首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Austral summer frosts in the Andean highlands are ubiquitous throughout the crop cycle, causing yield losses. In spite of the existing warming trend, climate change models forecast high variability, including freezing temperatures. As the potato center of origin, the region has a rich biodiversity which includes a set of frost resistant genotypes. Four contrasting potato genotypes –representing genetic variability- were considered in the present study: two species of frost resistant native potatoes (the bitter Solanum juzepczukii, var. Luki, and the non-bitter Solanum ajanhuiri, var. Ajanhuiri) and two commercial frost susceptible genotypes (Solanum tuberosum ssp. tuberosum var. Alpha and Solanum tuberosum ssp. andigenum var. Gendarme). The objective of the study was to conduct a comparative growth analysis of four genotypes and modeling their agronomic response under frost events. It included assessing their performance under Andean contrasting agroecological conditions. Independent subsets of data from four field experiments were used to parameterize, calibrate and validate a potato growth model. The validated model was used to ascertain the importance of biodiversity, represented by the four genotypes tested, as constituents of germplasm mixtures in single plots used by local farmers, a coping strategy in the face of climate variability. Also scenarios with a frost routine incorporated in the model were constructed. Luki and Ajanhuiri were the most frost resistant varieties whereas Alpha was the most susceptible. Luki and Ajanhuiri, as monoculture, outperformed the yield obtained with the mixtures under severe frosts. These results highlight the role played by local frost tolerant varieties, and featured the management importance –e.g. clean seed, strategic watering- to attain the yields reported in our experiments. The mixtures of local and introduced potatoes can thus not only provide the products demanded by the markets but also reduce the impact of frosts and thus the vulnerability of the system to abiotic stressors.  相似文献   

2.
Austrocedrus chilensis is a South American conifer broadly distributed across the subtropical and extratropical Andes that is widely utilized in tree-ring studies. This species has clear annual growth rings that are sensitive to the moisture supply and has been extensively used to reconstruct the past hydroclimate during the last millennium. Despite a great number of dendrochronological studies based on tree-ring width, little is known about the potential of the species to record intra-annual anomalies and particularly frost rings. In this study, the main traits of A. chilensis frost rings were studied and the ability of this endemic Cupressaceae to record spring frosts at five sites across a latitudinal gradient between the Mediterranean and Northern Patagonian Andes was evaluated. The average ages of trees in the study sites varied from 168 to 343 years, with minimum and maximum ages of 33 and 919 years. The results indicated that 85% of the frost rings occurred at the beginning of the earlywood and 15% showed a mid intra-ring position. Regarding the portion of the ring circumference affected by frost damage in cross sections, 59% of the injuries partially affected the entire ring, 30% affected the complete ring circumference, and 11% resulted in a ring fracture. Freezing temperatures that generated frost rings in A. chilensis from the upper treeline coincided with events below 0 °C recorded in the agricultural Central Valley of Chile. We estimated the potential time window of the formation of A. chilensis frost rings over a two and a half month period from the end of September to mid-November (early spring). Our results indicated that tree age was a determinant factor affecting the ability of trees to record frost rings. The maximum frequency of frost rings occurred at 12 years and the maximum age at which 95% of the total frost injuries occurred within our network was about 120 years. Both the exceptional longevity and the excellent state of preservation of relict wood demonstrates that A. chilensis frost rings provide a reliable proxy for monitoring and reconstructing late-spring frost events in central Chile.  相似文献   

3.
Cereal crops can suffer substantial damage if frosts occur at heading. Identification of post-head-emergence frost (PHEF) resistance in cereals poses a number of unique and difficult challenges. Many decades of research have failed to identify genotypes with PHEF resistance that could offer economically significant benefit to growers. Research and breeding gains have been limited by the available screening systems. Using traditional frost screening systems, genotypes that escape frost injury in trials due to spatial temperature differences and/or small differences in phenology can be misidentified as resistant. We believe that by improving techniques to minimize frost escapes, such 'false-positive' results can be confidently identified and eliminated. Artificial freezing chambers or manipulated natural frost treatments offer many potential advantages but are not yet at the stage where they can be reliably used for frost screening in breeding programmes. Here we describe the development of a novel photoperiod gradient method (PGM) that facilitates screening of genotypes of different phenology under natural field frosts at matched developmental stages. By identifying frost escapes and increasing the efficiency of field screening, the PGM ensures that research effort can be focused on finding genotypes with improved PHEF resistance. To maximize the likelihood of identifying PHEF resistance, we propose that the PGM form part of an integrated strategy to (i) source germplasm;(ii) facilitate high throughput screening; and (iii) permit detailed validation. PGM may also be useful in other studies where either a range of developmental stages and/or synchronized development are desired.  相似文献   

4.
Frost events may damage the cambium and consequently the newly produced tracheids whose cell walls have not yet completed their lignifications, leading to the formation of frost rings. This study deals with the presence of frost rings in Araucaria araucana trees according to cambial age and bark thickness, under the assumption that these factors may be involved in physical or physiological mechanisms that increase resistance to freezing temperatures that impact the cambial tissue. The study was conducted in northern Patagonia at two sites of contrasting geomorphology, and therefore potentially associated with a differential degree of exposure to extreme cold. Wood plus bark cores were extracted from main stems at two heights from the ground and from each of the four cardinal point directions for 30 individuals per site. A Linear Mixed Model and a Generalized Linear Mixed Model were applied in order to relate the bark thickness and the frequency of frost rings in accordance with the different sampling points on the stem. It was observed that as bark becomes thicker with cambial age, the frequency of frost rings decreases, indicating a possible thermal-induced mechanism of bark protection. Consequently, there is an increase in the presence of frost rings at the younger stages of tree life. Although the mechanisms of cold hardiness in trees can be complex, including aspects of the tree physiology, our data indicated that as tree age increases, the thickness of the bark is higher, resulting in a potential effect of isolation and passive protection against the harmful effects of frosts. This mechanism may be relevant in the ecology, conservation and management of forests faced with extreme variability in future climate and changing scenarios.  相似文献   

5.
Dry bean ( Phaseolus vulgaris L.) cultivars possess little or no freezing tolerance and are killed at the temperature of ice formation in their tissues. An increase in frost tolerance by 2–3°C would expand dry bean production in the short growing seasons of the Canadian prairies and possibly to higher altitudes in the tropics where episodic frosts occur during the growing season. The objective of this study was to determine the differences in frost resistance of Phaseolus species in both controlled and field environments. Leaflets of dry bean cv. CDC Nighthawk, and wild relatives from the primary gene pool ( P. vulgaris var. mexicanus Freytag and P. vulgaris var. aborigineus (Burkart) Baudet) and the tertiary gene pool ( P. acutifolius var. tenuifolius A. Gray, P. filiformis Bentham, P. angustissimus A. Gray and P. ritensis M.E. Jones) were subjected to subzero temperatures with and without ice nucleation to determine the levels of tolerance and avoidance, respectively. The lethal temperature at which 50% of the leaflets were killed (LT50) was 0.5–1°C lower for species of the tertiary gene pool compared to those from the primary gene pool. Leaflets of species from the tertiary gene pool were also characterized by extensive supercooling compared to leaflets of species from the primary gene pool. Resistance of Phaseolus species to spring and autumn frosts were determined on seedlings transplanted to the field. Phaseolus angustissimus , a species of the tertiary gene pool had the highest seedling survival in response to both autumn and spring frosts, when the minimum air temperatures were −5 and −7°C, respectively. Frost resistance of Phaseolus angustissimus , if successfully introgressed into bean germplasm, may enable the development of frost resistant dry bean cultivars.  相似文献   

6.
In temperate-zone mountains, summer frosts usually occur during unpredictable cold spells with snow-falls. Earlier studies have shown that vegetative aboveground organs of most high-mountain plants tolerate extracellular ice in the active state. However, little is known about the impact of frost on reproductive development and reproductive success. In common plant species from the European Alps (Cerastium uniflorum, Loiseleuria procumbens, Ranunculus glacialis, Rhododendron ferrugineum, Saxifraga bryoides, S. moschata, S. caesia), differing in growth form, altitudinal distribution and phenology, frost resistance of reproductive and vegetative shoots was assessed in different reproductive stages. Intact plants were exposed to simulated night frosts between ?2 and ?14 °C in temperature-controlled freezers. Nucleation temperatures, freezing damage and subsequent reproductive success (fruit and seed set, seed germination) were determined. During all reproductive stages, reproductive shoots were significantly less frost resistant than vegetative shoots (mean difference for LT50 ?4.2 ± 2.7 K). In most species, reproductive shoots were ice tolerant before bolting and during fruiting (mean LT50 ?7 and ?5.7 °C), but were ice sensitive during bolting and anthesis (mean LT50 around ?4 °C). Only R. glacialis remained ice tolerant during all reproductive stages. Frost injury in reproductive shoots usually led to full fruit loss. Reproductive success of frost-treated but undamaged shoots did not differ significantly from control values. Assessing the frost damage risk on the basis of summer frost frequency and frost resistance shows that, in the alpine zone, low-statured species are rarely endangered as long as they are protected by snow. The situation is different in the subnival and nival zone, where frost-sensitive reproductive shoots may become frost damaged even when covered by snow. Unprotected individuals are at high risk of suffering from frost damage, particularly at higher elevations. It appears that ice tolerance in reproductive structures is an advantage but not an absolute precondition for colonizing high altitudes with frequent frost events.  相似文献   

7.
Germination characteristics and frost tolerance of seedlings are crucial parameters for establishment and invasion success of plants. The characterization of differences between populations in native and invasive ranges may improve our understanding of range expansion and adaptation. Here, we investigated germination characteristics of Ambrosia artemisiifolia L., a successful invader in Europe, under a temperature gradient between 5 and 25 °C. Besides rate and speed of germination we determined optimal, minimal and maximal temperature for germination of ten North American and 17 European populations that were sampled along major latitudinal and longitudinal gradients. We furthermore investigated the frost tolerance of seedlings. Germination rate was highest at 15 °C and germination speed was highest at 25 °C. Germination rate, germination speed, frost tolerance of seedlings, and the temperature niche width for germination were significantly higher and broader, respectively, for European populations. This was partly due to a higher seed mass of these populations. Germination traits lacked evidence for adaptation to climatic variables at the point of origin for both provenances. Instead, in the native range, seedling frost tolerance was positively correlated with the risk of frosts which supports the assumption of local adaptation. The increased frost tolerance of European populations may allow germination earlier in the year which may subsequently lead to higher biomass allocation—due to a longer growing period—and result in higher pollen and seed production. The increase in germination rates, germination speed and seedling frost tolerance might result in a higher fitness of the European populations which may facilitate further successful invasion and enhance the existing public health problems associated with this species.  相似文献   

8.
Flower buds on potted plants of 17 varieties of black currant were frosted to -3.3, -4.5 and -5.2 °C between the grape stage and full flower in 1979 and 1980. In all varieties more flower buds died after the -5.2 °C frosts and at full flower, and less after the -3.3 °C frosts and at the grape stage. Varieties related to Ben More and Ojebyn tolerated the -4.5 °C frosts until after first flower while Baldwin and Magnus became susceptible at the grape stage. Seabrooks Black, Greens Black and Ben Lomond and its relatives were intermediate. In both years flower buds tolerated frosts to similar growth stages but in 1980 the varieties flowered about 2 wk earlier than in 1979 and suffered more frost damage at full flower. The frosted plants had slightly larger fruits than the unfrosted ones in 1979. The immature fruit drop was similar in frosted and unfrosted plants in both years except when it was increased after -5.2 °C in 1980. It is pointed out that for reliable cropping, varieties should flower late as well as tolerate spring frosts and that tests of frost tolerance should be done for at least three growth stages.  相似文献   

9.
A chamber for the simulation of radiation freezing of plants   总被引:1,自引:0,他引:1  
Frost injury to plants can occur following episodic radiation frosts. In the UK this is particularly important to spring sown crops such as potatoes. Most laboratory based frost studies simulate freezing using either conductive or convective freezing chambers. Such frost tests do not simulate overnight freezing events adequately. A freezing chamber based on radiative cooling is described which mimics overnight radiative freezing. The chamber is rectangular in design (1 m × lm × 2 m high) with a radiative cooling plate at the top of the chamber cooled to -40°C to -45°C using HFC coolants, which acts as a cold black body. The sides of the chamber are also cooled to variable temperatures down to -5°C in order to prevent the chamber walls radiating to the plant material during testing. Using thermocouples to measure air temperature and plant temperature the chamber has been characterised to simulate the radiative cooling conditions found in the UK during autumn and spring. Exotherm detection upon plant freezing is simplified by virtue of the reduction in temperature fluctuation normally experienced at the plant surface during natural freezing. Radiation frosts and subsequent frost damage to potatoes have been recorded in the temperature range -4°C to –5°C. The equipment is recommended for studies of frost damage to plants normally caused by episodic radiation frost events.  相似文献   

10.
G. Neuner  B. Beikircher 《Protoplasma》2010,243(1-4):145-152
Frost resistance of sprouting Picea abies shoots is insufficient for survival of naturally occurring late frosts. The cellular changes during sprouting appeared to be responsible for frost damage as frost events that damaged sprouting shoots did not damage older needles and stems. Whilst resting buds showed initial frost damage at ?15.0°C, 20 days later, current year’s growth was damaged at ?5.6°C. The decrease in frost resistance in sprouting shoots of P. abies was accompanied by a significant reduction of the cellular solute concentration, indicated by much less negative ΨoSAT values (increase from ?2.8 to ?1.2 MPa). ψoSAT decreased again after the final cell volume was reached and cell wall thickening began. After bud break, ice nucleation temperature increased from ?4.7°C to ?1.5°C. This increase was probably caused by the loss of bud scales, the onset of expansion growth of the central cylinder and the development of vascular tissue permitting the spread of ice from the stem into the growing needles. The onset of mesophyll cell wall thickening coincided with the lowest frost resistances. Cell wall thickening caused an increase in the modulus of elasticity, ε, indicating a decrease in tissue elasticity and after that frost resistance increased again. Metabolic and cytological changes that evidently leave little leeway for frost hardening are responsible for the low frost resistance in current year’s growth of P. abies. This low frost resistance will be significant in the future as the risk of frost damage due to earlier bud break is anticipated to even further increase.  相似文献   

11.
Although plants are more susceptible to frost damage under elevated atmospheric [CO2], the importance of frost damage under future, warmer climate scenarios is unknown. Accordingly, we used a model to examine the incidence and severity of frost damage to snow gum (Eucalyptus pauciflora) in a sub‐alpine region of Australia for current and future conditions using the A2 IPCC elevated CO2 and climate change scenario. An existing model for predicting frost effects on E. pauciflora seedlings was adapted to include effects of elevated [CO2] on acclimation to freezing temperatures, calibrated with field data, and applied to a study region in Victoria using climate scenario data from CSIRO's Global Climate Model C‐CAM for current (1975–2004) and future (2035–2064) 30 years climate sequences. Temperatures below 0 °C were predicted to occur less frequently while the coldest temperatures (i.e. those below ?8 °C) were almost as common in the future as in the current climate. Both elevated [CO2] and climate warming affected the timing and rates of acclimation and de‐acclimation of snow gum to freezing temperatures, potentially reducing the length of time that plants are fully frost tolerant and increasing the length of the growing season. Despite fewer days when temperatures fall below 0 °C in the future, with consequently fewer damaging frosts with lower average levels of impact, individual weather sequences resulting in widespread plant mortality may still occur. Furthermore, delayed acclimation due to either warming or rising [CO2] combined with an early severe frost could lead to more frost damage and higher mortality than would occur in current conditions. Effects of elevated [CO2] on frost damage were greater in autumn, while warming had more effect in spring. Thus, frost damage will continue to be a management issue for plantation and forest management in regions where frosts persist.  相似文献   

12.
Abstract The purpose of this study was to determine the respective extents to which winter reduction of photosynthetic capacity in ivy (Hedera helix L.) is caused by direct frost injury to the photosynthetic apparatus and by preceding protoplasmic changes connected with the acquisition of frost tolerance. Potted juvenile ivy plants were placed in the open under natural weather conditions whilst others were hardened under controlled conditions and subjected to the desired frost stress. Low non-freezing temperatures induced frost tolerance in ivy leaves down to about – 12°C (50% injury = TL50) without impairing net photosynthetic rate as measured under standard conditions (20°C, light saturation, natural CO2 level; = Standard-Fn. Only if the leaves froze (below ? 3°C to ?4°C) was a reversible inhibition of Standard-Fn observed. As long as the temperatures did not fall below approximately ?8°C the inhibition was small and Standard-Fn reached about 80–90% of the control. In this case the stomatal opening narrowed, giving a poorer supply of CO2 to the mesophyll cells. Maximal frost tolerance (TL5O?20°C to ?24°C) developed only with severe frosts below about ? 10°C. After such frosts, Standard-Fn was reduced to less than 20% of the control. The dependence of the rate of net photosynthesis on the internal CO2 concentration showed a lower initial slope, thus indicating disturbances of chloroplast functions. However, neither in outdoor plants nor in those artificially frosted at – 20°C could there be found an appreciable inhibition of the electron transport capacity from H2O to dichlorophenol indophenol or of ribulose bisphosphate carboxylase. If intact, severely frosted ivy plants were then held at higher temperatures (20/15°C), Standard-Fn recovered completely in approximately 10 d. Furthermore, following a frost period with temperatures down to ?12°C, mild weather caused a distinct improvement in Standard-Fn in outdoor plants, and there was no loss of maximum frost tolerance. Thus it can be concluded that the inhibition of Standard-Fn after severe frosts is not due to the development of maximal frost tolerance, but rather may be attributed to frost damage to the photosynthetic apparatus.  相似文献   

13.
The effect of different overwintering temperatures (2.5 ± 1 °C in a refrigerator or outdoor natural overwintering on wet topsoil with weak frosts) on the freezing temperature and survival rate of turions of 10 aquatic plant species with different ecological traits (free-floating habit or bottom rooting) was studied using mini thermocouples. Dormant, non-hardened turions of 9 species exhibited freezing within a narrow temperature range of ?7.0 to ?10.2 °C, while Hydrocharis morsus-ranae froze at ?3.6 °C. The survival rate of the turions after the measurements was, however, very low (0–38%). In several species, the freezing temperature of turions at the beginning of germination was not significantly different (at p < 0.05) from the dormant ones. The mean freezing temperature of outdoor hardened turions of 6 species was within a very narrow range of ?2.8 to ?3.3 °C and was thus significantly higher by 4–7 °C (p < 0.0002) than that for the non-hardened turions. It is assumed that the freezing temperatures indicate freezing of the extracellular water. The hardened turions of all 7 species were able to survive mild winter frosts under the topsoil conditions at a rate of 76–100%. These characteristics suggest that the turions of aquatic species can be hardened by weak frosts and that their frost hardiness is based on the shift from frost avoidance in non-hardened turions to frost tolerance.  相似文献   

14.
Norway spruce (Picea abies (L.) Karst.) exhibits strong ecotypic variation along altitudinal gradients in morphological traits, e.g. slenderness of crowns or arrangement of second-order branches. We were interested whether montane and lowland morphotypes differ in a key trait for the survival in cold environments, i.e. frost hardiness, and asked: (i) are montane morphotypes more resistant to frost damage and (ii) do they have a lower risk of frost damage by late frosts in spring than lowland morphotypes?We used the electrolyte leakage-method to measure frost hardiness on a monthly basis from October 2006 to May 2007 in stands of the montane and lowland morphotypes at Mt. Brocken in the Harz Mountains, Germany.LT50 (i.e. the temperature that results in 50% of maximum electrolyte leakage) was assessed by freezing treatments in a frost chamber and was significantly influenced by morphotype, month and minimum ambient temperatures. LT50 was significantly lower in the montane than in the lowland morphotype, with −107 °C and −49 °C, respectively. However, the interactions between morphotype with minimum ambient temperature or month were not significant. Thus, as frost hardiness of the two morphotypes responded to temperature in the same way, both morphotypes can be supposed to be exposed to the same risk of frost damage during hardening in autumn and dehardening in spring.  相似文献   

15.
Spatio-temporal patterns of snowmelt and flowering times affect fruiting success in Erythronium grandiflorum Pursh (Liliaceae) in subalpine western Colorado, USA. From 1990 to 1995, I measured the consistency across years of snowmelt patterns and flowering times along a permanent transect. In most years since 1993, I have monitored fruit set in temporal cohorts (early- to late-flowering groups of plants) at one site. To assess ‘pollination limitation’, I have also conducted supplemental hand-pollination experiments at various times through the blooming season. The onset of blooming is determined by snowmelt, with the earliest years starting a month before the latest years owing to variation in winter snowpack accumulation. Fruit set is diminished or prevented entirely by killing frosts in some years, most frequently but not exclusively for the earlier cohorts. When frosts do not limit fruit set, pollination limitation is frequent, especially in the earlier cohorts. Pollination limitation is strongest for middle cohorts: it tends to be negated by frost in early cohorts and ameliorated by continuing emergence of bumble-bee queens in later cohorts. This lily appears to be poorly synchronized with its pollinators. Across the years of the study, pollination limitation appears to be increasing, perhaps because the synchronization is getting worse.  相似文献   

16.
Climate change effects on snow cover and thermic regime in alpine tundra might lead to a longer growing season, but could also increase risks to plants from spring frost events. Alpine snowbeds, i.e. alpine tundra from late snowmelt sites, might be particularly susceptible to such climatic changes. Snowbed communities were grown in large monoliths for two consecutive years, under different manipulated snow cover treatments, to test for effects of early (E) and late (L) snowmelt on dominant species growth, plant functional traits, leaf area index (LAI) and aboveground productivity. Spring snow cover was reduced to assess the sensitivity of snowbed alpine species to severe early frost events, and dominant species freezing temperatures were measured. Aboveground biomass, productivity, LAI and dominant species growth did not increase significantly in E compared to L treatments, indicating inability to respond to an extended growing season. Edapho‐climatic conditions could not account for these results, suggesting that developmental constraints are important in controlling snowbed plant growth. Impaired productivity was only detected when harsher and more frequent frost events were experimentally induced by early snowmelt. These conditions exposed plants to spring frosts, reaching temperatures consistent with the estimated freezing points of the dominant species (~?10 °C). We conclude that weak plasticity in phenological response and potential detrimental effects of early frosts explain why alpine tundra from snowbeds is not expected to benefit from increased growing season length.  相似文献   

17.
Longhurst  C.  Johnson  R. A.  Wood  T. G. 《Oecologia》1978,37(1):101-107
Summary At Bakers Hill, differential winter mortality of juvenile slowgrowing Amphibolurus ornatus is correlated with the incidence of frosts (Bradshaw, 1971). The present study shows that the probability an individual will spend the night in a refuge that is safe from the lethal effect of a frost is directly related to the individual's size. Thus should frosts occur during any particular winter, juvenile slow-growers, will suffer a higher mortality than juvenile fast-growers. At Tuttanning, animals do not segregate according to size, and consequently juvenile slow-growers do not suffer increased mortality during frosty winters.  相似文献   

18.
We report changes after frost in cerrado species populations and community structure in Assis, São Paulo State, Brazil and consider the possible impacts of frost on cerrado types and their distribution. Four permanent plots (10 m × 10 m) were established and 736 individuals were marked with enumerated plastic labels and measured one week after the frost. Frost damage for each individual was assessed: 0 - not affected; 1 - slightly affected; 2 - substantially affected; and 3 - strongly affected. The frost impact on vegetation structure was high, reducing tree canopy cover from 88% to 19% in the upper stratum and that of the lower stratum from 48% to 8.5%. Floristic richness did not change, even though a small number (3%) of individuals of some species died. Conversely, the relative dominance of species changed dramatically in the short-term because of varying susceptibility to frost of different species. The largest reductions in crown cover were observed in Xylopia aromatica and Vochysia tucanorum. Of the 57 species recorded, 15% were unaffected, 19% had only their leaves damaged, 25% had some of their leaves and branches damaged, and 41% had all their aerial parts killed. The majority of individuals in the community belonged to frost tolerant species. The regeneration of the stand structure was remarkably rapid; height and canopy cover of the lower stratum recovered completely after five months, and those of the arboreal stratum showed a recovery of about 80% after 11 months. We consider that the frequency and intensity of frosts can maintain more open forms of cerrado vegetation even in sites where both water and nutrient availability could support denser vegetation. It is also probable that some frost-resistant heliophyte species are confined to areas where frosts prevent the development of denser cerrado vegetation. Much of the characteristic floristic composition of the southern region of the cerrado biome may be related to the selection of frost-resistant species. Our study shows, however, that a full complement of cerrado plants is capable of occupying and colonizing frost susceptible sites.  相似文献   

19.
Frost events during the active growth period of plants can cause extensive frost damage with tremendous economic losses and dramatic ecological consequences. A common assumption is that climate warming may bring along a reduction in the frequency and severity of frost damage to vegetation. On the other hand, it has been argued that rising temperature in late winter and early spring might trigger the so called “false spring”, that is, early onset of growth that is followed by cold spells, resulting in increased frost damage. By combining daily gridded climate data and 1,489 k in situ phenological observations of 27 tree species from 5,565 phenological observation sites in Europe, we show here that temporal changes in the risk of spring frost damage with recent warming vary largely depending on the species and geographical locations. Species whose phenology was especially sensitive to climate warming tended to have increased risk of frost damage. Geographically, compared with continental areas, maritime and coastal areas in Europe were more exposed to increasing occurrence of frost and these late spring frosts were getting more severe in the maritime and coastal areas. Our results suggest that even though temperatures will be elevated in the future, some phenologically responsive species and many populations of a given species will paradoxically experience more frost damage in the future warming climate. More attention should be paid to the increased frost damage in responsive species and populations in maritime areas when developing strategies to mitigate the potential negative impacts of climate change on ecosystems in the near future.  相似文献   

20.
The future bloom and risk of blossom frosts for Malus domestica were projected using regional climate realizations and phenological ( = impact) models. As climate impact projections are susceptible to uncertainties of climate and impact models and model concatenation, the significant horizon of the climate impact signal was analyzed by applying 7 impact models, including two new developments, on 13 climate realizations of the IPCC emission scenario A1B. Advancement of phenophases and a decrease in blossom frost risk for Lower Saxony (Germany) for early and late ripeners was determined by six out of seven phenological models. Single model/single grid point time series of bloom showed significant trends by 2021–2050 compared to 1971–2000, whereas the joint signal of all climate and impact models did not stabilize until 2043. Regarding blossom frost risk, joint projection variability exceeded the projected signal. Thus, blossom frost risk cannot be stated to be lower by the end of the 21st century despite a negative trend. As a consequence it is however unlikely to increase. Uncertainty of temperature, blooming date and blossom frost risk projection reached a minimum at 2078–2087. The projected phenophases advanced by 5.5 d K−1, showing partial compensation of delayed fulfillment of the winter chill requirement and faster completion of the following forcing phase in spring. Finally, phenological model performance was improved by considering the length of day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号