首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
A library of total Clostridium novyi DNA was established and screened for the -toxin gene (tcn) by hybridization with oligonucleotides derived from a partial N-terminal sequence and by using specific antisera. Overlapping subgenic tcn fragments were isolated and subsequently the total sequence of tcn was determined. The 6534 nucleotide open reading frame encodes a polypeptide of Mr 250 166 and pI 5.9. The N-terminal -toxin (Tcn) sequence MLITREQLMKIASIP determined by Edman degradation confirmed the identity of the reading frame and the assignment of the translation start point. The toxin is not modified posttranslationally at its N-terminus nor does it consist of different subunits. Overall the amino acid sequence shows 48% homology between the Tcn and both toxins A (TcdA) and B (TcdB) of Clostridium difficile. The C-terminal 382 residues of Tcn constitute a repetitive domain similar to those reported for TcdA and TcdB of C. difficile. The individual repeat motifs of these three toxins consist of oligopeptides some 19–52 amino acids in length, arranged in four to five different groups. Genetic, biochemical and pharmacological data thus confirm that the three toxins belong to one subgroup, designated large clostridial cytotoxins (LCT). Further definition of their structure and detailed molecular action should allow the LCTs to be used tools for the analysis of microfilament assembly and function.  相似文献   

2.
The most potent toxins secreted by pathogenic bacteria contain enzymatic moieties that must reach the cytosol of target cells to exert their full toxicity. Toxins such as anthrax, diphtheria, and botulinum toxin all use three well-defined functional domains to intoxicate cells: a receptor-binding moiety that triggers endocytosis into acidified vesicles by binding to a specific host-cell receptor, a translocation domain that forms pores across the endosomal membrane in response to acidic pH, and an enzyme that translocates through these pores to catalytically inactivate an essential host cytosolic substrate. The homologous toxins A (TcdA) and Toxin B (TcdB) secreted by Clostridium difficile are large enzyme-containing toxins that for many years have eluded characterization. The cell-surface receptors for these toxins, the non-classical nature of the pores that they form in membranes, and mechanism of translocation have remained undefined, exacerbated, in part, by the lack of any structural information for the central ~1000 amino acid translocation domain. Recent advances in the identification of receptors for TcdB, high-resolution structural information for the translocation domain, and a model for the pore have begun to shed light on the mode-of-action of these toxins. Here, we will review TcdA/TcdB uptake and entry into mammalian cells, with focus on receptor binding, endocytosis, pore formation, and translocation. We will highlight how these toxins diverge from classical models of translocating toxins, and offer our perspective on key unanswered questions for TcdA/TcdB binding and entry into mammalian cells.  相似文献   

3.
Large clostridial glucosylating toxins (LCGTs) are produced by toxigenic strains of Clostridium difficile, Clostridium perfringens, Clostridium novyi and Clostridium sordellii. While most C. sordellii strains solely produce lethal toxin (TcsL), C. sordellii strain VPI9048 co‐produces both hemorrhagic toxin (TcsH) and TcsL. Here, the sequences of TcsH‐9048 and TcsL‐9048 are provided, showing that both toxins retain conserved LCGT features and that TcsL and TcsH are highly related to Toxin A (TcdA) and Toxin B (TcdB) from C. difficile strain VPI10463. The substrate profile of the toxins was investigated with recombinant LCGT transferase domains (rN) and a wide panel of small GTPases. rN‐TcsH‐9048 and rN‐TcdA‐10463 glucosylated preferably Rho‐GTPases but also Ras‐GTPases to some extent. In this respect, rN‐TcsH‐9048 and rN‐TcdA‐10463 differ from the respective full‐length TcsH‐9048 and TcdA‐10463, which exclusively glucosylate Rho‐GTPases. rN‐TcsL‐9048 and full length TcsL‐9048 glucosylate both Rho‐ and Ras‐GTPases, whereas rN‐TcdB‐10463 and full length TcdB‐10463 exclusively glucosylate Rho‐GTPases. Vero cells treated with full length TcsH‐9048 or TcdA‐10463 also showed glucosylation of Ras, albeit to a lower extent than of Rho‐GTPases. Thus, in vitro analysis of substrate spectra using recombinant transferase domains corresponding to the auto‐proteolytically cleaved domains, predicts more precisely the in vivo substrates than the full length toxins. Except for TcdB‐1470, all LCGTs evoked increased expression of the small GTPase RhoB, which exhibited cytoprotective activity in cells treated with TcsL isoforms, but pro‐apoptotic activity in cells treated with TcdA, TcdB, and TcsH. All LCGTs induced a rapid dephosphorylation of pY118‐paxillin and of pS144/141‐PAK1/2 prior to actin filament depolymerization indicating that disassembly of focal adhesions is an early event leading to the disorganization of the actin cytoskeleton.  相似文献   

4.

Background

Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin are binary exotoxins, which ADP-ribosylate actin in the cytosol of mammalian cells and thereby destroy the cytoskeleton. C2 and iota toxin consists of two individual proteins, an enzymatic active (A-) component and a separate receptor binding and translocation (B-) component. The latter forms a complex with the A-component on the surface of target cells and after receptor-mediated endocytosis, it mediates the translocation of the A-component from acidified endosomal vesicles into the cytosol. To this end, the B-components form heptameric pores in endosomal membranes, which serve as translocation channels for the A-components.

Methodology/Principal Findings

Here we demonstrate that a 7-fold symmetrical positively charged ß-cyclodextrin derivative, per-6-S-(3-aminomethyl)benzylthio-ß-cyclodextrin, protects cultured cells from intoxication with C2 and iota toxins in a concentration-dependent manner starting at low micromolar concentrations. We discovered that the compound inhibited the pH-dependent membrane translocation of the A-components of both toxins in intact cells. Consistently, the compound strongly blocked transmembrane channels formed by the B-components of C2 and iota toxin in planar lipid bilayers in vitro. With C2 toxin, we consecutively ruled out all other possible inhibitory mechanisms showing that the compound did not interfere with the binding of the toxin to the cells or with the enzyme activity of the A-component.

Conclusions/Significance

The described ß-cyclodextrin derivative was previously identified as one of the most potent inhibitors of the binary lethal toxin of Bacillus anthracis both in vitro and in vivo, implying that it might represent a broad-spectrum inhibitor of binary pore-forming exotoxins from pathogenic bacteria.  相似文献   

5.
The action of Clostridium difficile toxins A and B depends on inactivation of host small G-proteins by glucosylation. Cellular inositol hexakisphosphate (InsP6) induces an autocatalytic cleavage of the toxins, releasing an N-terminal glucosyltransferase domain into the host cell cytosol. We have defined the cysteine protease domain (CPD) responsible for autoprocessing within toxin A (TcdA) and report the 1.6 Å x-ray crystal structure of the domain bound to InsP6. InsP6 is bound in a highly basic pocket that is separated from an unusual active site by a β-flap structure. Functional studies confirm an intramolecular mechanism of cleavage and highlight specific residues required for InsP6-induced TcdA processing. Analysis of the structural and functional data in the context of sequences from similar and diverse origins highlights a C-terminal extension and a π-cation interaction within the β-flap that appear to be unique among the large clostridial cytotoxins.Clostridium difficile is a Gram-positive, spore-forming anaerobe that infects the colon and causes a range of disorders, including diarrhea, pseudomembranous colitis, and toxic megacolon (1, 2). Two large toxins, TcdA2 and TcdB (308 and 270 kDa, respectively) are recognized as the main virulence factors of C. difficile, although their relative importance is the subject of on-going study (3, 4). These proteins belong to a class of homologous toxins called large clostridial toxins (LCTs) and have been classified more broadly as AB toxins, wherein a B moiety is involved in the delivery of an enzymatic A moiety into the cytosol of a target cell. In LCTs, the A subunit is an N-terminal glucosyltransferase that inactivates small G-proteins, such as Rho, leading to cell rounding and apoptosis of the intoxicated cell (5, 6). The B subunit corresponds to the remainder of the toxin and is responsible for binding the target cell through a C-terminal receptor-binding domain (79) and forming the membrane pore needed for translocation of the A subunit (10, 11). Unlike other known AB toxins, the glucosyltransferase A domains of LCTs are released from the B subunits by an autoproteolytic cleavage event (12). Cleavage is triggered by host inositol phosphates and the reducing environment of the cytosol (12).In LCTs, autoproteolysis has been attributed to a cysteine protease activity located within the N-terminal region of the B subunit (13). This region was identified based on homology with the cysteine protease domain (CPD) found in the multifunctional autoprocessing repeats in toxins (MARTX) toxins from Gram-negative bacteria (14). Autoprocessing in the MARTX toxin from Vibrio cholera (VcRTx) is also stimulated by InsP6 (15). A recent crystal structure of VcRTx CPD bound to InsP6 suggests a novel mechanism of InsP6-induced allosteric activation (16). The CPDs of TcdA and VcRTx share only 19% sequence identity. To gain insight into the mechanistic commonalities between these entirely different toxins and to delineate the LCT-specific modes of InsP6-induced processing, we performed structural and functional analyses on the cysteine protease from TcdA.  相似文献   

6.

Background  

Major Clostridium difficile virulence factors are the exotoxins TcdA and TcdB. Due to the large size and poor stability of the proteins, the active recombinant TcdA and TcdB have been difficult to produce.  相似文献   

7.
《MABS-AUSTIN》2013,5(2):190-198
The pathogenicity of Clostridium difficile (C. difficile) is mediated by the release of two toxins, A and B. Both toxins contain large clusters of repeats known as cell wall binding (CWB) domains responsible for binding epithelial cell surfaces. Several murine monoclonal antibodies were generated against the CWB domain of toxin A and screened for their ability to neutralize the toxin individually and in combination. Three antibodies capable of neutralizing toxin A all recognized multiple sites on toxin A, suggesting that the extent of surface coverage may contribute to neutralization. Combination of two noncompeting antibodies, denoted 3358 and 3359, enhanced toxin A neutralization over saturating levels of single antibodies. Antibody 3358 increased the level of detectable CWB domain on the surface of cells, while 3359 inhibited CWB domain cell surface association. These results suggest that antibody combinations that cover a broader epitope space on the CWB repeat domains of toxin A (and potentially toxin B) and utilize multiple mechanisms to reduce toxin internalization may provide enhanced protection against C. difficile-associated diarrhea.  相似文献   

8.
CNF and DNT     
The actin cytoskeleton of mammalian cells is involved in many processes that affect the growth and colonization of bacteria, such as migration of immune cells, phagocytosis by macrophages, secretion of cytokines, maintenance of epithelial barrier functions and others. With respect to these functions, it is not surprising that many bacterial protein toxins, which are important virulence factors and causative agents of human and/or animal diseases, target the actin cytoskeleton of the host. Some toxins target actin directly, such as the C2 toxin produced by Clostridium botulinum. Moreover, bacterial toxins target the cytoskeleton indirectly by modifying actin regulators such as the low-molecular-mass guanosine triphosphate (GTP)-binding proteins of the Rho family. Remarkably, toxins affect these GTPases in a bidirectional manner. Some toxins inhibit and some activate the GTPases. Here we review the Rho-activating toxins CNF1 and CNF2 (cytotoxic necrotizing factors) from Escherichia coli, the Yersinia CNFY and the dermonecrotic toxin (DNT) from Bordetella species. We describe and compare their uptake into mammalian cells, mode of action, structure–function relationship, substrate specificity and role in diseases.  相似文献   

9.
The action ofClostridium perfringens cytotoxic enterotoxins may be activated/exacerbated both in vivo and in vitro by the addition of an activator molecule present in a brush border membrane fraction isolated from young rabbits. Increased concentrations of the activator could be induced by immunologically stimulating rabbits with Ribi adjuvant. Comparative studies suggested that the activator was interferon-gamma (IFN-). In vitro IFN- sensitized cell lines apparently by enhancement of cell permeability, which allowed a more rapid uptake of the toxins, resulting in cell death at lower toxin concentrations. Viral and/or bacterial infections are inducers of IFNs. We propose that some immunologically immature infants are predisposed to infection. In the weeks prior to death, these infants may suffer from an infection that induces the synthesis of IFNs, sensitizing the infant to a more virulent infection and possible sudden death.Florida Agricultural Experiment Station Journal Series No. R-02380  相似文献   

10.
11.
A cysteine protease domain (CPD) has been recently discovered in a group of multifunctional, autoprocessing RTX toxins (MARTX) and Clostridium difficile toxins A and B. These CPDs (referred to as CPDmartx) autocleave the toxins to release domains with toxic effects inside host cells. We report identification and computational analysis of CPDadh, a new cysteine peptidase family homologous to CPDmartx. CPDadh and CPDmartx share a Rossmann‐like structural core and conserved catalytic residues. In bacteria, domains of the CPDadh family are present at the N‐termini of a diverse group of putative cell‐cell interaction proteins and at the C‐termini of some RHS (recombination hot spot) proteins. In eukaryotes, catalytically inactive members of the CPDadh family are found in cell surface protein NELF (nasal embryonic LHRH factor) and some putative signaling proteins.  相似文献   

12.
The intron-encoded endonuclease I-CeuI fromChlamydomonas eugametos was shown to cleave the circular chromosomes of allClostridium perfringens strains examined at single sites in the rRNA operons, thereby generating ten fragments suitable for the rapid mapping of virulence genes by pulsed-field gel electrophoresis (PFGE). This method easily distinguishes between plasmid and chromosomal localisations, as I-CeuI only cuts chromosomal DNA. Using this approach, the genes for three of the four typing toxins,, , and, in addition to the enterotoxin and-toxin genes, were shown to be plasmid-borne. In a minority of strains, associated with food poisoning, where the enterotoxin toxin gene was located on the chromosome, genes for two of the minor toxins, and, were missing.  相似文献   

13.
MARTX (multifunctional autoprocessing repeats‐in‐toxin) family toxins are produced by Vibrio cholerae, Vibrio vulnificus, Aeromonas hydrophila and other Gram‐negative bacteria. Effector domains of MARTX toxins cross the cytoplasmic membrane of a host cell through a putative pore formed by the toxin's glycine‐rich repeats. The structure of the pore is unknown and the translocation mechanism of the effector domains is poorly understood. We examined the thermodynamic stability of the effector domains of V. cholerae and A. hydrophila MARTX toxins to elucidate the mechanism of their translocation. We found that all but one domain in each toxin are thermodynamically unstable and several acquire a molten globule state near human physiological temperatures. Fusion of the most stable cysteine protease domain to the adjacent effector domain reduces its thermodynamic stability ~ 1.4‐fold (from 21.8 to 16.1 kJ mol?1). Precipitation of several individual domains due to thermal denaturation is reduced upon their fusion into multi‐domain constructs. We speculate that low thermostability of the MARTX effector domains correlates with that of many other membrane‐penetrating toxins and implies their unfolding for cell entry. This study extends the list of thermolabile bacterial toxins, suggesting that this quality is essential and could be susceptible for selective targeting of pathogenic toxins.  相似文献   

14.
A portion of the toxin A gene ofClostridium difficile was cloned into pBR322 withEscherichia coli Chi 1776 as the host. Five identical clones, each containing a 4.7-kbPstI restriction endonuclease fragment and producing toxin A antigens, were detected with affinity-purified, monospecific antibodies against toxin A. Digestion of the cloned DNA withPstI revealed as internal restriction site that resulted in two fragments (2.1 and 2.6 kb in size). Probe DNA from either of these fragments hybridized with DNA in the 4.7 kb region ofPstI-digested, high-molecular-weight DNA from the sourceC. difficile strain, indicating that the internalPstI site is protected. The probe DNA also hybridized with restriction-digested DNA from five additional toxigenic strains, but it did not hybridize with DNA from four nontoxigenic strains. In addition, a DNA fragment from a toxigenic strain ofClostridium sordellii, whose toxin cross-reacts with antibody toC. difficile toxin A, hybridized with the clonedC. difficile DNA. Unlike native toxin A, the cell lysate from the recombinant clone was not cytotoxic to Chinese hamster ovary cells or enterotoxic in hamsters. It did agglutinate rabbit red blood cells, a characteristic of toxin A. The cell lysate also exhibited a line of partial identity when compared with purified toxin A in Ouchterlony assays, and it reacted with monoclonal antibody to toxin A in an enzyme-linked immunosorbent assay. The cloned DNA appears to code for a nontoxic binding portion of toxin A, which is responsible for binding to galactose-1-3-galactose-1-4-N-acetylglucosamine.A preliminary report of this work has been presented by S.B. Price and J.L. Johnson, Abstracts of the Annual Meeting of the American Society for Microbiology, 1986:67.  相似文献   

15.
Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44+ melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins.  相似文献   

16.
Clostridial glucosylating cytotoxins inactivate mammalian Rho GTPases by mono-O glucosylation of a conserved threonine residue located in the switch 1 region of the target protein. Here we report that EhRho1, a RhoA-like GTPase from the protozoan parasite Entamoeba histolytica, is glucosylated by clostridial cytotoxins. Recombinant glutathione S-transferase-EhRho1 and EhRho1 from cell lysate of Entamoeba histolytica were glucosylated by Clostridium difficile toxin B and Clostridium novyi alpha-toxin. In contrast, Clostridium difficile toxin A, which shares the same mammalian protein substrates with toxin B, did not modify EhRho1. Change of threonine 52 of EhRho1 to alanine prevented glucosylation by toxin B from Clostridium difficile and by alpha-toxin from Clostridium novyi, which suggests that the equivalent threonine residues are glucosylated in mammalian and Entamoeba Rho GTPases. Lethal toxin from Clostridium sordellii did not glucosylate EhRho1 but labeled several other substrate proteins in lysates from Entamoeba histolytica in the presence of UDP-[14C]glucose.  相似文献   

17.
Clostridium difficile toxin B (TcdB) intoxicates target cells by glucosylating Rho GTPases. TcdB (269 kDa) consists of at least 4 functional domains including a glucosyltransferase domain (GTD), a cysteine protease domain (CPD), a translocation domain (TD), and a receptor binding domain (RBD). The function and molecular mode of action of the TD, which is the largest segment of TcdB and comprises nearly 50% of the protein, remain largely unknown. Here we show that a 97-amino-acid segment (AA1756 – 1852, designated as ?97 or D97), located in the C-terminus of the TD and adjacent to the RBD, is essential for the cellular activity of TcdB. Deletion of this segment in TcdB (designated as TxB-D97), did not adversely alter toxin enzymatic activities or its cellular binding and uptake capacity. TxB-D97 bound to and entered cells in a manner similar to TcdB holotoxin. Both wild type and mutant toxins released their GTDs similarly in the presence of inositol hexakisphosphate (InsP6), and showed a similar glucosyltransferase activity in a cell-free glucosylating assay. Despite these similarities, the cytotoxic activity of TxB-D97 was reduced by more than 5 logs compared to wild type toxin, supported by the inability of TxB-D97 to glucosylate Rac1 of target cells. Moreover, the mutant toxin failed to elicit tumor necrosis factor alpha (TNF-α) in macrophages, a process dependent on the glucosyltransferase activity of the toxin. Cellular fractionation of toxin-exposed cells revealed that TxB-D97 was unable to efficiently release the GTD into cytosol. Thereby, we conclude the 97-amino-acid region of the TD C-terminus of TcdB adjacent to the RBD, is essential for the toxicity of TcdB.  相似文献   

18.
The pathogenicity of Clostridium difficile (C. difficile) is mediated by the release of two toxins, A and B. Both toxins contain large clusters of repeats known as cell wall binding (CWB) domains responsible for binding epithelial cell surfaces. Several murine monoclonal antibodies were generated against the CWB domain of toxin A and screened for their ability to neutralize the toxin individually and in combination. Three antibodies capable of neutralizing toxin A all recognized multiple sites on toxin A, suggesting that the extent of surface coverage may contribute to neutralization. Combination of two noncompeting antibodies, denoted 3358 and 3359, enhanced toxin A neutralization over saturating levels of single antibodies. Antibody 3358 increased the level of detectable CWB domain on the surface of cells, while 3359 inhibited CWB domain cell surface association. These results suggest that antibody combinations that cover a broader epitope space on the CWB repeat domains of toxin A (and potentially toxin B) and utilize multiple mechanisms to reduce toxin internalization may provide enhanced protection against C. difficile-associated diarrhea.Key words: Clostridium difficile, toxin neutralization, therapeutic antibody, cell wall binding domains, repeat proteins, CROPs, mAb combinationThe most common cause of nosocomial antibiotic-associated diarrhea is the gram-positive, spore-forming anaerobic bacillus Clostridium difficile (C. difficile). Infection can be asymptomatic or lead to acute diarrhea, colitis, and in severe instances, pseudomembranous colitis and toxic megacolon.1,2The pathological effects of C. difficile have long been linked to two secreted toxins, A and B.3,4 Some strains, particularly the virulent and antibiotic-resistant strain 027 with toxinotype III, also produce a binary toxin whose significance in the pathogenicity and severity of disease is still unclear.5 Early studies including in vitro cell-killing assays and ex vivo models indicated that toxin A is more toxigenic than toxin B; however, recent gene manipulation studies and the emergence of virulent C. difficile strains that do not express significant levels of toxin A (termed “A B+”) suggest a critical role for toxin B in pathogenicity.6,7Toxins A and B are large multidomain proteins with high homology to one another. The N-terminal region of both toxins enzymatically glucosylates small GTP binding proteins including Rho, Rac and CDC42,8,9 leading to altered actin expression and the disruption of cytoskeletal integrity.9,10 The C-terminal region of both toxins is composed of 20 to 30 residue repeats known as the clostridial repetitive oligopeptides (CROPs) or cell wall binding (CWB) domains due to their homology to the repeats of Streptococcus pneumoniae LytA,1114 and is responsible for cell surface recognition and endocytosis.12,1517C. difficile-associated diarrhea is often, but not always, induced by antibiotic clearance of the normal intestinal flora followed by mucosal C. difficile colonization resulting from preexisting antibiotic resistant C. difficile or concomitant exposure to C. difficile spores, particularly in hospitals. Treatments for C. difficile include administration of metronidazole or vancomycin.2,18 These agents are effective; however, approximately 20% of patients relapse. Resistance of C. difficile to these antibiotics is also an emerging issue19,20 and various non-antibiotic treatments are under investigation.2025Because hospital patients who contract C. difficile and remain asymptomatic have generally mounted strong antibody responses to the toxins,26,27 active or passive immunization approaches are considered hopeful avenues of treatment for the disease. Toxins A and B have been the primary targets for immunization approaches.20,2833 Polyclonal antibodies against toxins A and B, particularly those that recognize the CWB domains, have been shown to effectively neutralize the toxins and inhibit morbidity in rodent infection models.31 Monoclonal antibodies (mAbs) against the CWB domains of the toxins have also demonstrated neutralizing capabilities; however, their activity in cell-based assays is significantly weaker than that observed for polyclonal antibody mixtures.3336We investigated the possibility of creating a cocktail of two or more neutralizing mAbs that target the CWB domain of toxin A with the goal of synthetically re-creating the superior neutralization properties of polyclonal antibody mixtures. Using the entire CWB domain of toxin A, antibodies were raised in rodents and screened for their ability to neutralize toxin A in a cell-based assay. Two mAbs, 3358 and 3359, that (1) both independently demonstrated marginal neutralization behavior and (2) did not cross-block one another from binding toxin A were identified. We report here that 3358 and 3359 use differing mechanisms to modify CWB-domain association with CHO cell surfaces and combine favorably to reduce toxin A-mediated cell lysis.  相似文献   

19.
Clostridium difficile infection (CDI) is the leading cause of hospital and community-acquired antibiotic-associated diarrhoea and currently represents a significant health burden. Although the role and contribution of C. difficile toxins to disease pathogenesis is being increasingly understood, at present other facets of C. difficile-host interactions, in particular, bacterial-driven effects on host immunity remain less studied. Using an ex-vivo model of infection, we report that the human gastrointestinal mucosa elicits a rapid and significant cytokine response to C. difficile. Marked increase in IFN-γ with modest increase in IL-22 and IL-17A was noted. Significant increase in IL-8 suggested potential for neutrophil influx while presence of IL-12, IL-23, IL-1β and IL-6 was indicative of a cytokine milieu that may modulate subsequent T cell immunity. Majority of C. difficile-driven effects on murine bone-marrow-derived dendritic cell (BMDC) activation were toxin-independent; the toxins were however responsible for BMDC inflammasome activation. In contrast, human monocyte-derived DCs (mDCs) released IL-1β even in the absence of toxins suggesting host-specific mediation. Infected DC-T cell crosstalk revealed the ability of R20291 and 630 WT strains to elicit a differential DC IL-12 family cytokine milieu which culminated in significantly greater Th1 immunity in response to R20291. Interestingly, both strains induced a similar Th17 response. Elicitation of mucosal IFN-γ/IL-17A and Th1/Th17 immunity to C. difficile indicates a central role for this dual cytokine axis in establishing antimicrobial immunity to CDI.  相似文献   

20.
Several recent reports have described large numbers of monoclonal antibodies that cross-react with toxins A and B ofClostridium difficile; this suggests that the toxins share major epitopes. Our results show that monoclonal antibodies (MAb) against other antigens bind nonspecifically to both toxins. Therefore, we believe that the cross-reacting MAb bind by this manner and not by a true immune reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号