首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen Z  Li Z  Yu N  Yan L 《Biotechnology letters》2011,33(4):721-725
The sweet protein monellin gene was expressed in Saccharomyces cerevisiae under the control of the GAL1 promoter and α-factor signal peptide sequence of S. cerevisiae. The gene, which was obtained through mutation of the synthesized single-chain monellin gene, was cloned into an E. coli-yeast shuttle vector pYES2.0 which carries the galactose-inducible promoter GAL1. Then the α-factor signal peptide of S. cerevisiae was linked also, resulting in the secreting expression vector pYESMTA. The recombinant plasmid was subsequently transformed into strain S. cerevisiae INVsc1. The peptide efficiently directed the secretion of monellin from the recombinant yeast cell. A maximum yield of active monellin was 0.41 g l−1 of the supernatant from INVsc1 harboring pYESMTA.  相似文献   

2.
3.
The transport activity and substrate specificity of two chimeras consisting of S. cerevisiae Nha1p’s N-terminal regions (either first 125 or 184 AA) and the rest of the C. glabrata Cnh1p (up to the total protein length of 946 AA) were compared with those of the two native antiporters. Both chimeric transporters were functional upon expression in S. cerevisiae cells, their presence improved the ability of cells to grow in the presence of high external concentration of K+, Na+ or Rb+ (as chlorides), but not in the presence of the smallest cation (Li+). Cation efflux confirmed the ability of chimeras to export cations and showed their significantly reduced transport capacity compared to the wild-type proteins. Despite the very high level of primary sequence identity (87 %) between the S. cerevisiae and C. glabrata plasma-membrane Na+/H+ antiporters, various parts of these proteins are not exchangeable without affecting the antiporter’s transport capacity.  相似文献   

4.
Intracellular cadmium (Cd2+) ion accumulation and the ability to produce specific Cd2+ ion chelators was studied in the methylotrophic yeast Hansenula polymorpha. Only one type of Cd2+ intracellular chelators, glutathione (GSH), was identified, which suggests that sequestration of this heavy metal in H. polymorpha occurs similarly to that found in Saccharomyces cerevisiae, but different to Schizosaccharomys pombe and Candida glabrata which both synthesize phytochelatins. Cd2+ ion uptake in the H. polymorpha wild-type strains appeared to be an energy dependent process. It was found that Δgsh2 mutants, impaired in the first step of GSH biosynthesis, are characterized by increase in net Cd2+ ion uptake by the cells, whereas Δgsh1met1 and Δggt1 mutants impaired in sulfate assimilation and GSH catabolism, respectively, lost the ability to accumulate Cd2+ intracellularly. Apparently H. polymorpha, similarly to S. cerevisiae, forms a Cd-GSH complex in the cytoplasm, which in turn regulates Cd2+ uptake. Genes GSH1/MET1 and GGT1 are involved in maturation and metabolism of cellular Cd-GSH complex, respectively. Transport of [3H]N-ethylmaleimide-S-glutathione ([3H]NEM-SG) conjugate into crude membrane vesicules, purified from the wild-type cells of H. polymorpha appeared to be MgATP dependent, uncoupler insensitive and vanadate sensitive. We suggest that MgATP dependent transporter involved in Cd-GSH uptake in H. polymorpha, is similar to S. cerevisiae Ycf1-mediated vacuolar transporter responsible for accumulation of organic GS-conjugates and Cd-GSH complex.  相似文献   

5.
6.
Anaerobic xylulose fermentation was compared in strains of Zygosaccharomyces and Saccharomyces cerevisiae, mutants and wild-type strains to identify host-strain background and genetic modifications beneficial to xylose fermentation. Overexpression of the gene (XKS1) for the pentose phosphate pathway (PPP) enzyme xylulokinase (XK) increased the ethanol yield by almost 85% and resulted in ethanol yields [0.61 C-mmol (C-mmol consumed xylulose)−1] that were close to the theoretical yield [0.67 C-mmol (C-mmol consumed xylulose)−1]. Likewise, deletion of gluconate 6-phosphate dehydrogenase (gnd1Δ) in the PPP and deletion of trehalose 6-phosphate synthase (tps1Δ) together with trehalose 6-phosphate phosphatase (tps2Δ) increased the ethanol yield by 30% and 20%, respectively. Strains deleted in the promoter of the phosphoglucose isomerase gene (PGI1) – resulting in reduced enzyme activities – increased the ethanol yield by 15%. Deletion of ribulose 5-phosphate (rpe1Δ) in the PPP abolished ethanol formation completely. Among non-transformed and parental strains S. cerevisiae ENY. WA-1A exhibited the highest ethanol yield, 0.47 C-mmol (C-mmol consumed xylulose)−1. Other non-transformed strains produced mainly arabinitol or xylitol from xylulose under anaerobic conditions. Contrary to previous reports S. cerevisiae T23D and CBS 8066 were not isogenic with respect to pentose metabolism. Whereas, CBS 8066 has been reported to have a high ethanol yield on xylulose, 0.46 C-mmol (C-mmol consumed xylulose)−1 (Yu et al. 1995), T23D only formed ethanol with a yield of 0.24 C-mmol (C-mmol consumed xylulose)−1. Strains producing arabinitol did not produce xylitol and vice versa. However, overexpression of XKS1 shifted polyol formation from xylitol to arabinitol. Received: 2 July 1999 / Accepted in revised form: 12 October 1999  相似文献   

7.
Disruption of genes encoding endogenous transport proteins inSaccharomyces cerevisiae has facilitated the recent cloning, by functional expression, of cDNAs encoding K+ channels and amino acid transporters from the plantArabidopsis thaliana [1–4]. In the present study, we demonstrate in whole-cell patch clamp experiments that the inability oftrk1Δtrk2Δ mutants ofS. cerevisiae to grow on submillimolar K+ correlates with the lack of K+ inward currents, which are present in wild-type cells, and that transformation of thetrk1Δtrk2Δ double-deletion mutant withKAT1 fromArabidopsis thaliana restores this phenotype by encoding a plasma membrane protein that allows large K+ inward currents. Similar K+ inward currents are induced by transformation of atrk1 mutant withAKT1 fromA. thaliana. This work was supported by a grant from theForschungsgemeinschaft (A.B.), TheU.S. Department of Energy (c.L.S.), The U.S. National Science Foundation (R.F.G.) Lisboa, Portugal.  相似文献   

8.
Potassium or Na+ efflux ATPases, ENA ATPases, are present in all fungi and play a central role in Na+ efflux and Na+ tolerance. Flowering plants lack ENA ATPases but two ENA ATPases have been identified in the moss Physcomitrella patens, PpENA1 and PpENA2. PpENA1 mediates Na+ efflux in Saccharomyces cerevisiae. To propose a general function of ENA ATPases in bryophytes it was necessary to demonstrate that these ATPases mediate Na+ efflux in planta and that they exist in more bryophytes than P. patens. For these demonstrations (1) we cloned a third ATPase from P. patens, PpENA3, and studied the expression pattern of the three PpENA genes; (2) we constructed and studied the single and double Δppena1 and Δppena2 mutants; and (3) we cloned two ENA ATPases from the liverwort Marchantia polymorpha, MpENA1 and MpENA2, and expressed them in S. cerevisiae. The results from the first two approaches revealed that the expression of ENA ATPases was greatly enhanced at high pH and that Na+ efflux at high pH depended on PpENA1. The ENA1 ATPase of M. polymorpha suppressed the defective growth of a S. cerevisiae mutant at high K+ or Na+ concentrations, especially at high K+.  相似文献   

9.
The response of Saccharomyces cerevisiae to arsenic involves a large ensemble of genes, many of which are associated with glutathione-related metabolism. The role of the glutathione S-transferase (GST) product of the URE2 gene involved in resistance of S. cerevisiae to a broad range of heavy metals was investigated. Glutathione peroxidase activity, previously reported for the Ure2p protein, was unaffected in cell-free extracts of an ure2Δ mutant of S. cerevisiae. Glutathione levels in the ure2Δ mutant were lowered about threefold compared to the isogenic wild-type strain but, as in the wild-type strain, increased 2–2.5-fold upon addition of either arsenate (AsV) or arsenite (AsIII). However, lack of URE2 specifically caused sensitivity to arsenite but not to arsenate. The protective role of URE2 against arsenite depended solely on the GST-encoding 3′-end portion of the gene. The nitrogen source used for growth was suggested to be an important determinant of arsenite toxicity, in keeping with non-enzymatic roles of the URE2 gene product in GATA-type regulation.  相似文献   

10.
The nucleolar protein Nep1 and its human homologue were previously shown to be involved in the maturation of 18S rRNA and to interfere directly or indirectly with a methylation reaction. Here, we report that the loss-of-function mutation Δsnr57 and multicopy expression of the ribosomal 40S subunit protein 19 (Rps19p) can partially suppress the Saccharomyces cerevisiae Δnep1 growth defect. SnR57 mediates 2′-O-ribose-methylation of G1570 in the 18S rRNA. By performing a three-hybrid screen, we isolated several short RNA sequences with strong binding affinity to Nep1p. All isolated RNAs shared a six-nucleotide consensus motif C/UUCAAC. Furthermore, one of the isolated RNAs exactly corresponded to nucleotides 1553–1577 of the 18S rRNA, which includes G1570, the site of snR57-dependent 18S rRNA methylation. From protein–protein crosslink data and the cryo-EM map of the S. cerevisiae small ribosomal subunit, we suggest that Rps19p is localized in close vicinity to the Nep1p 18S rRNA binding site. Our results suggest that Nep1p binds adjacent to helix 47 of the 18S rRNA and possibly supports the association of Rps19p to pre-ribosomal particles.  相似文献   

11.
The budding yeast Saccharomyces cerevisiae is able to utilize glycerol as the sole carbon source via two pathways (glycerol 3-phosphate pathway and dihydroxyacetone [DHA] pathway). In contrast, the fission yeast Schizosaccharomyces pombe does not grow on media containing glycerol as the sole carbon source. However, in the presence of other carbon sources such as galactose and ethanol, S. pombe could assimilate glycerol and glycerol was preferentially utilized over ethanol and galactose. No equivalent of S. cerevisiae Gcy1/glycerol dehydrogenase has been identified in S. pombe. However, we identified a gene in S. pombe, SPAC13F5.03c (gld1 +), that is homologous to bacterial glycerol dehydrogenase. Deletion of gld1 caused a reduction in glycerol dehydrogenase activity and prevented glycerol assimilation. The gld1Δ cells grew on 50 mM DHA as the sole carbon source, indicating that the glycerol dehydrogenase encoded by gld1 + is essential for glycerol assimilation in S. pombe. Strains of S. pombe deleted for dak1 + and dak2 + encoding DHA kinases could not grow on glycerol and showed sensitivity to a higher concentration of DHA. The dak1Δ strain showed a more severe reduction of growth on glycerol and DHA than the dak2Δ strain because the expression of dak1 + mRNA was higher than that of dak2 +. In wild-type S. pombe, expression of the gld1 +, dak1 +, and dak2 + genes was repressed at a high concentration of glucose and was derepressed during glucose starvation. We found that gld1 + was regulated by glucose repression and that it was derepressed in scr1Δ and tup12Δ strains.  相似文献   

12.
Summary An 8.6-kb fragment was isolated from an EcoRI digest of Candida albicans ATCC 10261 genomic DNA which conferred the property of autonomous replication in Saccharomyces cervisiae on the otherwise non-replicative plasmid pMK155 (5.6 kb). The DNA responsible for the replicative function was subcloned as a 1.2-kb fragment onto a non-replicative plasmid (pRC3915) containing the C. albicans URA3 and LEU2 genes to form plasmid pRC3920. This plasmid was capable of autonomous replication in both S. cerevisiae and C. albicans and transformed S. cerevisiae AH22 (leu2 ) to Leu+ at a frequency of 2.15 × 103 transformants per pg DNA, and transformed C. albicans SGY-243 (ura3) to Ura+ at a frequency of 1.91 × 103 transformants per g DNA. Sequence analysis of the cloned DNA revealed the presence of two identical regions of eleven base pairs (5TTTTATGTTTT3) which agreed with the consensus of autonomously replicating sequence (ARS) cores functional in S. cerevisiae. In addition there were two 10/11 and numerous 9/11 matches to the core consensus. The two 11/11 matches to the consensus, CaARS1 and CaARS2, were located on opposite strands in a non-coding AT-rich region and were separated by 107 bp. Also present on the C. albicans DNA, 538 by from the ARS cores, was a gene for 5S rRNA which showed sequence homology with several other yeast 5S rRNA genes. A sub-fragment (494 bp) containing the 5S rRNA gene (but not the region containing the ARS cores) hybridized to genomic DNAs from a number of yeast species, including S. cerevisiae, C. tropicalis, C. pseudotropicalis, C. parapsilosis, C. kruseii, C. (Torulopsis) glabrata and Neurospora crassa. The 709-bp ARS element (but not the 5S rRNA gene) was necessary for high-frequency transformation and autonomous plasmid replication in both S. cerevisiae and C. albicans.EMBL/GenBank database accession number: X16634 (5S rRNA)  相似文献   

13.
    
 Plants generally accumulate free proline under osmotic stress conditions. Upon removal of the osmotic stress, the proline levels return to normal. In order to understand the mechanisms involved in regulating the levels of proline, we cloned and characterized a proline dehydrogenase (PDH) cDNA from Arabidopsis thaliana (AtPDH). The 1745 bp cDNA contains a major open reading frame encoding a peptide of 499 amino acids. The deduced amino acid sequence has high homology with both Saccharomyces cerevisiae and Drosophila melanogaster proline oxidases and contains a putative mitochondrial targeting sequence. When expressed in yeast, the AtPDH cDNA complemented a yeast put1 mutation and exhibited proline oxidase activity. We also determined the free proline contents and the Δ1-pyrroline-5-carboxylate synthetase (P5CS) and PDH mRNA levels under different osmotic stress and recovery conditions. The results demonstrated that the removal of free proline during the recovery from salinity or dehydration stress involves an induction of the PDH gene while the activity of P5CS declines. The reciprocal regulation of P5CS and PDH genes appears to be a key mechanism in the control of the levels of proline during and after osmotic stress. The PDH gene was also significantly induced by exogenously applied proline. The induction of PDH by proline, however, was inhibited by salt stress. Received: 4 June 1996/Accepted: 8 August 1996  相似文献   

14.
It is shown that the deletion of BGL2 gene leads to increase in chitin content in the cell wall of Saccharomyces cerevisiae. A part of the additional chitin can be removed from the bgl2Δ cell wall by alkali or trypsin treatment. Chitin synthase 1 (Chs1) activity was increased by 60 % in bgl2Δ mutant. No increase in chitin synthase 3 (Chs3) activity in bgl2Δ cells was observed, while they became more sensitive to Nikkomycin Z. The chitin level in the cell walls of a strain lacking both BGL2 and CHS3 genes was higher than that in chs3Δ and lower than that in bgl2Δ strains. Together these data indicate that the deletion of BGL2 results in the accumulation and abnormal incorporation of chitin into the cell wall of S. cerevisiae, and both Chs1 and Chs3 take part in a response to BGL2 deletion in S. cerevisiae cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
We have isolated a mutant in fission yeast, in which mitosis is uncoupled from completion of DNA replication when DNA synthesis is impaired by a thermosensitive mutation in the gene encoding the catalytic subunit of DNA polymerase δ. By functional complementation, we cloned the wild-type gene and identified it as the recently cloned checkpoint gene crb2 + /rhp9 + . This gene has been implicated in the DNA damage checkpoint and acts in the Chk1 pathway. Unlike the deleted strain dcrb2, cells bearing the crb2-1 allele were not affected in the DNA repair checkpoint after UV or MMS treatment at 30° C, but were defective in this checkpoint function when treated with MMS at 37° C. We analysed the involvement of Crb2 in the S/M checkpoint by blocking DNA replication with hydroxyurea, by using S phase cdc mutants, or by overexpression of the mutant PCNA L68S. Both crb2 mutants were unable to maintain the S/M checkpoint at 37° C. Furthermore, the crb2 + gene was required, together with the cds1 + gene, for the S/M checkpoint at 30° C. Finally, both the crb2 deletion and the crb2-1 allele induced a rapid death phenotype in the polδts3 background at both 30° C and 37° C. The rapid death phenotype was independent of the checkpoint functions. Received: 25 May 1998 / Accepted: 21 September 1998  相似文献   

16.
Since Saccharomyces cerevisiae contains Δ9 fatty acid desaturase (OLE1) as a sole fatty acid desaturase, it produces saturated and monounsaturated fatty acids of 16- and 18-carbon compounds. We showed earlier that Kluyveromyces lactis Δ12 (KlFAD2) and ω3 (KlFAD3) fatty acid desaturase genes enabled S. cerevisiae to make also polyunsaturated fatty acids (PUFAs), linoleic (18:2n-6), and α-linolenic (18:3n-3) acids. Unlike Δ9 fatty acid desaturase Ole1p, the two added fatty acid desaturases (KlFAD2and KlFAD3) do not contain a cytochrome b5 domain, and we now report on effects of the overexpression of K. lactis and S. cerevisiae cytochrome b5 (CYB5) genes as well as temperature effects on PUFA synthesis. Without extra cytochrome b5, while PUFA synthesis is significant at low temperature (20 °C), it was marginal at 30 °C. Overexpression of cytochrome b5 at 20 °C did not affect the fatty acid synthesis so much, but it significantly enhanced the synthesis of PUFA at 30 °C.  相似文献   

17.
The enzyme O6-methylguanine-DNA methyltransferase (MGMT) is the most common form of cellular defense against the biological effects of O6-methylguanine (O6-MeG) in DNA. Based on PCR amplification using primers derived from conserved amino acid sequences of MGMTs from 11 species, we isolated the DNA region coding for MGMT from the hyperthermophilic archaeon Pyrococcus sp. KOD1. The MGMT gene from KOD1 (mgtk) comprises 522 nucleotides, encoding 174 amino acid residues; its product shows considerable similarity to the corresponding mammalian, yeast and bacterial enzymes, especially around putative methyl acceptor sites. Phylogenetic analysis of MGMTs showed that archaeal MGMTs were grouped with their bacterial counterparts. The location of the MGMT gene on the KOD1 chromosome was also determined. The cloned KOD1 MGMT gene was overexpressed using the T7 RNA polymerase expression system, and the recombinant protein was purified by ammonium sulfate fractionation, heat treatment, ion-exchange chromatography and gel filtration chromatography. The purified recombinant protein was assayed for its enzyme activity by monitoring transfer of [3H]methyl groups from the substrate DNA to the MGMT protein; the activity was found to be stable at 90° C for at least 30 min. When the mgtk gene was placed under the control of the lac promoter and expressed in the methyltransferase-deficient Escherichia coli strain KT233 (Δada, Δogt) cells, a MGMT was produced. The enzyme was functional in vivo and complemented the mutant phenotype, making the cells resistant to the cytotoxic properties of the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine. Received: 2 October 1997 / Accepted: 28 November 1997  相似文献   

18.
Isochrysis galbana, a marine prymnesiophyte microalga, is able to produce a high level of long chain polyunsaturated fatty acids such as docosahexaenoic acid (DHA, C22:6n-3). In this article, a novel gene (IgASE2) that encoded a C18-Δ9 polyunsaturase fatty acids specific (C18-Δ9-PUFAs-specific) elongase was isolated and characterized from DHA-rich microalga, I. galbana H29. A full-length cDNA of 1653 bp was cloned by rapidamplification of cDNA ends (RACE) PCR techniques. The IgASE2 contained a 786 bp ORF encoding a protein of 261 amino acids that shared 87% identity with the reported Δ9-elongase IgASE1, a 44 bp 5′ untranslated region and an 823 bp 3′ untranslated region. The function of IgASE2 was demonstrated by its heterologous expression in Saccharomyces cerevisiae. In S. cerevisiae, IgASE2 elongated linoleic acid (LA, C18:2n-6), α-linolenic (ALA, C18:3n-3) to eicosadienoic acid (EDA, C20:2n-6) and eicosatrienoic acid (ETrA, C20:3n-3). The conversion ratios of LA to EDA and ALA to ETrA were 60.47 and 58.36%, respectively. However, IgASE2 could not catalyze the elongation reactions of oleic acid (OA, C18:1n-9) and other fatty acids. These results confirmed that IgASE2 had C18-Δ9-PUFAs-specific elongase activity.  相似文献   

19.
Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides and thereby provides the precursors required for DNA synthesis and repair. In an attempt to test cell resistance to a permanent replicational stress, we constructed a mutant Saccharomyces cerevisiae strain containing exclusively nonrecyclable catalytic subunits of RNR that become inactivated following the reduction of one ribonucleoside diphosphate. In this rnr1C883A rnr3Δ mutant, the synthesis of each deoxyribonucleotide thus requires the production of one Rnr1C883A protein, which means that 26 million Rnr1C883A proteins (half the protein complement of a wild-type cell) have to be produced during each cell cycle. rnr1C883A rnr3Δ cells grow under constant replicational stress, as evidenced by the constitutive activation of the checkpoint effector Rad53, and their S phase is considerably extended compared to the wild type. rnr1C883A rnr3Δ mutants also display additional abnormalities such as a median cell volume increased by a factor of 8, and the presence of massive inclusion bodies. However, they exhibit a good plating efficiency and can be propagated indefinitely. rnr1C883A rnr3Δ cells, which can be used as a protein overexpression system, thus illustrate the robustness of S. cerevisiae to multiple physiological parameters.  相似文献   

20.
Unlike their counterparts in budding yeast Saccharomyces cerevisiae, the glycoproteins of Schizosaccharomyces pombe contain, in addition to α-d-mannose (Man), a large number of α-d-galactose (Gal) residues. In both yeasts, large outer chains are attached to the oligosaccharide cores of glycoproteins during export via Golgi. Formation of the yeast-specific large outer chain is initiated by α-1,6-mannosylatransferase encoded by the och1 + gene, the disruption of which blocked outer chain elongation. We previously reported that N-linked oligosaccharide structures of S. pombe och1Δ mutant consisted of Gal2–6Man9GlcNAc2 with α-linked Gal residues attached to the core oligosaccharide moiety. The disruption of gms1 +, a gene encoding the UDP-galactose transporter required for the synthesis of galactomannan, abolished cell surface galactosylation in S. pombe. In this study, we constructed a gms1Δoch1Δ double mutant and determined the N- and O-linked oligosaccharide structures present on the cell surface. Oligosaccharides were liberated from glycoproteins by hydrazinolysis and labeled with the fluorophore, 2-aminopyridine. The pyridylaminated N-linked oligosaccharides were analyzed by high-performance liquid chromatography in combination with α1,2-mannosidase digestion and partial acetolysis. These analyses revealed that the N-linked oligosaccharides of gms1Δoch1Δ cells consisted of α1,2-linked Man-extended core oligosaccharides (Man8–12GlcNAc2) from which the fission yeast-specific α-linked Gal residues were completely absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号