首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saline washed red blood cells of the toadfish convert [1-14C] arachidonic acid to products that cochromatograph with prostaglandin E2 and prostaglandin F. This synthesis is inhibited by indomethacin (10 μg/ml). Conversion of arachidonic acid to prostaglandin E2 was confirmed by mass spectrometry. When saline washed toadfish red blood cells were incubated with a mixture of [1-14C]-arachidonic acid and [5,6,8,9,11,12,14,15,-3H]-arachidonic acid, comparison of the isotope ratios of the radioactive products indicated that prostaglandin F was produced by reduction of prostaglandin E2. The capacity of toadfish red blood cells to reduce prostaglandin E2 to prostaglandin F was confirmed by incubation of the cells with [1-14C] prostaglandin E2.  相似文献   

2.
Slices of rabbit renal medulla and rabbit renal papilla were incubated with a mixture of [1-14C]-arachidonic acid and [5,6,8,9,11,12,14,15-3H]-arachidonic acid. In both tissues, comparison of the isotope ratios of the radioactive products with the isotope ratio of the added arachidonic indicated that: (a) there was no discernable isotope effect in the biosynthesis of prostaglandin E2; (b) prostaglandin F2α was formed by reduction of prostaglandin H2 and not by reduction of prostaglandin E2; and (c) most of the radioactive product arose from arachidonic acid that had been incorporated into the tissue and not from the direct action of cyclooxygenase on arachidonic acid in the medium.  相似文献   

3.
The synthesis of prostacyclin and prostaglandins was examined in isolated blood-free brain capillaries of guinea-pigs and rats using 1-14C-arachidonic acid as a precursor. The main prostaglandins synthesized by guinea-pig microvessels were prostaglandin D2 and prostaglandin E2. Substantially less prostaglandin F2α or the prostacyclin stable metabolite, 6-oxo-prostaglandin F1α was synthesized. Rat capillary prostaglandin distribution differed substantially from that of the guinea-pigs although the principle prostaglandin was also PGD2. Total prostaglandin conversion was greater in guinea-pig capillaries than in the rat.Norepinephrine stimulated the prostaglandin forming capacity of blood free cerebral microvasculature of guinea-pigs. Prostacyclin and prostaglandins could be involved in the activity dependent regulation of regional cerebral blood flow and permeability.  相似文献   

4.
The conversion of 1-14C-arachidonic acid into prostaglandin E2 was studied in lysed human platelets. Optimum production of the labeled reaction product was obtained when reduced glutathione and hydroquinone were included in the incubations. The labeled product was characterized by silicic acid column chromatography, thin-layer chromatography, and gas-liquid chromatography and was found to behave as standard prostaglandin E2. The results indicate that the prostaglandin synthetase in the human blood platelet is similar to prostaglandin synthetases found in other tissues.  相似文献   

5.
C3b or lipopolysaccharide treatment of human peripheral blood monocytes in culture stimulates an early release of thromboxane B2 and a delayed release of prostaglandin E into culture supernatants. Immunoreactive thromboxane B2 release is maximal from 2–8 h, whereas prostaglandin E release is maximal from 16–24 h after stimulation of monocytes in culture. We further examined this process by comparing the time course of labelled prostaglandin E2, prostaglandin E1 and thromboxane B2 release from human monocytes which were pulse or continuously labelled with [3H]arachidonic acid and [14C]eicosatrienoic acid. The release of labelled eicosanoids was compared with the release of immunoreactive prostaglandin E and thromboxane B2. The time course of prostaglandin E2 release was virtually identical to the release of prostaglandin E1 in all culture supernatants regardless of labelling conditions. However, release of immunoreactive prostaglandin E paralleled the release of labelled prostaglandin E1 and E2 only for continuously labelled cultures. The release of labelled prostaglandin E1 and E2 from pulse labelled cultures paralleled the release of thromboxane B2 and not immunoreactive prostaglandin. In contrast, labelled and immunoreactive thromboxane B2, quantitated in the same culture supernatants, demonstrated similar release patterns regardless of labelling conditions. These findings indicate that the differential pattern of prostaglandin E and thromboxane B2 release from human monocytes is not related to a time-dependent shift in the release of prostaglandin E1 relative to prostaglandin E2. Because thromboxane B2 and prostaglandin E2 are produced through cyclooxygenase mediated conversion of arachidonic acid, these results further suggest that prostaglandin E2 and thromboxane B2 are independently metabolized in human monocyte populations.  相似文献   

6.
The fetus and prematurely delivered newborn lamb have high concentrations of circulating PGE2 that may play a hormonal role, particularly in maintaining the patency of the ductus arteriosus. We studied the ability of the isolated, perfused lung from immature (100 ± 150 days) lamb fetuses to metabolize PGE2 as a function of PGE2 concentration in the perfusate. After an intra-arterial infusion of 3H-PGE2 and 14C-inulin (to act as a marker of extracellular space), the bulk of the 14C-inulin was rapidly cleared through the isolated lung and the majority of the 3H activity appeared after the 14C activity had fallen to negligible values. The 3H activity that was retained longer in the lung was primarily associated with the 15-keto prostaglandin E2 and 15-keto-13,14 dihydro prostaglandin E2 metabolites. Lungs from immature fetal lambs metabolized 25% less PGE2 than did lungs from animals near term. This is consistent with our prior observation that premature lambs have decreased plasma clearance rates (in vivo) and elevated circulating concentrations of PGE2 when compared with term newborn lambs.  相似文献   

7.
Abstract: Potassium depolarization of rat brain synaptosomes (containing incorporated l-acyl-2-[14C]arachidonyl-phosphatidylcholine) stimulated endogenous phospholipase A1 (EC 3.1.1.32) and A2 (EC 3.1.1.4), as determined by the formation of [14C]lysophosphatidylcholine, [14C]arachidonate, and [14C]prostaglandins, and also stimulated the secretion of [3H]catecholamines. The phospholipase A2 stimulation, dependent on calcium, was elicited in resting synaptosomes by A23187 and was demonstrated with incorporated 1-acyl-2-[l4C]oleoyl-phosphatidylcholine but not with incorporated [I4C]phosphatidylethanolamine or [l4C]phosphatidylserine. Inhibitors of phospholipase A2 [p-bromophenacylbromide (10 μM), trifluoperazine (3 μM), and quinacrine (3 μM) reduced the potassium-stimulated [3H]catecholamine release from synaptosomes to 78, 39. and 55%, respectively, of depolarized controls. The addition of lysophosphatidylcholine increased the release of [3H]norepinephrine to levels observed with potassium depolarization, whereas lysophosphatidylethanolamine, lysophosphatidylserine, and sodium dodecyl sulfate were much less effective. Potassium stimulation of synaptosomes increased the endogenous levels of free arachidonic acid and prostaglandins E2 and F. Indomethacin and aspirin decreased the amounts of prostaglandins formed, allowed the accumulation of free arachidonic acid, and diminished the potassium-stimulated release of [3H]dopamine. p-Bromophenacylbromide inhibited the formation of prostaglandin F. Addition of prostaglandin E2 inhibited, whereas prostaglandin F enhanced the release of [3H]norepinephrine. These results suggest that calcium influx induced by synaptosomal depolarization activates endogenous phospholipase A2, with subsequent formation of lysophosphatidylcholine and prostaglandins, both of which may modulate neurosecretion.  相似文献   

8.
Abstract: We have recently shown that brain slices are capable of metabolizing arachidonic acid by the epoxy-genase pathway. The purpose of this study was to begin to determine the ability of individual brain cell types to form epoxygenase metabolites. We have examined the astrocyte epoxygenase pathway and have also confirmed metabolism by the cyclooxygenase and lipoxygenase enzyme systems. Cultured rat hippocampal astrocyte homogenate, when incubated with radiolabeled [3H]-arachidonic acid, formed products that eluted in four major groups designated as R17–30, R42–50, R51–82, and R83–90 based on their retention times in reverse-phase HPLC. These fractions were further segregated into as many as 13 peaks by normal-phase HPLC and a second reverse-phase HPLC system. The principal components in each peak were structurally characterized by gas chromatography/electron impact-mass spectrometry. Based on HPLC retention times and gas chromatography/electron impactmass spectrometry analysis, the more polar fractions (R17–30) contained prostaglandin D2 as the major cyclooxygenase product. Minor products included 6-keto prostaglandin F, prostaglandin E2, prostaglandin F, and thromboxane B2. Fractions R42–50, R51–82. and R83–90 contained epoxygenase and lipoxygenase-like products. The major metabolite in fractions R83–90 was 5, 6-epoxyeicosatrienoic acid (EET). Fractions R51–82 contained 14, 15-and 8, 9-EETs, 12-and 5-hydroxyeicosatetraenoic acids, and 8, 9-and 5, 6-dihydroxyeicosatrienoic acids (DHETs). In fractions R42–50, 14, 15-DHET was the major product. When radiolabeled [3H]14, 15-EET was incubated with astrocyte homogenate, it was rapidly metabolized to [3H]14, 15-DHET. The metabolism was inhibited by submicromolar concentration of 4-phenylchalcone oxide, a potent inhibitor of epoxide hydrolase activity. Formation of other polar metabolites such as triols or epoxyalcohols from 14, 15-DHET was not observed. In conclusion, astro-cytes readily metabolize arachidonic acid to 14, 15-EET, 5, 6-EET, and their vicinal-diols. Previous studies suggest these products may affect neuronal function and cerebral blood flow.  相似文献   

9.
Isolated rabbit kidneys were perfused with 37°C Krebs-Henseleit solution aerated with 95% O2 + 5% CO2. Perfusion rate was varied from 1 to 10 ml/min. This was accompanied by parallel changes of perfusion pressure, prostaglandin excretion and release of radioactivity from kidneys with 14C-arachidonic acid incorporated into the tissue lipid pool. It is suggested that enhancement of perfusion rate raises the intrarenal pressure which increases renal prostaglandin release due to increased substrate availability.  相似文献   

10.
The effect of adenosine on the mouse thymocyte adenylate cyclase-adenosine 3′:5′-monophosphate (cyclic AMP) system was examined. Adenosine, like prostaglandin E1, can cause 5-fold or greater increases in thymocyte cyclic AMP content in the presence but not in the absence of certain cyclic phosphodiesterase inhibitors. Two non-methylxanthine inhibitors potentiated the prostaglandin E1 and adenosine responses, while methylxanthines selectively inhibited the adenosine response. Adenosine increased cyclic AMP content significantly wihtin 1 min and was maximal by 10 to 20 min with approx. 2 and 10 μM adenosine being minimal and half-maximal effective doses, respectively. Combinations of prostaglandin E1, isoproterenol and adenosine were near additive and not synergistic. Of the adenosine analogues tested, only 2-chloro- and 2-fluoroadenosine significantly increased cyclic AMP. Thymocytes prelabeled with [14C] adenine exhibited dramatic increases in cyclic [14C]AMP 10 min after addition of adenosine or prostaglandin E1 which corresponded to simultaneously determined increases in total cyclic AMP. Using [14C]adenosine, the percent of total cyclic AMP increase due to adenosine was only 16%. Adenosine was also shown to elicit a 40% increase in particulate thymocyte adenylate cyclase activity. Therefore, the increased content of cyclic AMP seen in mouse thymocytes after incubation with adenosine was due primarily to stimulation of adenylate cyclase and only partially to conversion of adenosine to cyclic AMP. The increased cellular content of cyclic AMP may be, in part, responsible for various immunosuppressive effects of adenosine.  相似文献   

11.
Prostacyclin (Prostaglandin I2) effects on the rat kidney adenylate cyclase-cyclic AMP system were examined. Prostaglandin I2 and prostaglandin E2, from 8 · 10?4 to 8 · ?7 M stimulated adenylate cyclase to a similar extent in cortex and outer medulla. In inner medulla, prostaglandin I2 was more effective than prostaglandin E2 at all concentrations tested. Both prostaglandin I2 and prostaglandin E2 were additive with antidiuretic hormone in outer and inner medulla. Prostaglandin I2 and prostaglandin E2 were not additive in any area of the kidney, indicating both were working by similar mechanisms. Prostaglandin I2 stimulation of adenylate cyclase correlated with its ability to increase renal slice cyclic AMP content. Prostaglandin I2 and prostaglandin E2 (1.5 · 10?4 M) elevated cyclic AMP content in cortex and outer medulla slices. In inner medulla, with Santoquin® (0.1 mM) present to suppress endogenous prostaglandin synthesis, prostaglandin I2 and prostaglandin E2 increased cyclic AMP content. 6-Ketoprostaglandin F, the stable metabolite of prostaglandin I2, did not increase adenylate cyclase activity or tissue cyclic AMP content. Thus, prostaglandin I2 activates renal adenylate cyclase. This suggests that the physiological actions of prostaglandin I2 may be mediated through the adenylate cyclase-cyclic AMP system.  相似文献   

12.
[3H]Prostaglandin D2 binding to rabbit platelets was increased by about 150% in the presence of β-adrenoceptor agonist, isoproterenol. The isoproterenol-induced potentiation of the [3H]prostaglandin D2 binding gave a bell-shaped dose-response relationship (maximum response at 3·10−8 M) in a stereospecific manner. Similar and moderate potentiation was obtained with terbutaline. On the other hand, β-adrenoceptor antagonists such as alprenolol, propranolol and butoxamine (β2-specific) had no potentiating effect on [3H]prostaglandin D2 binding; rather, they abolished the isoproterenol-induced increase of [3H]prostaglandin D2 binding. The β1-specific antagonist, metoprolol, did not have any effect. Rabbit platelets were found to possess one [3H]prostaglandin D2 binding site (Kd = 6·10−7 M, Bmax = 787 fmol/mg protein). In the presence of isoproterenol at 3·10−8 M, Bmax was increased with unaltering Kd value. Isoproterenol did not increase [3H]prostaglandin E1, [3H]prostaglandin E2 and [3H]prostaglandin F bindings to platelets. The potential effect of isoproterenol was mimicked by forskolin, theophylline, dibutyryl cyclic AMP, prostaglandin E1 and prostaglandin I2, but it was abolished by 2′, 5′-dideoxyadenosine, an inhibitor of adenylate cyclase, indicating that elevated level of cyclic AMP may be available for the induction of the increase of [3H]prostaglandin D2 binding. Prostaglandin D2-induced cyclic AMP synthesis and antiaggregation activity were also augmented in the presence of isoproterenol. These results suggest a β2-adrenoceptor-mediated cyclic AMP-dependent mechanism for the regulation of prostaglandin D2 receptor binding in rabbit platelets.  相似文献   

13.
Rat adipocyte plasma membranes sacs have been shown to be a sensitive and specific system for studying prostaglandin binding. The binding of prostaglandin E1 and prostaglandin A1 increases linearly with increasing protein concentration, and is a temperature-sensitive process. Prostaglandin E1 binding is not ion dependent, but is enhanced by GTP. Prostaglandin A1 binding is stimulated by ions, but is not affected by GTP.Discrete binding sites for prostaglandin E1 and A1 were found. Scatchard plot analysis showed that the binding of both prostaglandins was biphasic, indicating two types of binding sites. Prostaglandin E1 had association constants of 4.9 · 109 1/mole and 4 · 108 1/mole, while the prostaglandin A1 association constants and binding capacities varied according to the ionic composition of the buffer. In Tris-HCl buffer, the prostaglandin A1 association constants were 8.3 · 108 1/mole and 5.7 · 107 1/mole, while in the Krebs—Ringer Tris buffer, the results were 1.2 · 109 1/mole and 8.6 · 106 1/mole.Some cross-reactivity between prostaglandin E1 and A1 was found for their respective binding sites. Using Scatchard plot analysis, it was found that a 10-fold excess of prostaglandin E1 inhibited prostaglandin A1 binding by 1–20% depending upon the concentration of prostaglandin A1 used. Prostaglandin E1 competes primarily for the A prostaglandin high-affinity binding site. Similar Scatchard analysis using a 20-fold excess of prostaglandin A1 inhibited prostaglandin E1 binding by 10–40%. Prostaglandin A1 was found to compete primarily for the E prostaglandin low-affinity receptor.All of the bound [3H]prostaglandin E1, but only 64% of the bound [3H]-prostaglandin A1 can be recovered unmetabolized from the fat cell membrane. There is no non-specific binding of prostaglandin E1, but 10–15% of prostaglandin A1 binding to adipocyte membranes is non-specific. Using a parallel line assay to measure relative affinities for the E binding site, prostaglandin E1 > prostaglandin A2 > prostaglandin F. Prostaglandin E2 and 16,16-dimethyl prostaglandin E2 were equipotent with prostaglandin E1, while other prostaglandins had lower relative affinities. 7-Oxa-13-prostynoic acid does not appear to antagonize prostaglandin activity in adipocytes at the level of the receptor.  相似文献   

14.
Relationships between perinatal mortality, disrupted uteroplacental function and prostaglandin metabolism have been studied in Zn-deficient rats. Uterine contractility in vitro, placental blood flow in viro, and uterine and placental prostaglandin synthesis from [1?14C] arachidonic acid in vitro were investigated at day 22 of pregnancy. High amplitude uterine contractions were almost completely eliminated and utero-placental blood flow was decreased by 85% by Zn deficiency. Synthesis of [1?14C]-prostaglandin E2, F and 6-keto-F from [1?14C] arachidonic acid decreased significantly in uterine tissue but increased in placentae. These possibly inter-related effects may contribute to the high perinatal mortality observed in Zn deficiency.  相似文献   

15.
Mouse myeloid leukemia cells (Ml) were induced to differentiate into mature macrophages and granulocytes by various inducers. The differentiated Ml cells synthesized and released prostaglandins, whereas untreated Ml cells did not. When the cells were prelabelled with [14C]arachidonate, the major prostaglandins released into the culture media were found to be prostaglandin E2, D2, and F in an early stage of differentiation, but the mature cells produced predominantly prostaglandin E2. The synthesis and release of prostaglandins were completely inhibited by indomethacin. Dexamethasone, a potent inducer of differentiation of Ml cells, did not induce production of prostaglandins in resistant Ml cells that could not differentiate even with a high concentration of dexamethasone. These results suggest that production of prostaglandins in Ml cells is closely associated with differentiation of the cells. Homogenates of dexamethasone-treated Ml cells converted arachidonate to prostaglandins, but this conversion was scarcely observed with homogenates of untreated Ml cells. Dexamethasone and the other inducers stimulated the release of arachidonate from phospholipids. Therefore, induction of prostaglandin synthesis during differentiation of Ml cells may result from induction of prostaglandin synthesis activity and stimulation of the release of arachidonate from cellular lipids. Lysozyme activity, which is a typical biochemical marker of macrophages, was induced in Ml cells by prostaglandin E2 or D2 alone, as well as by inducers of differentiation of the cells, but it was not induced by arachidonate or prostaglandin F. These results suggest that prostaglandin synthesis is important in differentiation of myeloid leukemia cells.  相似文献   

16.
Here, the effect of CD14+ monocytes on human umbilical cord matrix stem cell (hUC-MSC)-mediated immunosuppression was studied in vitro. hUC-MSCs exerted a potent inhibitory effect on the proliferation and interferon-γ (IFN-γ) secretion capacities of CD4+ and CD8+ T cells in response to anti-CD3/CD28 stimulation. Transwell co-culture system revealed that the suppressive effect was primarily mediated by soluble factors. Addition of prostaglandin synthesis inhibitors (indomethacin or NS-398) almost completely abrogated the immunosuppression activity of hUC-MSCs, identifying prostaglandin E2 (PGE2) as an important soluble mediator. CD14+ monocytes were found to be able to enhance significantly the immunosuppressive effect of hUC-MSCs in a dose-dependent fashion. Moreover, the inflammatory cytokine IL-1β, either exogenously added or produced by CD14+ monocytes in culture, could trigger expression of high levels of PGE2 by hUC-MSCs, whereas inclusion of the IL-1 receptor antagonist (IL-1RA) in the culture down-regulated not only PGE2 expression, but also reversed the promotional effect of CD14+ monocytes and partially restored CD4+ and CD8+ T cell proliferation and IFN-γ secretion. Our data demonstrate an important role of monocytes in the hUC-MSC-induced immunomodulation, which may have important implications in future efforts to explore the clinical potentials of hUC-MSCs.  相似文献   

17.
Imidazole inhibits the enzymatic conversion of the endoperoxides (PGG2 and PGH2) to thromboxane A2 by platelet microsomes (IC50: 22 μg/ml; determined by bioassay). The inhibitor is selective, for prostaglandin cyclo-oxygenase is only affected at high doses. Radiochemical data confirms that imidazole blocks the formation of 14C-thromboxane B2 from 14C-PHG2. Several imidazole analogues and other substances were tested but only 1-methyl-imidadole was more potent that imidazole iteself. The use of imidazole of inhibit thromboxane formation could help to elucidate the role of thromboxanes in physiology or pathophysiology.  相似文献   

18.
Regulation of immune cell activation in lymphocyte-bearing human tissues is a pivotal host function, and metabolites of arachidonic acid (prostaglandin E2 in particular) have been reported to serve this function at non-mucosal sites. However, it is unknown whether prostaglandin E2 is immunoregulatory for the large lymphocyte population in the lamina propria of intestine; whether low (nM) concentrations of prostaglandin E2 modulate immune responses occurring there; and whether adjacent inflammation per se abrogates prostaglandin E2's regulatory effects. To address these issues, intestine-derived lymphocytes and T hybridoma cells were assessed, T cell activation was monitored by release of independently quantitated lymphokines, and dose-response studies were performed over an 8-log prostaglandin E2concentration range. IL-3 release by normal intestinal lamina propria mononuclear cells was reduced (up to 78%) in a dose-dependent manner by prostaglandin E2, when present in as low a concentration as 10−10M. PGE2 also inhibited(by ≥ 60%) mucosal T lymphocytes' ability to destabilize the barrier function of human epithelial monolayers. Further, with an intestine-derived T lymphocyte hybridoma cell line, a prostaglandin E2 dose-dependent reduction in IL-3 and IL-2 (90 and 95%, respectively) was found; this was true for both mitogen- and antigen-driven T cell lymphokine release. Concomitant [3H] thymidine uptake studies suggested this was not due to a prostaglandin E2-induced reduction in T cell proliferation or viability. In contrast, cells from chronically inflamed intestinal mucosa were substantially less sensitive to prostaglandin E2, e.g., high concentrations (10−6 M) of prostaglandin E2 inhibited IL-3 release by only 41%. We conclude that prostaglandin E2 in nM concentrations is an important modulator of cytokine release from T lymphocytes derived from the gastrointestinal tract, and it may play a central role in regulation of lamina propria immunocyte populations residing there. © 1996 Wiley-Liss, Inc.  相似文献   

19.
In gastrointestinal research the in vitro release of prostaglandins from incubated or cultured biopsies is a widely used method to estimate prostaglandin synthesis. We therefore investigated the rate limiting mechanisms of PGE2 release in organ cultured gastric mucosa of the rabbit, determining PGE2 secretion from organ cultured mucosal biopsies by radioimmunoassay and prostaglandin synthesizing capacity by in vitro incubation of mucosal homogenate or microsomes with [14C]-arachidonic acid.Freshly taken biopsies secreted PGE2 at an initial high rate, that decreased during the following 4 hrs of culture. This PGE2 release was dose dependently reduced by inhibitors of the prostaglandin cyclooxygenase. 5mM acetylsalicylic acid (ASA) maximally suppressed PGE2 secretion to 7% of controls, and the inhibition by ASA was quantitatively similar at every given culture period. PGE2 release was markedly increased by carbenoxolone but was only slightly activated by extracellular calcium and the Ca++-ionophore A23187. However, Ca++/A23187 were unable to maintain PGE2 secretion at the initial rate.PGE2 secretion was undisturbed in calcium-free medium but was reduced to 50–60% of controls by excess EDTA. The intracellular calcium chelator 1,2-bis-(2-aminophenoxy)-ethane-N,N,N′,N′,-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) similarly inhibited PGE2 release to 72% of controls. In contrast, PGE2 release was unaffected by the intracellular calcium antagonist 3,4,5-trimethylene-bis(4-formylpyridinium bromide) dioxime (TMB-8), the calmodulin antagonists N-(6-aminohexyl)-1-5-chloro-1-naphthalenesulfonamide (W-7) and calmidazolium (compound R24571) or various direct inhibitors of endogenous arachidonic acid release like tetracaine, bromophenacyl bromid, neomycine or low dose quinacrine, indicating that the reduction of PGE2 release by EDTA or BAPTA may be mediated by mechanisms different from substrate release. In contrast, an inhibition of PGE2 secretion by quinacrine at high concentrations (≥ 0.8mM) was attributed to a direct inhibition of the prostaglandin cyclooxygenase, similar to ASA. Finally, the reduction of the prostaglandin synthesizing capacity by ASA was strongly correlated with the inhibition of PGE2 secretion, also at low concentrations and minor degrees of inhibition.From these data we conclude, that the activity of the prostaglandin cyclooxygenase is rate limiting for PGE2 secretion from organ cultured mucosal biopsies rather than arachidonic acid release by a phospholipase A2. This should be considered for interpretation of studies based on prostaglandin release from cultured mucosa.  相似文献   

20.
[14C]-labelled thromboxane B2 and hydroxy fatty acids were isolated using thin layer and gas chromatographic procedures from human platelets incubated with [1-14C]-arachidonic acid. A number of TLC solvent systems were evaluated for differential separation of thromboxanes and hydroxy fatty acids from prostaglandins E2, A2, D2 and F. Chromatographic properties in nine different solvent systems are tabulated. Two dimensional TLC procedures suitable for complete resolution of mixtures of these compounds on a single plate were developed. The systems were used to demonstrate conversion of [1-14C]-arachidonic acid to thromboxane B2 and prostaglandin E2 by human lung fibroblasts in tissue culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号