首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cardinalfishes (Apogonidae) are a diverse clade of small, mostly reef-dwelling fishes, for which a variety of morphological data have not yielded a consistent phylogeny. We use DNA sequence to hypothesize phylogenetic relationships within Apogonidae and among apogonids and other acanthomorph families, to examine patterns of evolution including the distribution of a visceral bioluminescence system. In conformance with previous studies, Apogonidae is placed in a clade with Pempheridae, Kurtidae, Leiognathidae, and Gobioidei. The apogonid genus Pseudamia is recovered outside the remainder of the family, not as sister to the superficially similar genus Gymnapogon. Species sampled from the Caribbean and Western Atlantic (Phaeoptyx, Astrapogon, and some Apogon species) form a clade, as do the larger-bodied Glossamia and Cheilodipterus. Incidence of visceral bioluminescence is found scattered throughout the phylogeny, independently for each group in which it is present. Examination of the fine structure of the visceral bioluminescence system through histology shows that light organs exhibit a range of morphologies, with some composed of complex masses of tubules (Siphamia, Pempheris, Parapriacanthus) and others lacking tubules but containing chambers formed by folds of the visceral epithelium (Acropoma, Archamia, Jaydia, and Rhabdamia). Light organs in Siphamia, Acropoma, Pempheris and Parapriacanthus are distinct from but connected to the gut; those in Archamia, Jaydia, and Rhabdamia are simply portions of the intestinal tract, and are little differentiated from the surrounding tissues. The presence or absence of symbiotic luminescent bacteria does not correlate with light organ structure; the tubular light organs of Siphamia and chambered tubes of Acropoma house bacteria, those in Pempheridae and the other Apogonidae do not.  相似文献   

2.
3.
The hypothesis ofHenriques andFernandes that several Iberian species ofNarcissus (Amaryllidaceae) are tristylous is reconsidered. Contrary to the opinion ofBateman and most subsequent authors, we believe that the available evidence indicates that some populations ofN. triandrus andN. fernandesii, at least, are tristylous; other populations ofN. triandrus are distylous.Hugonia cf.penicillanthemum (Linaceae) from new Caledonia is distylous, but it remains possible that other species ofHugonia are tristylous. The disputed occurrence of heterostyly in S. African species ofBauhinia (Leguminosae),Cleome (Capparaceae) andAneilema (Commelinaceae), and inAgelaea (Connaraceae) is discussed.  相似文献   

4.
Parsimony analyses of the internal transcribed spacer regions of nuclear ribosomal DNA (ITS 1 & ITS 2) for 38 taxa sampled from the Phebalium group (Rutaceae: Boronieae) and two outgroups confirm that, with the exception of Phebalium sensu stricto and Rhadinothamnus, six of the currently recognised genera within the group are monophyletic. The data indicate that Phebaliums. str. is paraphyletic with respect to Microcybe, and Rhadinothamnus is paraphyletic with respect to Chorilaena. Rhadinothamnus and Chorilaena together are the sister group to Nematolepis. Drummondita, included as an outgroup taxon, clustered within the ingroup as sister to Muiriantha and related to Asterolasia.The phylogeny suggests that the evolution of major clades within a number of these genera (e.g. Phebalium) relates to vicariance events between eastern and south-western Australia. Leionema is an eastern genus, with the most basal taxon being the morphologically distinct Leionema ellipticum from northern Queensland. Leionema also includes one species from New Zealand, but this species (as with some others) proved difficult to sequence and its phylogenetic position remains unknown. Taxonomic changes at the generic level are recommended.The authors wish to thank Paul G.Wilson, PERTH, for advice and discussion, and Paul Forster, BRI, for collecting and providing material of Leionema ellipticum. The project was supported by a Melbourne University Postgraduate Award (to BM), the Australian Biological Resources Study (ABRS), Australian Systematic Botany Society and Wolf Den (Australia) Investments.  相似文献   

5.
李玉  陈双林  李惠中 《菌物学报》1993,12(Z1):107-112
本文补报了中国团毛菌科四个种,弱小团网菌Arcyria exigua sp. nov.和聚生团网菌Arcyria aggregata sp. nov.为新种,瑞士团网菌Arcyria helvetica和纹丝半网菌Hemitrichia intorta为中国新记录种。文中对二新种进行了描述,附有形态特征电镜扫描照片,并讨论了与相似种间的区别。新种的模式标本保存在中国科学院微生物研究所真菌标本室。  相似文献   

6.
The phylogenetic relationships within many clades of the Crassulaceae are still uncertain, therefore in this study attention was focused on the “Acre clade”, a group comprised of approximately 526 species in eight genera that include many Asian and Mediterranean species of Sedum and the majority of the American genera (Echeveria, Graptopetalum, Lenophyllum, Pachyphytum, Villadia, and Thompsonella). Parsimony and Bayesian analyses were conducted with 133 species based on nuclear (ETS, ITS) and chloroplast DNA regions (rpS16, matK). Our analyses retrieved four major clades within the Acre clade. Two of these were in a grade and corresponded to Asian species of Sedum, the rest corresponded to a European–Macaronesian group and to an American group. The American group included all taxa that were formerly placed in the Echeverioideae and the majority of the American Sedoideae. Our analyses support the monophyly of three genera – Lenophyllum, Thompsonella, and Pachyphytum; however, the relationships among Echeveria, Sedum and the various segregates of Sedum are largely unresolved. Our analyses represents the first broad phylogenetic framework for Acre clade, but further studies are necessary on the groups poorly represented here, such as the European and Asian species of Sedum and the Central and South American species of Echeveria.  相似文献   

7.
Heterokonts are evolutionarily important as the most nutritionally diverse eukaryote supergroup and the most species-rich branch of the eukaryotic kingdom Chromista. Ancestrally photosynthetic/phagotrophic algae (mixotrophs), they include several ecologically important purely heterotrophic lineages, all grossly understudied phylogenetically and of uncertain relationships. We sequenced 18S rRNA genes from 14 phagotrophic non-photosynthetic heterokonts and a probable Ochromonas, performed phylogenetic analysis of 210–430 Heterokonta, and revised higher classification of Heterokonta and its three phyla: the predominantly photosynthetic Ochrophyta; the non-photosynthetic Pseudofungi; and Bigyra (now comprising subphyla Opalozoa, Bicoecia, Sagenista). The deepest heterokont divergence is apparently between Bigyra, as revised here, and Ochrophyta/Pseudofungi. We found a third universal heterokont signature sequence, and deduce three independent losses of ciliary hairs, several of 1-2 cilia, 10 of photosynthesis, but perhaps only two plastid losses. In Ochrophyta, heterotrophic Oikomonas is sister to the photosynthetic Chrysamoeba, whilst the abundant freshwater predator Spumella is biphyletic; neither clade is specifically related to Paraphysomonas, indicating four losses of photosynthesis by chrysomonads. Sister to Chrysomonadea (Chrysophyceae) is Picophagea cl. nov. (Picophagus, Chlamydomyxa). The diatom-parasite Pirsonia belongs in Pseudofungi. Heliozoan-like actinophryids (e.g. Actinosphaerium) are Opalozoa, not related to pedinellids within Hypogyristea cl. nov. of Ochrophyta as once thought. The zooflagellate class Bicoecea (perhaps the ancestral phenotype of Bigyra) is unexpectedly diverse and a major focus of our study. We describe four new biciliate bicoecean genera and five new species: Nerada mexicana, Labromonas fenchelii (=Pseudobodo tremulans sensu Fenchel), Boroka karpovii (=P. tremulans sensu Karpov), Anoeca atlantica and Cafeteria mylnikovii; several cultures were previously misidentified as Pseudobodo tremulans. Nerada and the uniciliate Paramonas are related to Siluania and Adriamonas; this clade (Pseudodendromonadales emend.) is probably sister to Bicosoeca. Genetically diverse Caecitellus is probably related to Anoeca, Symbiomonas and Cafeteria (collectively Anoecales emend.). Boroka is sister to Pseudodendromonadales/Bicoecales/Anoecales. Placidiales are probably divergent bicoeceans (the GenBank Placidia sequence is a basidiomycete/heterokont chimaera). Two GenBank ‘opalinid’ sequences are fungal; Pseudopirsonia is cercozoan; two previous GenBank ‘Caecitellus’ sequences are Adriamonas. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editior: Patnck J. Keeling]  相似文献   

8.
9.
The family Sordariaceae incorporates a number of fungi that are excellent model organisms for various biological, biochemical, ecological, genetic and evolutionary studies. To determine the evolutionary relationships within this group and their respective phylogenetic placements, multiple-gene sequences (partial nuclear 28S ribosomal DNA, nuclear ITS ribosomal DNA and partial nuclear β-tubulin) were analysed using maximum parsimony and Bayesian analyses. Analyses of different gene datasets were performed individually and then combined to generate phylogenies. We report that Sordariaceae, with the exclusion Apodus and Diplogelasinospora, is a monophyletic group. Apodus and Diplogelasinospora are related to Lasiosphaeriaceae. Multiple gene analyses suggest that the spore sheath is not a phylogenetically significant character to segregate Asordaria from Sordaria. Smooth-spored Sordaria species (including so-called Asordaria species) constitute a natural group. Asordaria is therefore congeneric with Sordaria. Anixiella species nested among Gelasinospora species, providing further evidence that non-ostiolate ascomata have evolved from ostiolate ascomata on several independent occasions. This study agrees with previous studies that show heterothallic Neurospora species to be monophyletic, but that homothallic ones may have a multiple origins. Although Gelasinospora and Neurospora are closely related and not resolved as monophyletic groups, there is insufficient evidence to place currently accepted Gelasinospora and Neurospora species into the same genus.  相似文献   

10.
Seven new calochroid and fulvoid species of Cortinarius   总被引:1,自引:0,他引:1  
We describe seven new European species of Cortinarius. All species are based on analyses of morphological and DNA sequence data. They all belong to a well-supported clade comprising most species traditionally treated in Cortinarius subgenus Phlegmacium sections Fulvi and Calochroi (i.e. the/Calochroi clade). All taxa are either fulvoid (containing anthraquinoid pigments) or calochroid (without these pigments). Morphological and ecological data are presented for all species and compared with similar species. A dichotomous key is presented for C. calochrous and similar species, including all six newly described calochroid species. The calochroid species C. albertii, C. chailluzii, C. cisticola, C. sancti-felicis, C. selandicus and C. vesterholtii spp. nov., and the fulvoid species C. langeorum sp. nov. are described.  相似文献   

11.
12.
The taxonomic positions ofRetzia, Desfontainia, andNicodemia have been much discussed, and all three genera have been included inLoganiaceae (Gentianales). We have made a cladistic analysis ofrbcL gene sequences to determine the relationships of these taxa toGentianales. Four newrbcL sequences are presented; i.e., ofRetzia, Desfontainia, Diervilla (Caprifoliaceae), andEuthystachys (Stilbaceae). Our results show thatRetzia, Desfontainia, andNicodemia are not closely related toLoganiaceae or theGentianales. Retzia is most closely related toEuthystachys and is better included inStilbaceae. The positions ofDesfontainia andNicodemia are not settled, butDesfontainia shows affinity for theDipsacales s.l. andNicodemia for theLamiales s.l.  相似文献   

13.
The new genus and species Teracosphaeria petroica is described for a perithecial ascomycete and its anamorph occurring on decayed wood collected in New Zealand. The fungus produces immersed, non-stromatic ceratosphaeria-like perithecia in nature, with hyaline, septate ascospores produced in unitunicate, non-amyloid asci. The anamorph produced in vitro is phialophora-like with lightly pigmented phialides terminating in flaring, deep collarettes that are often noticeably brown with conspicuous periclinal thickening. Phylogenetic analysis of LSU rDNA sequence data indicates that this fungus is distinct from morphologically similar fungi classified in the Chaetosphaeriales, the Trichosphaeriales or the Magnaporthaceae. It forms a monophyletic group with recently described, chaetosphaeria-like ascomycetes, such as the pyrenomycete genus Mirannulata, and shows affinity with the anamorphic species Dictyochaeta cylindrospora. The usefulness of describing anamorph genera for morphologically reduced anamorphs, when anamorph characteristics are actually part of the holomorph diagnosis, is discussed. An apparently contradictory example of the so-called Cordana and Pseudobotrytis anamorphs of Porosphaerella spp. is also discussed.  相似文献   

14.
Graminicolous downy mildews (GDM) are an understudied, yet economically important, group of plant pathogens, which are one of the major constraints to poaceous crops in the tropics and subtropics. Here we present a first molecular phylogeny based on cox2 sequences comprising all genera of the GDM currently accepted, with both lasting (Graminivora, Poakatesthia, and Viennotia) and evanescent (Peronosclerospora, Sclerophthora, and Sclerospora) sporangiophores. In addition, all other downy mildew genera currently accepted, as well as a representative sample of other oomycete taxa, have been included. It was shown that all genera of the GDM have had a long, independent evolutionary history, and that the delineation between Peronosclerospora and Sclerospora is correct. Sclerophthora was found to be a particularly divergent taxon nested within a paraphyletic Phytophthora, but without support. The results confirm that the placement of Peronosclerospora and Sclerospora in the Saprolegniomycetidae is incorrect. Sclerophthora is not closely related to Pachymetra of the family Verrucalvaceae, and also does not belong to the Saprolegniomycetidae, but shows close affinities to the Peronosporaceae. In addition, all GDM are interspersed throughout the Peronosporaceae s lat., suggesting that a separate family for the Sclerosporaceae might not be justified.  相似文献   

15.
The two generaPlectranthus andIsodon are compared and found to be very dissimilar.Isodon ist considered to be misplaced inOcimeae subtribePlectranthinae and apparently is more closely related to subtribeHyptidinae. The disjunct genusRabdosiella is compared to these two genera and regarded to be polyphyletic. The AfricanR. calycina (Benth.)Codd is returned toPlectranthus and calledP. calycinus Benth., while the AsianR. ternifolia (D. Don)Codd is placed inIsodon sect.Pyramidium and calledI. ternifolius (D. Don)Kudo.  相似文献   

16.
Lavire  C.  Cournoyer  B. 《Plant and Soil》2003,254(1):125-137
The actinomycete Frankia is of fundamental and ecological interests for several reasons including its wide distribution, its ability to fix nitrogen, differentiate into sporangium and vesicle (specialized cell for nitrogen-fixation), and to nodulate plants from about 24 genera. Here, we present a review on the genetics performed so far on Frankia. At the end of July 2001, 293 kbp of Frankia DNA sequences were found in the databases. Thirty five percent of these sequences corresponded to full gene or gene cluster sequences. These genes could be divided according to their role into 6 key activities: gene translation (rrnA and tRNA pro gene), proteolysis (pcr genes), assimilation of ammonium (glnA and glnII), protection against superoxide ions (sodF), nitrogen fixation (nif cluster), and plasmid replication. We present a review of these genetic islands; their function, expression, localization and particular properties are discussed. A comparative analysis of Frankia nif genes from various strains and species is presented. An improved nomenclature for some of these genes is suggested to avoid conflicts. Frankia plasmids DNA sequences are also presented. The novel trends in Frankia genetics are described.  相似文献   

17.
The adult morphology of the Australian Limnadopsis shows some remarkable differences to that of other Limnadiidae. These differences are not reflected in its larval development. In Limnadopsis parvispinus, larval development comprises six stages. In stages I and II only the three naupliar appendages are present: the antennule as a small bud, the biramous antenna as the main swimming organ, and the mandible. The antennal protopod bears two endites, the proximal naupliar process and a more distal endite. In stage III a bifid naupliar process (in earlier stages not bifid) and the first signs of the carapace and trunk limb anlagen (undifferentiated rudiments) appear. In stage IV the carapace anlagen become more pronounced. The number of trunk limb anlagens increases to five, and differentiation has commenced. In stage V the first five pairs of trunk limbs are differentiated to varying degrees. The anterior-most four pairs of trunk limbs are subdivided into five endites, a small endopod, an exopod and an epipod. The bivalved carapace covers the anterior-most limbs. In larval stage VI the carapace is larger and the trunk limbs are further differentiated. A general pattern in the sequence of larval stages is the increasing number of sensilla on the antennules. From the last larval to the first postlarval stage, a significant change in morphology takes place. The trunk limbs are now used for swimming. Typical larval organs are much smaller than in the last larval stage. A comparison with other representatives of the Limnadiidae shows a high degree of correspondence, with most differences explained by the heterochronous appearance of characters during development. Five to seven stages are described for all studied Limnadiidae, including one particular stage in which four fully developed setae, a bifid naupliar process and the first signs of carapace anlagen are present. These characters are found in stage III in L. parvispinus, Limnadia stanleyana, Eulimnadia texana, and Imnadia yeyetta but in stage IV in E. braueriana and L. lenticularis. Based on a comparison of the larval stages of six limnadiid and one cyzicid species, we conclude that at least six naupliar stages belong to the limnadiid ground pattern.  相似文献   

18.
19.
New taxa ofChrysophyceae from small heleocrene and limnocrene springs are described and pictured. The delicate flagellates were observed and drawn in living stage immediately after collection. Some of them show peculiar morphology and striking structure of organelles. The following new taxa are described in this paper:Chromulina nasuta, Chromulina pavlikii, Chromulina taeniata, Chromulina oligochrysis, Chromulina pyrenoidosa, Monochrysis stigmatica, Ochromonas oligochrysis, Ochromonas taeniata, Pseudokephyrion hypermaculatum, Pseudokephyrion hyalinum var.tubiforme, Chrysococcus ellipsoideus, Epipyxis borealis var.monoplastida.
  相似文献   

20.
The phylogeny ofFumariaceae, as inferred fromrps16 intron sequences, is compared with morphological data, and nrDNA-ITS. The different data sets are largely congruent and indicate that (1)Dicentra and the tribeCorydaleae as hitherto circumscribed are polyphyletic, (2)Lamprocapnos (=Dicentra spectabilis) is sister group to the rest of subfam.Fumarioideae, (3)Ehrendorferia, gen. nov. (=Dicentra chrysantha andD. ochroleuca) is basal in the latter group, (4) the morphologically aberrantIchtyoselmis, gen. nov. (=Dicentra macrantha) groups withDicentra s. str., (5) the genusCysticapnos should be included in the tribeFumarieae, (6)Dactylicapnos (=Dicentra subg.Dactylicapnos) is sister group toCorydalis, (7) the genusCorydalis is monophyletic, and consists of three subgenera:Chremnocapnos, stat. nov.,Sophorocapnos, stat. nov., andCorydalis. The following new combinations are validated:Ehrendorferia chrysantha, E. ochroleuca, Ichtyoselmis macrantha, andLamprocapnos spectabilis. Dedicated to emer. Univ.-Prof. DrFriedrich Ehrendorfer on the occasion of his 70th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号