首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The colonization of new adaptive zones is widely recognized as one of the hallmarks of adaptive radiation. However, the adoption of novel resources during this process is rarely distinguished from phenotypic change because morphology is a common proxy for ecology. How can we quantify ecological novelty independent of phenotype? Our study is split into two parts: we first document a remarkable example of ecological novelty, scale-eating (lepidophagy), within a rapidly-evolving adaptive radiation of Cyprinodon pupfishes on San Salvador Island, Bahamas. This specialized predatory niche is known in several other fish groups, but is not found elsewhere among the 1,500 species of atherinomorphs. Second, we quantify this ecological novelty by measuring the time-calibrated phylogenetic distance in years to the most closely-related species with convergent ecology. We find that scale-eating pupfish are separated by 168 million years of evolution from the nearest scale-eating fish. We apply this approach to a variety of examples and highlight the frequent decoupling of ecological novelty from phenotypic divergence. We observe that novel ecology is not always tightly correlated with rates of phenotypic or species diversification, particularly within recent adaptive radiations, necessitating the use of additional measures of ecological novelty independent of phenotype.  相似文献   

2.
Niche width and niche overlap: a method based on type-2 fuzzy sets   总被引:4,自引:0,他引:4  
Complicated ecosystems and the high non-linearity of evolution has made biology more adaptable to a variety of environments. The relationship between life and environment demands a dynamic definition of niche and its measurement. In this paper we propose a model of niche with dynamic character based on the “broad band” effect in type-2 fuzzy sets. The niche in this definition is an interval in each ecological dimension which is dynamic in character and depends on the actual environment. We also give formulas for niche width and niche overlap. We compute the niche width and overlap for plants and animals and then compare these results with previous results. The results for niche width in this paper reflect the diversity of resources used by species or communities. The results for niche overlap demonstrate overlap under different environmental conditions. The results are, moreover, intervals, which could provide more information. The model in this paper could therefore be used to describe the state of every resource comprehensively, reflecting the interaction between species and environment.  相似文献   

3.
Temperature as an Ecological Resource   总被引:12,自引:0,他引:12  
Ectothermic vertebrates respond to the temperature of theirhabitat in a manner that is remarkably similar to their responseto more traditional ecological resources such as food. We reviewthe response to temperature primarily from literature on fishesin terms of ecological concepts related to niche theory andcompetition. The width of the fundamental thermal niche is about4°C when measured by a mean plus and minus one standarddeviation of the distribution of temperature occupied in a laboratorygradient. Fish of temperate freshwater appear to fall into threethermal guilds along the temperature resource axis —cold,cool, and warm water fishes. Realized thermal niches are similarin central tendency to fundamental niches, but niche width appearsto be more narrow for the realized niche in limited sample data.The success of interference competition for space with preferredtemperature is tied to social dominance in a manner analogousto food competition. Thermal niche shifts in the face of interspecificcompetition for preferred temperature appear supported by onelaboratory study. Exploitation competition in respect to temperatureseems nebulous. If animals successfully compete for their thermalniche, growth and perhaps other measures of fitness are maximized.Cost/benefit models for thermal resources and food resourceslead to similar predictions about resource use. We suggest thatviewing temperature and other niche axes in the way ecologistshave viewed food resources would be useful.  相似文献   

4.
  1. Ecological opportunity (i.e. the diversity of available resources) has a pivotal role in shaping niche variation and trophic specialisation of animals. However, ecological opportunity can be described with regard to both diversity and abundance of resources. The degree to which these two components contribute to niche variation remains unexplored.
  2. To address this, we used an extensive dataset on fish diet and benthic invertebrate diversity and density from 73 sampling events in three Norwegian rivers in order to explore realised trophic niches and the response of dietary niche variation along gradients of resource diversity (potential trophic niches), resource density (as a proxy of resource abundance) and fish density (as a proxy of inter‐ and intra‐specific competition) in a freshwater top predator (the brown trout, Salmo trutta L.).
  3. Linear models indicated that individual and population niche variation increased with increasing ecological opportunity in terms of prey diversity. However, no simple cause‐and‐effect associations between niche indices and prey abundance were found. Our multiple regression analyses indicated that the abundance of certain resources (e.g. Chironomidae) can interact with prey diversity to determine individual and population realised trophic niches. Niche variation (within‐individual component and inter‐individual diet variation) decreased with increasing inter‐ and intra‐specific competition.
  4. This study extends prevailing trophic ecology theory by identifying diversity, rather than density, of available prey resources as a primary driver of niche variation in fish of temperate riverine systems with no extensive resource limitation. The study also shows that ecological opportunity may mask the direction of the effect (compression or expansion) of competition on niche variation when food resources are diverse.
  5. Our study provides novel empirical insight to the driving forces behind niche variation and reveals that diversity, rather than density, of available prey resources may be a primary driver of niche variation in freshwater fish. Our study supports the view that a broader potential trophic niche promotes broader realised trophic niche variation by individuals, which leads to individual niche diversification by opening access to alternatives resources, resulting in a concomitant rise in the realised trophic niche width of the population.
  相似文献   

5.
A coevolutionary model of species packing is developed which allows evolutionary adjustment in both niche position and within-phenotype niche width of from one of three competing species. The environment is specified as a single resource dimension x and availability of resources along x is given by a Gaussian curve with parameters (x?Rand σR). The model predicts that for S species the ratio of optimal niche width (?) to σR is roughly independent of σR and can be approximated by 1S when the competitors are completely resource limited. Niche separation (d?w?) increases only moderately with increases in resource diversity σR and is greater for two than for three competing species. To the extent that the competitors do not utilize all resources, both optimal niche separation and niche width decrease. Many of the general trends in niche width and niche separation predicted by this coevolutionary model parallel those from optimal foraging theory and limiting similarity models of community structure. The coevolutionary model stands out, however, in the singularly high values predicted for niche separation, making coevolved communities highly invadeable. Hence, the theory suggests, as some empirical evidence indicates, that coevolved competition communities can only exist as such on remote islands or in other habitats which might be free from invasion by outside species. For such communities, resource diversity (σR) should have much less effect on species packing than either species number itself or the extent that these competitors are resource limited.  相似文献   

6.
Evolutionary community ecology is an emerging field of study that includes evolutionary principles such as individual trait variation and plasticity of traits to provide a more mechanistic insight as to how species diversity is maintained and community processes are shaped across time and space. In this review we explore phenotypic plasticity in functional traits and its consequences at the community level. We argue that resource requirement and resource uptake are plastic traits that can alter fundamental and realised niches of species in the community if environmental conditions change. We conceptually add to niche models by including phenotypic plasticity in traits involved in resource allocation under stress. Two qualitative predictions that we derive are: (1) plasticity in resource requirement induced by availability of resources enlarges the fundamental niche of species and causes a reduction of vacant niches for other species and (2) plasticity in the proportional resource uptake results in expansion of the realized niche, causing a reduction in the possibility for coexistence with other species. We illustrate these predictions with data on the competitive impact of invasive species. Furthermore, we review the quickly increasing number of empirical studies on evolutionary community ecology and demonstrate the impact of phenotypic plasticity on community composition. Among others, we give examples that show that differences in the level of phenotypic plasticity can disrupt species interactions when environmental conditions change, due to effects on realized niches. Finally, we indicate several promising directions for future phenotypic plasticity research in a community context. We need an integrative, trait-based approach that has its roots in community and evolutionary ecology in order to face fast changing environmental conditions such as global warming and urbanization that pose ecological as well as evolutionary challenges.  相似文献   

7.
Understanding how omnivorous consumers are affected by their resources and how this is expressed through the food chain is a fundamental issue in ecology. We used stable isotope analysis of archived scales of two pelagic single-chain omnivorous fish species, bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix), to reconstruct historical trophic interactions patterns along a gradient of resources. We found that, although bighead carp and silver carp utilize the similar resources from the pelagic food chain, they can coexist and persist not only by regulating their trophic position and trophic dissimilarity, but also by regulating trophic niche width. Omnivorous fish often exhibit flexible foraging strategies, which is closely related to the availability of ecologic context. We found a positive relationship between trophic dissimilarity and zooplankton density, which may indicate that the competitive interactions induce strong top-down effects on zooplankton, and/or that high zooplankton availability release the between-population trophic interaction through bottom-up effect. The trophic niche width of bighead carp was positively related with zooplankton availability, probably reflecting that the niche of an omnivore at a higher trophic position is more sensitive to high quality resources. Our results indicate how different aspects of the trophic partitioning of coexisting omnivores may be regulated by different ecological contexts. These alternatives are not mutually exclusive and further theoretical work should include both these mechanisms to re-evaluate the effects of omnivory on food web properties.  相似文献   

8.
Several factors influence the partitioning of trophic resources in ecological communities, such as morphology, evolutionary history, and resource availability. Although the effects of morphology, phylogeny, and resource availability on trophic ecology have long been explored by theoretical studies, little has been done to empirically test these relationships. Here, we tested whether phylogenetic and morphological distances correlate with trophic niche overlap using a path analysis of multiple partial regression of distance matrices. Also, we tested whether niche breadth is influenced by body size using Phylogenetic Generalized Least Squares analysis. Trophic niche overlap was better explained by morphology per se than by the phylogenetic distance. We also found that predator's body size influences niche breadth calculated considering prey traits and availability, but not when we do not include these availability data. Additionally, trophic niche breadth was usually smaller when we considered prey traits and availability, differently from niche overlap, whose values increased when we did not consider these data. Our findings show that the interpretation of trophic niche in communities changes if we consider availability data, affecting inferences about coexistence and trophic specialization. Our study contributes to understanding trophic specialization and emphasizes the importance of incorporating prey availability and their traits into diet analysis.  相似文献   

9.
The coexistence and coevolution of sexual and asexual species under resource competition are explored with three models: a nongenetic ecological model, a model including single locus genetics, and a quantitative-genetic model. The basic assumption underlying all three models is that genetic differences are translated into ecological differences. Hence if sexual species are genetically more variable, they will be ecologically more variable. Under classical competition theory, this increased ecological variability can, in many cases, be an advantage to individual sexual genotypes and to the sexual species as a whole. The purpose of this paper is to determine the conditions when this advantage will outway three disadvantages of sexuality: the costs of males, of segregation, and of the additive component of recombination. All three models reach similar conclusions. Although asexuality confers an advantage, it is much less than a two-fold advantage because minor increases in the overall species niche width of the sexual species will offset the reproductive advantage of the asexual species. This occurs for two reasons. First, an increase in species niche width increases the resource base of the sexual species. Second, to the extent that the increase in niche width is due to increased differences between individuals, a reduction in intraspecific competition will result. This is not to imply that the sexual species will always win. The prime conditions that enable sexual species to stably coexist with or even supplant an asexual sister species are:
    相似文献   

10.
资源环境承载力是生态学领域的一个重要概念,其理论和实践研究已成为衡量区域可持续发展的重要依据.但是有关生态学基础与资源环境承载力的科学联系仍未明确,其中有哪些生态学理论对资源环境承载力的发展起到了支撑作用还没被厘清,这使得资源环境承载力的科学概念十分模糊.本文在讨论资源环境、生态系统承载力科学概念及其发展的基础上,系统...  相似文献   

11.
In invasion ecology, niche width has been recognized as a crucial factor for the outcome of an invasion. A common characteristic of successful invaders seems to be a broad niche width, and their impact on native communities may increase with increasing niche size. Overall, successful invader predators are predicted to shift their niche width by broadening it from native to invaded conditions. The scarcity of ecological studies examining invasive species in their native ranges prevents researchers from knowing if the prevalence of generalist invaders represents conservatism of broad native-range niches or instead niche shifts as a result of different processes acting in the invaded areas. Here we reviewed literature on trophic niche of the predatory invader American bullfrog (Lithobates catesbeianus) in both native and invaded ranges. We used statistical and graphic tools to analyse possible shifts in dietary niche width and the effect of introduced crayfish on the feeding strategy of L. catesbeianus. Globally, our results indicate that food sources used by the species differed in native and invaded sites, with a narrower trophic niche width in invaded areas. However, this pattern was disrupted by the occurrence of introduced crayfish that represents the major driver of the observed niche-width variation. Our data shed light on possible complications in interpreting and predicting patterns of biological invasions due to the interaction among species from different trophic levels that apparently disrupt general patterns that are likely bound to be idiosyncratic and complex.  相似文献   

12.
Land ownership shapes natural resource management and social–ecological resilience, but the factors determining ownership norms in human societies remain unclear. Here we conduct a global empirical test of long‐standing theories from ecology, economics and anthropology regarding potential drivers of land ownership and territoriality. Prior theory suggests that resource defensibility, subsistence strategies, population pressure, political complexity and cultural transmission mechanisms may all influence land ownership. We applied multi‐model inference procedures based on logistic regression to cultural and environmental data from 102 societies, 71 with some form of land ownership and 31 with no land ownership. We found an increased probability of land ownership in mountainous environments, where patchy resources may be more cost effective to defend via ownership. We also uncovered support for the role of population pressure, with a greater probability of land ownership in societies living at higher population densities. Our results also show more land ownership when neighboring societies also practiced ownership. We found less support for variables associated with subsistence strategies and political complexity.  相似文献   

13.
Understanding the ecological processes that generate complex community structures may provide insight into the establishment and maintenance of a normal microbial community in the human gastrointestinal tract, yet very little is known about how biotic interactions influence community dynamics in this system. Here, we use natural strains of Escherichia coli and a simplified model microbiota to demonstrate that the colonization process on the strain level can be context dependent, in the sense that the outcome of intra-specific competition may be determined by the composition of the background community. These results are consistent with previous models for competition between organisms where one competitor has adapted to low resource environments whereas the other is optimized for rapid reproduction when resources are abundant. The genomic profiles of E. coli strains representing these differing ecological strategies provide clues for deciphering the genetic underpinnings of niche adaptation within a single species. Our findings extend the role of ecological theory in understanding microbial systems and the conceptual toolbox for describing microbial community dynamics. There are few, if any, concrete examples of context-dependent competition on a single trophic level. However, this phenomenon can have potentially dramatic effects on which bacteria will successfully establish and persist in the gastrointestinal system, and the principle should be equally applicable to other microbial ecosystems.  相似文献   

14.
Niche variation owing to individual differences in ecology has been hypothesized to be an early stage of sympatric speciation. Yet to date, no study has tracked niche width over more than a few generations. In this study, we show the presence of isotopic niche variation over millennial timescales and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of speciation, lineage sorting of mitogenomes and genotypic clustering, were both weak to intermediate indicating that speciation has made little progress. Thus, our study confirms that even with the necessary ecological conditions, i.e. among-individual variation in ecology, it is difficult for sympatric speciation to progress in the face of gene flow. In contrast to some theoretical models, our empirical results suggest that sympatric speciation driven by among-individual differences in ecological niche is a slow process and may not reach completion. We argue that sympatric speciation is constrained in this system owing to the plastic nature of the behavioural traits under selection when hunting either mammals or fish.  相似文献   

15.
Questions concerning the availability of resources in tropical rain forests have given rise to the current debate centering on whether human subsistence based solely on foraging is possible in these biomes without agricultural subsidies. This paper takes the position that changing perspectives on ecological pattern and process in tropical forests and the significant variation among tropical forests on a worldwide as well as regional scale must be taken into consideration. Human disturbance is also proposed as a cause of dependence on agriculture by modern human foragers rather than as a necessary precondition for successful exploitation of the tropical forest. These issues are discussed against the background of a case study of the Yuquí, who, until very recently, were true foragers in the Bolivian Amazon. For the Yuquí, the sustainability of their subsistence system depended on a finegrained knowledge of their environment and the freedom of movement over a large territory to access resources within it.  相似文献   

16.
The strength of trophic (feeding) links between two species depends on the traits of both the consumer and the resource. But which traits of consumer and resource have to be measured to predict link strengths, and how many? A novel theoretical framework for systematically determining trophic traits from empirical data was recently proposed. Here we demonstrate this approach for a group of 14 consumer fish species (Labeobarbus spp., Cyprinidae) and 11 aquatic resource categories coexisting in Lake Tana in northern Ethiopia, analysing large sets of phenotypic consumer and resource traits with known roles in feeding ecology. We systematically reconstruct structure and geometry of trophic niche space, in which link strengths are predicted by the distances between consumers and resources. These distances are then represented graphically resulting in an image of trophic niche space and its occupancy. We find trophic niche to be multidimensional. Among the models we analysed, one with two resource and two consumer traits had the highest predictive power for link strength. Results further suggest that trophic niche space has a pseudo-Euclidean geometry, meaning that link strength decays with distance in some dimensions of trophic niche space, while it increases with distance in other dimensions. Our analysis not only informs theory and modelling but may also be helpful for predicting trophic link strengths for pairs of other, similar species.  相似文献   

17.
Despite the central importance of the niche concept for the ecological theory, current methods to quantify the species niche from qualitative resources, such as food or habitat types, remain insufficiently developed. Classically, information theory and diversity measures have formed the toolbox used for calculating resource niche metrics on species preference data for a set of qualitative resources. We provide a comprehensive framework that extends these classical approaches by incorporating the resemblance between resources into the calculation of resource niche metrics. This does not only allow estimation of the niche centre, breadth, overlap and displacement with greater accuracy, but also makes the estimates less influenced by the way the resources are subdivided. In addition, all niche metrics can be calculated while taking into account the variation in resource availability, and confidence intervals can be obtained by bootstrapping. We illustrate the utility of the framework with an analysis of dietary preferences in feral pigeons Columba livia.  相似文献   

18.
Variability in resource use defines the width of a trophic niche occupied by a population. Intra-population variability in resource use may occur across hierarchical levels of population structure from individuals to subpopulations. Understanding how levels of population organization contribute to population niche width is critical to ecology and evolution. Here we describe a hierarchical stable isotope mixing model that can simultaneously estimate both the prey composition of a consumer diet and the diet variability among individuals and across levels of population organization. By explicitly estimating variance components for multiple scales, the model can deconstruct the niche width of a consumer population into relevant levels of population structure. We apply this new approach to stable isotope data from a population of gray wolves from coastal British Columbia, and show support for extensive intra-population niche variability among individuals, social groups, and geographically isolated subpopulations. The analytic method we describe improves mixing models by accounting for diet variability, and improves isotope niche width analysis by quantitatively assessing the contribution of levels of organization to the niche width of a population.  相似文献   

19.
The long-standing view in ecology is that disparity in overall resource selection is the basis for identifying niche breadth patterns, with species having narrow selection being classified “specialists” and those with broader selection being “generalists”. The standard model of niche breadth characterizes generalists and specialists as having comparable levels of overall total resource exploitation, with specialists exploiting resources at a higher level of performance over a narrower range of conditions. This view has gone largely unchallenged. An alternate model predicts total resource use being lower for the specialized species with both peaking at a comparable level of performance over a particular resource gradient. To reconcile the niche breadth paradigm we contrasted both models by developing range-wide species distribution models for Canada lynx, Lynx canadensis, and bobcat, Lynx rufus. Using a suite of environmental factors to define each species’ niche, we determined that Canada lynx demonstrated higher total performance over a restricted set of variables, specifically those related to snow and altitude, while bobcat had higher total performance across most variables. Unlike predictions generated by the standard model, bobcat level of exploitation was not compromised by the trade-off with peak performance, and Canada lynx were not restricted to exploiting a narrower range of conditions. Instead, the emergent pattern was that specialist species have a higher total resource utilization and peak performance value within a smaller number of resources or environmental axes than generalists. Our results also indicate that relative differences in niche breadth are strongly dependent on the variable under consideration, implying that the appropriate model describing niche breadth dynamics between specialists and generalists may be more complex than either the traditional heuristic or our modified version. Our results demonstrate a need to re-evaluate traditional, but largely untested, assumptions regarding resource utilization in species with broad and narrow niches.  相似文献   

20.
成功  张家楠  薛达元 《生态学报》2014,34(16):4785-4793
传统生态知识是民族生态学研究的核心范畴,国外已有多年的研究基础,国内的相关研究正是方兴未艾。通过文献查询和比较分析等方法,介绍了国外已有的传统生态知识的民族生态学分析框架的3个模型:知识-实践-信仰的三角形框架;本土经验知识-资源管理知识-社会制度知识-世界观知识的四椭圆框架;事实观察-管理体系-旧有及当下利用-伦理价值-文化特征-宇宙观的五边形框架。结合田野调查研究,提出了一个立体的传统生态知识的民族生态学分析模型,强调了传统生态知识的动态特征,将民族对于自然的被动认识和主动认知、民族人际关系规范、民族的哲学与伦理等方面所呈现出的传统生态知识进行了分类,从而为民族生态学的调查研究提供了方法上的建议。最后总结了这个立体的传统生态知识分析框架的意义,并建议在我国的生态文明建设中发展和应用民族生态学。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号