white, two black) with unknown follicular status were treated with gonadotropin-releasing hormone analogue, deslorelin acetate, for 6 to 7 d. Number and size of follicles in superstimulated females was significantly higher and larger compared with those in nonstimulated anestrous females (n = 9). Ovum pick-up was achieved by transrectal ultrasound-guided follicle aspiration. Up to 15 follicles were aspirated per ovary. During six ovum pick-ups, a total of 29 cumulus-oocyte complexes (COCs) were harvested with a range of 2 to 9 COCs per collection. No postsurgical complications were noted on the rhinoceros ovaries using this minimally invasive approach. Various in vitro maturation (IVM) and IVF protocols were tested on the collected COCs. Despite the low total number of COCs available for IVM and IVF in this study, we can report the first rhinoceros embryo ever produced in vitro. The production of a 4-cell embryo demonstrated the potential of transrectal ultrasound-guided oocyte recovery as a valuable tool for in vitro production of rhinoceros embryos from otherwise infertile females.  相似文献   

16.
Viable Transgenic Goats Derived from Skin Cells   总被引:3,自引:0,他引:3  
The current study was undertaken to evaluate the possibility of expanding transgenic goat herds by means of somatic cell nuclear transfer (NT) using transgenic goat cells as nucleus donors. Skin cells from adult, transgenic goats were first synchronized at quiescent stage (G0) by serum starvation and then induced to exit G0 and proceed into G1. Oocytes collected from superovulated donors were enucleated, karyoplast-cytoplast couplets were constructed, and then fused and activated simultaneously by a single electrical pulse. Fused couplets were either co-cultured with oviductal cells in TCM-199 medium (in vitro culture) or transferred to intermediate recipient goat oviducts (in vivo culture) until final transfer. The resulting morulae and blastocysts were transferred to the final recipients. Pregnancies were confirmed by ultrasonography 25-30 days after embryo transfer. In vitro cultured NT embryos developed to morulae and blastocyst stages but did not produce any pregnancies while 30% (6/20) of the in vivo derived morulae and blastocysts produced pregnancies. Two of these pregnancies were resorbed early in gestation. Of the four recipients that maintained pregnancies to term, two delivered dead fetuses 2-3 days after their due dates, and two recipients gave birth to healthy kids at term. Fluorescence in situ hybridization (FISH) analysis confirmed that both kids were transgenic and had integration sites consistent with those observed in the adult cell line.  相似文献   

17.
Following in vitro maturation, approximately 90% of immature bovine oocytes will reach metaphase II and extrude the first polar body; approximately 80% will undergo fertilization and cleave, at least once, to the two-cell stage. However, only about 30-40% will ever reach the blastocyst stage. This would suggest that the post-fertilization part of the process of in vitro embryo production, the longest part, is the main period determining blastocyst yield. The experiments described in this paper clearly demonstrate that this is. in fact, not the case and that it is events further back along the developmental axis that determine the proportion of immature oocytes reaching the blastocyst stage. The results also show, however, that the post-fertilization culture period is of profound importance in determining the equality of those blastocysts that do develop, with those produced in vitro consistently being of inferior quality to their in vivo produced conterparts. The challenge for the future is to modify our conditions of post-fertilization embryo culture in an attempt to mimic those that occur naturally in vivo and in that way improve blastocyst quality.  相似文献   

18.
The lymphokine IFN-gamma has been shown in vitro to stimulate IgG2a secretion and inhibit IgG1 and IgE secretion by LPS-activated B lymphocytes. To determine whether IFN-gamma has a similar isotype regulatory role in vivo, we studied the abilities of rIFN-gamma and a mAb to IFN-gamma to modify the isotypes of Ig secreted in mice injected with a goat antibody to mouse IgD, which by itself induces large increases in levels of serum IgG1 and IgE and a relatively small increase in serum IgG2a. Multiple injections of IFN-gamma substantially inhibited production of IgG1 and IgE, and stimulated production of IgG2a in affinity purified goat antibody specific for mouse IgD-treated mice; anti-IFN-gamma antibody blocked the effects of IFN-gamma and in fact enhanced IgG1 and IgE secretion and inhibited the IgG2a response in these mice. The role of IFN-gamma in the selection of isotypes of Ig produced in response to injection of mice with the bacterium Brucella abortus (BA) was also studied, because killed, fixed BA are known to stimulate IFN secretion and a predominantly IgG2a antibody response. Anti-IFN-gamma antibody strongly suppressed IgG2a secretion and stimulated IgG1, but not IgE, secretion in BA-immunized mice. BA suppressed IgG1 and IgE secretion and enhanced IgG2a secretion in affinity purified goat antibody specific for mouse IgD-injected mice; treatment of these mice with anti-IFN-gamma antibody reversed the effects of BA on IgG1 and IgG2a secretion, but not the suppressive effect of BA on IgE secretion. These observations demonstrate that IFN-gamma has an important and perhaps unique physiologic role in the stimulation of IgG2a secretion and in the suppression of secretion of IgG1, whereas bacterial antigens can suppress IgE secretion by other mechanisms in addition to IFN-gamma secretion.  相似文献   

19.
New developments reproductive technologies in deer   总被引:2,自引:0,他引:2  
Berg DK  Asher GW 《Theriogenology》2003,59(1):189-205
In vitro embryo production is the platform for advanced reproductive technologies, such as cloning. The in vitro embryo production system developed for farmed red deer (Cervus elaphus) evolved along similar lines to that pioneered by other domestic species researchers. However, applying existing in vitro embryo production methods from these other species resulted in limited success and has necessitated developing a species-specific methodology for red deer based on the their physiology. Analysis of oviduct fluid led to the development of a semi-defined fertilization and culture media system, Deer Synthetic Oviduct Fluid (DSOF), which resulted in successful culture of red deer embryos to the blastocyst stage. Transvaginal ultrasound-guided ovarian examination and ovum pickup has enabled the study of seasonality constraint and propagation from selected female genetics, respectively. During the 4-month breeding season (April-July), 15% of cleaved oocytes developed to blastocysts, whereas no blastocysts developed from oocytes collected after July. The process of developing an in vitro embryo production system for farmed red deer may serve as a beneficial model for the propagation of endangered cervine species.  相似文献   

20.
The key research areas of the Department are: in vitro production of embryos, embryo cryopreservation, animal transgenesis, cloning, cytometric semen sexing and evaluation. Research has been focused on the in vitro production of animal embryos, including the development of complex methods for oocyte maturation, fertilization and embryo culture. Moreover, experiments on long-term culturing of late preantral and early antral bovine ovarian follicles have been developed. Studies on the cloning of genetically modified pigs with "humanized" immunological systems have been undertaken. A cloned goat was produced from oocytes reconstructed with adult dermal fibroblast cells. The novel technique of rabbit chimeric cloning for the production of transgenic animals was applied; additionally, the recipient-donor-cell relationship in the preimplantation developmental competences of feline nuclear transfer embryos has been studied. Regarding transgenic animal projects, gene constructs containing growth hormone genes connected to the mMt promoter were used. Modifications of milk composition gene constructs with tissue-specific promoters were performed. Moreover, pigs for xenotransplantation and animal models of human vascular diseases have been produced. Over the last 15 years, our flow cytometry research group has focused its work on new methods for sperm quality assessment and sex regulation. In the 1970s, our team initiated studies on embryo cryopreservation. As a result of vitrification experiments, the world's first rabbits and sheep produced via the transfer of vitrified embryos were born.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号