首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Propranolol is able to increase the amount of the titratable groups of mitochondrial membranes. This effect occurs with sonicated particles and with liposomes, too. The phenomenon is only seen in the presence of salt solutions, not in sucrose. Propranolol increases the fluorescence of anilino-naphthalene sulphonate (ANS) in mitochondrial suspensions. The increase is counteracted by increasing concentrations of potassium chloride. It is suggested that the increase of the titratable groups results from a decrease of the aggregation of the phospholipids of the membranes. At the same time the environment of the bound ANS molecules is more hydrophobic in sucrose than in potassium chloride. The amount of the buffering groups and the hydrophilicity are in direct and the amount of the buffering groups and the fluorescence of ANS in inverse correlation.  相似文献   

2.
能量化时线粒体内膜表面电荷的变化   总被引:2,自引:1,他引:1  
本文报告用荧光探剂1,8—ANS和电泳激光光散射技术,研究鼠肝线粒体内膜在加入ATP的能量化过程中其膜表面电荷的变化。实验结果表明在加入ATP后线粒体内膜的能量化使其膜表面的负电荷减少。作者论讨了用上述二种方法研究线粒体内膜在能量化时表面电荷变化的有关问题。  相似文献   

3.
Valinomycin has been shown to increase the amount of 8-anilino-1-naphthalenesulfonate (ANS) bound to egg lecithin liposomes and also to increase the maximum fluorescence value, as derived from double reciprocal plots. The assay conditions were such that addition of valinomycin would not produce a transmembrane potential. The formation of a valinomycin potassium ANS complex in the micelle membrane is proposed. This could account for the increase in the maximum fluorescence value and, by acting as an ANS transporter, could also account for the increase in ANS bound. Tributylamine was also shown to increase the binding and maximum fluorescence of ANS. In assay conditions where the addition of valinomycin would produce a transmembrane potential negative inside, the tributylamine-induced fluorescence was reversed. The fluorescense decrease is interpreted as transmembrane electrophoresis of ANS in response to a transmembrane potential.  相似文献   

4.
The effect of n-butanol on the mobility of phospholipids in phospholipid vesicles and beef heart mitochondrial membranes has been studied using three stearic acid spin labels having a paramagnetic doxyl group in positions 5,12, and 16, respectively, and the fluorescent probe 1-anilinonaphthalene-8-sulfonate (ANS). The mobility of the spin labels in the phospholipid aliphatic chains increases from the polar heads toward the methyl groups both in vesicles and in mitochondrial membranes; however, in the latter there is a higher constriction of rotational mobility observed at all levels in the lipid bilayer. Butanol determines a moderate increase in mobility of phospholipids in lipid vesicles, but the effect is more striking in the mitochondrial membranes, where the protein-induced constraint of mobility of the fatty acyl chains is removed at low concentrations of the alcohol. Butanol also enhances the mobility of tightly bound phospholipids residual in lipid-depleted mitochondrial preparations, although higher concentrations of butanol are required for this effect. The effect of the series of aliphatic n-alcohols is related to their hydrophobicity.Alcohols induce a decrease of the fluorescence of ANS bound to both lipid vesicles and mitochondrial membranes. The fluorescence decrease is not the result of a decreased partition of ANS from the aqueous medium to the bilayer, but depends upon a change in the chromophore environment. Since no shift of the emission maximum is observed after alcohol addition, such a change must be ascribed to increased mobility of the probe, in accord with the spin label data.As for the spin label data, the effect of the series of aliphatic n-alcohols is related to their hydrophobicity; at difference with the electron spin resonance results, however, the effects are maximal for pure phospholipid vesicles. It is calculated that alcohols affect both the long-range interactions between phospholipids and proteins in mitochondrial membranes (as detected by spin labels) and the order of phospholipid bilayers near the glycerol region (as detected by ANS). The differences between the two kinds of probes may be related to their differing localization in the lipid bilayer.  相似文献   

5.
1-anilino-8-naphtalenesulfonate (ANS) is a hydrophobic dipole previously used to demonstrate that the proton for potassium exchange by the gastric HK-ATPase is electroneutral. In this paper, we demonstrate that ANS binds to gastric membranes and probes conformational changes of the HK-ATPase independently of any active H for K exchange. Conformational changes require the presence of potassium-valinomycin and are not triggered by sodium. Potassium effect is enhanced by ATP, in the presence and in the absence of magnesium and, by ADP, in the presence of magnesium. Labeling of the pig HK-ATPase K518 by fluorescein-5-isothiocyanate inhibits the enzyme activity and knocks out the ATP effect on ANS fluorescence. Scherring 28080 and the monoclonal antibody 95-111, two competitive inhibitors of K-activated ATPase dephosphorylation, do not modify K-effect on ANS fluorescence but inhibit ATP effects. This supports that ANS does not probe K-site between the H1–H2 loop. Treatment of gastric membranes with trypsin does not inhibit the ANS response to potassium but does inhibit the response to ATP. This suggests that the ATP site inducing the ANS response is cytoplasmic and the potassium site is intramembranous. Titration reveals that one mole of ANS interacts with one mole of ATPase. We suggest that ANS probes a hydrophobic potassium site of gastric ATPase and that addition of ATP and ADP-Mg embed that site. Received: 16 July 1997/Revised: 10 June 1998  相似文献   

6.
1. The interaction of mitochondrial and submitochondrial membranes with DDT, methoxychlor and kelthane as monitored by fluorescence changes of ANS was studied. 2. The three organochlorine pesticide chemicals reduced the succinate- and ATP-dependent quenching of ANS fluorescence of mitochondria in a concentration-dependent manner. The results suggest that they blocked the supply of energy to the inner membrane. 3. The reversal of the substrate-induced quenching of ANS by uncouplers was abolished by DDT and kelthane probably as a consequence of the inhibition of protonophoric activity of the uncoupler. 4. Both DDT and kelthane were relatively ineffective inhibitors of substrate-induced quenching of ANS fluorescence of submitochondrial particles. The results suggest an asymmetry of the inner membrane with respect to DDT-inhibition of substrate-induced energization. 5. The possible basis of this asymmetry as well as of inhibition of energy supply to the membrane is discussed.  相似文献   

7.
Polymeric structures, namely, micelles, membranes and globular proteins share the property of two distinct regions: a hydrophobic core and a hydrophilic exterior. The dynamics of these regions of the polymeric structures were probed using selective fluorophores 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-anilinonaphthalene-8-sulfonate (ANS), respectively. Perturbation of the polymers by external osmotic pressure, ionic strength and temperature was monitored in the two regions using steady state measurements of fluorescence intensity and anisotropy. While the fluorescence lifetime of DPH and ANS did not change significantly, parallel change in steady state anisotropy values and the rotational correlation time indicated mobility in the probe/probe-domain. Osmotic perturbation of the polymers in electrolyte media led to decreased DPH mobility. Enhanced ellipticity at 222 nm in bovine serum albumin was observed in 1.5 M NaCl and sucrose media. ANS exhibited a decreased anisotropy with progressive dehydration in proteins in NaCl media, in dimyristoylphosphatidylcholine (DMPC) vesicles in sucrose media, and in neutral laurylmaltoside micelles in both NaCl and sucrose media. Thus, ANS showed responses opposite to that of DPH in these systems. A comparison with several domain selective probes indicated that DPH reported findings common to depth probes while ANS reported data common to interfacial probes used for voltage monitoring.  相似文献   

8.
Iu P Denisov  S M Danilov 《Biofizika》1975,20(6):1027-1028
The binding of the negatively charged fluorescence dye ANS and neutral dye NPN2 with lipid and erythrocyte membranes in the presence of barbiturates was studied. It was found that barbiturates decreased the amount of binding sites of ANS and NPN2 with membranes did not affect the quantum yield and the dissociation of the membrane-dye complex. It was shown that all barbiturates investigated were bound with the membranes in a neutral form.  相似文献   

9.
Channels selective for potassium or chloride ions are present in all intracellular membranes such as mitochondrial membranes, sarcoplasmic/endoplasmic reticulum, nuclear membrane and chromaffin granule membranes. They probably play an important role in events such as acidification of intracellular compartments and regulation of organelle volume. Additionally, intracellular ion channels are targets for pharmacologically active compounds, e.g. mitochondrial potassium channels interact with potassium channel openers such as diazoxide. This review describes current observations concerning the properties and functional roles of intracellular potassium and chloride channels.  相似文献   

10.
Channels selective for potassium or chloride ions are present in inner mitochondrial membranes. They probably play an important role in mitochondrial events such as the formation of delta pH and regulation of mitochondrial volume changes. Mitochondrial potassium and chloride channels could also be the targets for pharmacologically active compounds such as potassium channel openers and antidiabetic sulfonylureas. This review describes the properties, pharmacology, and current observations concerning the functional role of mitochondrial potassium and chloride channels.  相似文献   

11.
Alterations in the membrane organization caused by fibrinogen binding to human blood platelets and their isolated membranes were analyzed by fluorescence and electron spin resonance measurements. The degree of fluorescent anisotropy of DPH, ANS and fluorescamine increased significantly when fibrinogen reacted with its membrane receptors. Both fluorescence and ESR analyses showed that fibrinogen binding to platelet membranes is accompanied by an increase of the membrane lipid rigidity. This effect seems to be indirect in nature and is mediated by altered membrane protein interactions. As it has been shown that an increased membrane lipid rigidity leads to a greater exposure of membrane proteins, including fibrinogen receptors, this might facilitate a formation of molecular linkages between neighboring platelets. On the other hand, changes of fluorescence anisotropy of membrane tryptophans and N-(3-pyrene) maleimide suggest the augmented mobility of the membrane proteins. Evidence is presented which indicated that the binding of fibrinogen to the membrane receptors is not accompanied by any changes in the fluorescence intensity of ANS attached to the membranes. It may suggest that the covering of platelets with fibrinogen does not influence the surface membrane charge. In contrast to fibrinogen, calcium ions caused an increase of the fluorescence intensity resulting from the more efficient binding of ANS to the platelet membranes.  相似文献   

12.
To follow microviscosity changes in membranes associated with fibrinogen binding to human platelets, specific fluorescent probes were used and their fluorescence anisotropy was analysed. The degree of fluorescence anisotropy of diphenylhexatriene, anilinonaphthalene sulfonate (ANS) and fluorescamine increased significantly when fibrinogen reacted with its membrane receptors. Fluorescence polarization analyses showed that fibrinogen binding to platelet membranes is accompanied by an increase in the membrane lipid rigidity. On the other hand, changes in the fluorescence anisotropy of membrane tryptophans and N-(3-pyrene)maleimide suggest augmented mobility of the membrane proteins. The binding of fibrinogen to the membrane receptors is not accompanied by any change in the fluorescence intensity of ANS attached to the membranes. This may suggest that covering of platelets with fibrinogen molecules does not influence the surface membrane charge.  相似文献   

13.
—Inulin, sucrose and chloride spaces were measured in slices of brain cortex from adult and from new-born rats incubated in‘balanced', potassium-rich and sodium-rich media. The efflux of the radioactive markers was followed in the two first media and the following results were obtained: (1) In brain slices from new-born rats inulin and sucrose spaces were of identical magnitude (35 per cent). The space magnitude was essentially unaffected by excess potassium. The chloride space was somewhat larger than the inulin (sucrose) space, and the difference increased continuously but relatively slightly with the external potassium concentration. By far the largest amount (i.e. about 90 per cent) of the efflux of radioactive inulin, sucrose and chloride occurred from a rapidly exchanging compartment during incubation in both ‘balanced’ and potassium-rich media. (2) In brain slices from adult rats the inulin space (35 per cent) was significantly smaller than that of sucrose (50 per cent) and of chloride (65 per cent); it seemed to represent the extracellular space relatively well although 10 per cent of the efflux occurred from a slowly exchanging (probably intracellular) compartment. High concentrations of potassium led to a reduction of the inulin space which was probably a result of the concomitant intracellular swelling. The hyperosmolarity per se did not affect the space magnitude, but an increase of the sodium concentration exerted a competitive inhibition of potassium effects on the inulin space. Of the sucrose efflux, 20 per cent occurred from a slowly exchanging compartment in both ‘balanced’ and potassium-rich media, and 30 per cent of the chloride exchanged with this compartment when the tissue was incubated in a ‘balanced’ medium. An increase of the external potassium concentration caused a drastic increase of the chloride space and a reduction of the slowly exhanging fraction of chloride efflux to less than 10 per cent.  相似文献   

14.
Both the sialoglycoprotein of human erythrocyte membranes, glycophorin, and the sialic acid free protein, obtained by treatment of glycophorin with neuraminidase (EC 3.2.1.18), increase the fluorescence of 8-anilino-1-naphthalene sulfonate (ANS). Binding of ANS to glycophorin is weak compared with the binding to bovine serum albumin (BSA). equilibrium dialysis gives an apparent binding constant of about 4 X 10(3) M(-1) at neutral pH, but Ka increases 1.75 times when NaCl or CaCl2 are added and 10-fold when the pH is lowered to 3.0. Sialic acid groups do not significantly affect ANS binding, although they have some effect at low ionic strength and neutral pH. Fluorescence studies indicate only one to two binding sites for ANS, with apparent pK = 3.8 +/- 0.2, and located close to aromatic residues in glycophorin. Polarization and quantum efficiency of the fluorescence of ANS associated with glycophorin fail to indicate changes in the vicinity of the binding site when the pH is lowered.  相似文献   

15.
Plasma membrane vesicles were prepared from guinea pig ileum longitudinal muscle. The vesicles were characterized by electron microscopy and analysis of lipid and protein content. They were shown to be free of gross contamination from actomyosin, sarcoplasmic reticulum, and mitochondria. 8-Anilino-1-naphthalene sulphonic acid (ANS) binding characteristics were similar to those found in other membranes. Both carbachol and atropine increased the fluorescence of ANS bound to this membrane, the maximum increase for atropine being greater than that for carbachol. Since neither drug effected the apparent affinity constant for the ANS-membrane interaction. It may be assumed that the increased fluorescence was due to an increase in the number of ANS binding sites. The carbachol-dependent increase in ANS fluorescence was blocked noncompetitively by atropine but not by tubocurarine or diphenhydramine. These latter two antagonists also increased ANS fluorescence but at much higher concentrations than either carbachol or atropine. Neither atropine nor carbachol increased ANS fluorescence on either erythrocyte ghosts or liposomes (prepared from a lipid extract of the muscle membrane).  相似文献   

16.
Summary (1) The enzymatic removal of lipids from the vesicular membranes of the sarcoplasmic reticulum does not interfere with the fluorescence of the 1-anilino-8-naphthalenesulfonate (ANS) vesicular complex. (2) The fluorescence intensity of the ANS vesicular complex is considerably (50%) reduced by oleic acid (0.5mm) because it displaces ANS from its binding sites. (3) Stearic acid, which also combines with the membranes, interferes neither with ANS binding nor with ANS fluorescence. (4) Of all lipid compounds tested, oleylamine produces the most pronounced fluorescence enhancement of ANS. (5) The complexes formed between oleic acid and cetyltrimethyl ammonium salts or between oleic acid and polylysine produce a much higher fluorescence enhancement than the isolated components. (6) Low concentrations of ether added to ANS-containing vesicular suspensions reduce their fluorescence intensity. It returns to the initial intensity when the ether is removed. (7) A small cyclic change of the fluorescence of the vesicular ANS complex takes place during active calcium uptake.  相似文献   

17.
The addition of CEL-III to sensitive MDCK cells preincubated with 8-anilino-1-naphthalenesulfonate (ANS) caused an increase in the fluorescence intensity of the probe. The increase in the ANS fluorescence caused by CEL-III was Ca2+-dependent and strongly inhibited by 0.1 M lactose, indicating that Ca2+-dependent binding of CEL-III to specific carbohydrate receptors on the plasma membrane is responsible for this phenomenon. In contrast, no significant effect of CEL-III on the ANS fluorescence was observed in CHO cells, which are highly resistant to CEL-III cytotoxicity. In MDCK cells, energy transfer from tryptophan residues to bound ANS molecules was observed in the presence of CEL-III, but not in CHO cells. Furthermore, the amount of ANS bound to MDCK cells increased as the concentration of CEL-III increased. Therefore, a simple interpretation is that the CEL-III-induced increase in ANS fluorescence is attributable to an increase of the hydrophobic region in the plasma membrane where ANS could bind. Immunoblotting analysis of proteins from cells treated with CEL-III indicated that CEL-III oligomers were irreversibly bound to the cells, and the amount of oligomer bound to MDCK cells was much greater than that bound to CHO cells under any conditions tested. The oligomerization may be accompanied by an enhancement of the hydrophobicity of CEL-III molecules, which in turn provides new ANS-binding sites. The difference in susceptibility of MDCK and CHO cells to CEL-III cytotoxicity may be due to a difference in oligomerization of bound CEL-III.  相似文献   

18.
V V Lemeshko 《Biofizika》1983,28(6):985-989
By means of fluorescent probes, 1-anilino naphthalene-8-sulfonate (ANS), methoxybenzanthrone (MBA) and pyrene, an increase of membrane affinity to ANS, shift of MBA fluorescence maximum to the short-wave spectrum region and a change of the membrane microviscosity were observed in the liver microsome membranes during aging of rats. No significant changes of fluorescent parameters of the probes with rats aging were found in mitochondria. ANS was concurrently displaced by thyroxine, affinity to which significantly increased with aging, and in young animals during hyperthyroidism. The increase of microsome membranes affinity to thyroxine with age is considered as an intracellular mechanism which is involved in the metabolism changes of hypothyroid pattern in rat liver during aging.  相似文献   

19.
The activities of mitochondrial hexokinase and adenylate kinase have been measured in various osmotic conditions. Sucrose, potassium chloride and ammonium acetate were used as solutes. The total hexokinase activity of mitochondrial suspensions increased steadily with decreasing osmolarity of the sucrose or salt solutions. The hexokinase activity of mitochondrial suspensions in water was 93 per cent of that measured in the presence of Triton X-100.The increase in hexokinase activity was irreversible even after very short exposure (90 s) to hypo-osmotic conditions. Total adenylate kinase activity was not affected by osmotic conditions. Adenylate kinase activity increased hyperbolically in supernatants prepared from mitochondrial suspensions with decreasing osmolarity of the sucrose or salt solutions. Besides monitoring adenylate kinase leakage as a measure of outer mitochondrial membrane disruption, mitochondrial swelling was followed by measurement of the turbidity of mitochondrial suspensions at 520 nm. The data has been interpreted in terms of binding of some hexokinase to the inner mitochondrial membrane.  相似文献   

20.
The phospholipid composition of the electron transport particles and coupling factor-depleted electron transport particles of Mycobacterium phlei are the same, but they differ in contents. The accessibility of partially purified phospholipase A to these membrane phospholipids was found to be different. Treatment of membranes of Mycobacterium phlei with phospholipase A impairs the rate of oxidation as well as phosphorylation. The inhibition of phosphorylation can be reversed by washing the membranes with defatted bovine serum albumin. The reconstitution of membrane-bound coupling factor-latent ATPase activity to phospholipase A-treated depleted electron transport particles and their capacity to couple phosphorylation to oxidation of substrates remained unaffected after phospholipase A treatment. However, the pH gradient as measured by bromthymol blue was not restored after reconstitution of phospholipase A-treated depleted electron transport particles with membrane-bound coupling factor-latent ATPase. These findings show that the phosphorylation coupled to the oxidation of substrates can take place without a pronounced pH gradient in these membrane vesicles. The dye 1-anilino-8-naphthalene sulfonic acid (ANS) exhibited low levels of energized and nonenergized fluorescence in phospholipase A-treated membranes. This decrease in the level of ANS fluorescence in phospholipase A-treated membranes was found to be directly related to the amount of phospholipids cleaved. The decrease in the energy-dependent ANS response in phospholipase A-treated electron transport particles, as compared with untreated electron transport particles, was shown to be a result of a change in the apparent K-d of the dye-membrane complex, and of a decrease in the number of irreversible or slowly reversible binding sites, with no change in the relative quantum efficiency of the dye. The decrease in ANS fluorescence in phospholipase A-treated particles appears to be due to a decrease in the hydrophobicity of the membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号