首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat cells transformed by the B77 strain of avian sarcoma virus produce no virus-like particles, yet B77 virus was rescued from these cells by Sendai virus-mediated fusion with chicken cells. This virus rescue was not affected by treatment of the chicken cells with agents that rendered the cells incapable of dividing, although such treatment greatly reduced the ability of the chicken cells to plate as infectious centers after infection with B77 virus. Fusion of R(B77) cells with chicken erythrocytes also led to virus rescue, although with less efficiency than fusion with chicken fibroblasts. Therefore, virus rescue was probably due to a factor or factors contributed by chicken cells which aid in virus production.  相似文献   

2.
The 70S RNA of Rous sarcoma virus contains 4S RNAs which serve as primers for the initiation of DNA synthesis in vitro by the RNA-directed DNA polymerase of the virus. We purified these primers in three different ways-by isolation of the covalent complex between primer and nascent DNA, by differential melting of the 70S RNA, and by two-dimensional electrophoresis in polyacrylamide gels. The 4S RNAs purified by these procedures were homogeneous and possessed very similar if not identical nucleotide compositions and sequences. The RNAs were approximately 75 nucleotides long, had pG at the 5' terminus and CpCpA(OH) at the 3' terminus, and contained a number of minor nucleotides characteristic of tRNA. In contrast to most tRNA's, the primer lacked rTp and contained Gp (Psip, Psip, Cp) Gp (possibly in place of the characteristic sequence GprTpPsipCpGp). At least 50% of the 4S primers available on 70S RNA were utilized in a standard polymerase reaction in vitro.  相似文献   

3.
Rat cells infected with the B77 strain of avian sarcoma virus [R(B77) cells] produced no virus-like particles but contained information for the production of infectious B77 virus. (3)H-labeled deoxyribonucleic acid (DNA) product of the B77 virus endogenous DNA polymerase system was used to determine the relative amounts of B77 virus-specific ribonucleic acid (RNA) in B77 virus-infected chicken and R(B77) cells. R(B77) cells were found to contain much less B77 virus RNA than did B77 virus-infected chicken cells. Ribonuclease-sensitive DNA polymerase activity was present in high-speed pellet fractions from Nonidet extracts of B77 virus-infected rat cells. Similar preparations from some uninfected rat cells contained lesser amounts of a similar ribonuclease-sensitive DNA polymerase activity. The endogenous template for the DNA polymerase activity in high-speed pellet fractions from R(B77) cells was not related to B77 virus RNA or to RNA of a rat C-type virus. The DNA product of the endogenous DNA polymerase in high-speed pellet fractions of R(B77) cells hybridized to a small extent with RNA from the same fraction and to a similar extent with RNA from uninfected rat cells.  相似文献   

4.
A method for preparing large membrane fragments and cell ghosts was developed for uninfected and Rous sarcoma virus-transformed chicken embryo fibroblasts in culture. Membrane proteins were analyzed by electrophoresis in acrylamide gels containing sodium dodecyl sulfate. A major amino-acid-containing component of uninfected cell membranes was greatly diminished in amount or absent in membranes of virus-transformed cells. This component, called MP-1, had an electrophoretic mobility in sodium dodecyl sulfate-containing gels similar to that of a protein of a mol wt of 1.42 x 10(5). MP-1 was not altered by changes in cell growth rate or in cells infected with the nontransforming virus RAV-1.  相似文献   

5.
6.
Virus Recovery in Chicken Cells Tested with Rous Sarcoma Cell DNA   总被引:15,自引:0,他引:15  
DNA from non-virus-producing RSV transformed mammalian cells converts chicken fibroblasts into Rous sarcoma cells producing infectious RSV particles. The recovered virus is the same biologically and antigenically as the virus which originally transformed the mammalian cells.  相似文献   

7.
8.
Labeled virions of Rous sarcoma virus (RSV) were disrupted with detergent and analyzed on equilibrium sucrose density gradients. A core fraction at a density of approximately 1.24 g/cc contained all of the (3)H-uridine label and about 30% of the (3)H-leucine label from the virions. Endogenous viral deoxyribonucleic acid (DNA) polymerase activity was only found in the same location. Additional ribonucleic acid (RNA)- and DNA-dependent DNA polymerase activities were found at the top of the gradients. RNA-dependent and DNA-dependent DNA polymerase activities were also found in RSV-converted chicken cells. Particles containing these activities were released from cells by detergent and were shown to contain viral RNA. These particles were analyzed on equilibrium sucrose density gradients and were found to have densities different from virion cores.  相似文献   

9.
Rous sarcoma virus (RSV)-specific ribonucleic acid (RNA) in virus-producing chicken cells and non-virus-producing rat cells infected with RSV was studied by hybridization with the endogenous deoxyribonucleic acid (DNA) product of the RSV virion DNA polymerase system. By hybridizing the total DNA product with excess virion RNA, the product DNA was separated into hybridized (“minus”) and nonhybridized (“plus”) DNA. The “minus” DNA was complementary to at least 20% of the RNA from RSV which remained of high molecular weight after denaturation. A maximum of approximately 65% hybridization was observed between “minus” DNA and RSV RNA or RSV-infected chicken cell RNA. A maximum of about 60% hybridization was observed between “minus” DNA and RSV-infected rat cell RNA. RSV-infected chicken cells contained RSV-specific RNA equivalent to about 6,000 virions per cell. RSV-infected rat cells contained RSV-specific RNA equivalent to approximately 400 virions per cell. Neither cell type contained detectable RNA complementary to virion RNA. The RSV-specific RNA in RSV-infected rat cells did not appear to be qualitatively different from that in RSV-infected chicken cells.  相似文献   

10.
11.
Purified preparations of Rous sarcoma virus (RSV) contain ribonuclease which is either a constituent of the virion surface or an adsorbed contaminant. Treatment of the virus with nonionic detergent to activate ribonucleic acid (RNA)-dependent deoxyribonucleic acid (DNA) polymerase renders the viral genome susceptible to hydrolysis by the external ribonuclease. The extent of this susceptibility can be substantially reduced by the use of limited amounts of detergent. At a concentration of detergent which provides a maximum initial rate of DNA synthesis, the degradation of endogenous viral RNA results in a reduced yield of high molecular weight DNA: RNA hybrid from the polymerase reaction. Attempts to detect virion-associated deoxyribonuclease, by using a variety of double helical DNA species as substrates, have been unsuccessful, but small amounts of nuclease activity directed against single-stranded DNA may be present in purified virus.  相似文献   

12.
Virus-specific antigens were studied in hamster cells transformed by Rous sarcoma virus (RSV). Antigens were localized in the cytoplasm, as demonstrated by fluorescent antibody staining of fixed cells as well as by complement fixation (CF) following subcellular fractionation. Cytoplasmic extracts were analyzed by velocity and isopycnic centrifugation. CF antigens were found in a soluble form and in association with membranes and polyribosomes. Isolated plasma membranes had no CF antigen. Both soluble and particulate fractions with CF activity contained the same antigenic determinants by Ouchterlony analysis. These antigenic determinants were identical to those released by ether treatment of RSV.  相似文献   

13.
14.
Cultured cells of mammalian tumors induced by ribonucleic acid (RNA)-containing oncogenic viruses were examined for production of virus. The cell lines were established from tumors induced in rats and hamsters with either Rous sarcoma virus (Schmidt-Ruppin or Bryan strains) or murine sarcoma virus (Moloney strain). When culture fluids from each of the cell lines were examined for transforming activity or production of progeny virus, none of the cell lines was found to be infectious. However, electron microscopic examination of the various cell lines revealed the presence of particles in the rat cells transformed by either Rous sarcoma virus or murine sarcoma virus. These particles, morphologically similar to those associated with murine leukemias, were found both in the extracellular fluid concentrates and in whole-cell preparations. In the latter, they were seen budding from the cell membranes or lying in the intercellular spaces. No viruslike particles were seen in preparations from hamster tumors. Exposure of the rat cells to (3)H-uridine resulted in the appearance of labeled particles with densities in sucrose gradients typical of virus (1.16 g/ml.). RNA of high molecular weight was extracted from these particles, and double-labeling experiments showed that this RNA sedimented at the same rate as RNA extracted from Rous sarcoma virus. None of the hamster cell lines gave radioactive peaks in the virus density range, and no extractable high molecular weight RNA was found. These studies suggest that the murine sarcoma virus produces an infection analogous to certain "defective" strains of Rous sarcoma virus, in that particles produced by infected cells have a low efficiency of infection. The control of the host cell over the production and properties of the RNA-containing tumorigenic viruses is discussed.  相似文献   

15.
Cells producing Rous sarcoma virus contain virus-specific ribonucleic acid (RNA) which can be identified by hybridization to single-stranded deoxyribonucleic acid (DNA) synthesized with RNA-directed DNA polymerase. Hybridization was detected by either fractionation on hydroxyapatite or hydrolysis with single strand-specific nucleases. Similar results were obtained with both procedures. The hybrids formed between enzymatically synthesized DNA and viral RNA have a high order of thermal stability, with only minor evidence of mismatched nucleotide sequences. Virus-specific RNA is present in both nuclei and cytoplasm of infected cells. This RNA is remarkably heterogeneous in size, including molecules which are probably restricted to the nucleus and which sediment in their native state more rapidly than the viral genome. The nature of the RNA found in cytoplasmic fractions varies from preparation to preparation, but heterogeneous RNA (ca. 4-50S), smaller than the viral genome, is always present in substantial amounts.  相似文献   

16.
DNA Ligase and Exonuclease Activities in Virions of Rous Sarcoma Virus   总被引:17,自引:0,他引:17  
Virions of Schmidt-Ruppin avian sarcoma virus have both polynucleotide ligase activity and DNA exonuclease activity. These enzymes complete the machinery necessary to transfer information from RNA to double stranded DNA integrated in the host DNA.  相似文献   

17.
Detection of Avian Tumor Virus RNA in Uninfected Chicken Embryo Cells   总被引:12,自引:29,他引:12       下载免费PDF全文
Uninfected chicken embryo cells were analyzed for the presence of viral ribonucleic acid (RNA) by molecular hybridization with the single-stranded deoxyribonucleic acid (DNA) product of the RNA-dependent DNA polymerase contained in avian sarcoma-leukosis virions. Viral RNA was detected in all cells which contained the avian tumor virus group-specific antigen and the virus-related helper factor. The amounts of viral RNA in these cells ranged from approximately 3 to 40 copies of viral-specific sequences per cell. In general, the viral RNA content correlated with the level of helper activity in the cells. Cells infected with Rous-associated virus 2 contained 3,000 to 4,000 copies of viral RNA per cell. RNA from these infected cells hybridized with nearly 100% of the viral (3)H-DNA. By contrast, a maximum of less than 50% hybridization was obtained with RNA from the uninfected helper-positive cells, suggesting that not all of the viral RNA sequences were present in these cells. No viral RNA was detected in cells which lacked group-specific antigen and helper activity. Under the conditions used in these studies, less than 0.3 viral genome equivalents of RNA per cell would have been detected.  相似文献   

18.
The content of proteins P19 and P15 (mol wt 19,000 and 15,000, respectively) of avian leukovirus in various types of uninfected chicken embryos has been determined by radioimmunoassay. All chicken embryos examined, including embryos which have thus far been classified as group specific (gs) antigen negative by complement fixation tests, contained these viral proteins as well as P27 as previously reported. The embryos known as “gs antigen-positive” type contained about five times as much of these viral proteins as did the “gs antigen-negative” type. The ratio of the three viral proteins was similar for all types of embryos, suggesting that the genes for these proteins are coordinately controlled. In contrast to the relatively high levels of viral internal proteins in gs antigen-negative cells, the amounts of virus-specific RNA detectable by molecular hybridization were extremely low. The levels of helper activity, which presumably reflect the level of viral envelope glycoprotein, were also generally low or undetectable in these cells. Thus, the expression of the gene for envelope glycoprotein does not appear to be controlled coordinately with the genes for viral internal proteins.  相似文献   

19.
The effect DNA repair might have on the integration of exogenous proviral DNA into host cell DNA was investigated by comparing the efficiency of proviral DNA integration in normal chicken embryonic fibroblasts and in chicken embryonic fibroblasts treated with UV or 4-nitroquinoline-1-oxide. The cells were treated with UV or 4-nitroquinoline-1-oxide at various time intervals ranging from 6 h before to 24 h after infection with Schmidt-Ruppin strain A of Rous sarcoma virus. The chicken embryonic fibroblasts were subsequently cultured for 18 to 21 days to ensure maximal integration and elimination of nonintegrated exogenous proviral DNA before DNA was extracted. Integration of proviral DNA into the cellular genome was quantitated by hybridization of denatured cellular DNA on filters with an excess of (3)H-labeled 35S viral RNA. The copy number of the integrated proviruses in normal cells and in infected cells was also determined from the kinetics of liquid RNA-DNA hybridization in DNA excess. Both RNA excess and DNA excess methods of hybridization indicate that two to three copies of the endogenous provirus appear to be present per haploid normal chicken cell genome and that two to three copies of the provirus of Schmidt-Ruppin strain A of Rous sarcoma virus become integrated per haploid cell genome after infection. The copy number of viral genome equivalents integrated per cell treated with UV or 4-nitroquinoline-1-oxide at different time intervals before or after infection did not differ from the copy number in untreated but infected cells. This finding supports our previous report that the integration of oncornavirus proviral DNA is restricted to specific sites in the host cell DNA and suggests a specific mechanism for integration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号