首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Roe deer is a seasonal breeder characterised by a short rutting season in summer. Mature males show synchronised cycles of testicular involution and recrudescence. Therefore, this species is a valuable model to study seasonal regulation of spermatogenesis in ruminants. It is hypothesised that a time-dependent production of testicular growth factors is required to regulate seasonal changes in testis growth and spermatogenesis. To identify potential candidates, total RNA from roe deer testis tissue was extracted at three different seasonal periods (April, August, December), and using RT-PCR the presence of several growth factors (aFGF, bFGF, IGF-I, IGF-II, TGF-alpha, TGF-beta1, TGF-beta3 and two isoforms of VEGF) was detected. Sequencing of the growth factor PCR fragments revealed a high sequence homology between cattle and roe deer. To further explore the expression patterns of the identified growth factors in roe deer their expression levels were standardised using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression. The study demonstrates the expression of several growth factors in roe deer testis and supports the assumption of their seasonally diverse regulation. These results provide the basis to investigate the role of growth factors in the regulation of circannual changes of testicular activity.  相似文献   

2.
Seasonally regulated breeding is associated with significant changes in testis mass, structure and function. This includes the variation in size, structure and function of the Leydig cells. Recently, interstitial cells have been characterised as a numerically constant population in roe deer. However, no consistent data are available regarding changes in the number of Leydig cells, their differentiation or turnover in seasonally breeding mammals. This study has quantified the numbers of both proliferating and apoptotic cells in roe deer testis bimonthly during a complete annual cycle. Proliferation was detected by immunolocalisation of PCNA and Ki-67 in tissue sections, whereas apoptosis was localised by the TUNEL technique and an antibody to caspase-3. The labelled cells were counted by using a computer-aided image-analysing system. The number of proliferating spermatogenic cells per tubule cross section showed seasonal changes with a maximum in April (14.9±0.6) and a subsequent decline up to December (1.6±0.3). Percentages of positive cells per square millimetre of interstitial area were below 1% throughout the year. The average number of apoptotic cells per tubule cross section was low and varied only between 0.5 and 1.4 (caspase-3) or 0.1 and 2.1 (TUNEL). In the interstitial compartment, only a few apoptotic cells (0.7%) were found sporadically scattered within the intertubular region during all studied seasonal periods. The results suggest that a constant total number of interstitial cells arise from a conserved cell population of changing functional state rather than from a steady-state population with a definite turnover of cells during seasonal changes in testicular activity.The study was supported by a grant from the Deutsche Forschungsgemeinschaft (BL 319/6-2).  相似文献   

3.
Testicular Leydig cells secrete insulin-like peptide 3 (INSL3) and express its receptor, RXFP2. However, the effects of INSL3 on endocrine function of Leydig cells are unknown. The present study examines the effects of INSL3 on mouse Leydig cells taking testosterone and cAMP secretions as endpoints. Leydig cells were isolated from testicular interstitial cells obtained from 8-week-old male mice. Cells were then plated in the presence or absence of mouse, human, canine or bovine INSL3 (0-100ng/ml) for 18h in multiwell-plates (96 wells) in different cell densities (2500, 5000, 10,000 or 20,000 cells per well). The effects of bovine INSL3 (100ng/ml) on testosterone secretion by Leydig cells were examined in the presence or absence of, an adenylate cyclase inhibitor, SQ 22536 (1μM) or INSL3 antagonist (bovine and human; 100ng/ml). Testosterone and cAMP in spent medium were measured by enzyme immunoassay. All INSL3 species tested significantly stimulated the testosterone secretion in Leydig cells, and the maximum stimulation was observed with 100ng/ml bovine INSL3 at the lowest Leydig cell density (2500 cells per well). Moreover, bovine INSL3 (100ng/ml) significantly stimulated the cAMP production from Leydig cells maximally at 1h, and remained significantly elevated even at 18h. SQ 22536 and INSL3 antagonists (bovine and human) significantly reduced INSL3-stimulated testosterone secretion from Leydig cells. Taken together, stimulatory effects of INSL3 on testosterone secretion in Leydig cells are exerted via the activation of cAMP, suggesting a new autocrine function of INSL3 in males.  相似文献   

4.
Apoptosis is involved in the regulation of spermatogenesis. The involution of testes in seasonal breeders might be expected to involve enhanced apoptotic cell elimination. We have compared seasonally changing testicular apoptosis in roe deer with that in non-seasonally breeding cattle. Apoptotic cells were detected as TUNEL-positive cells by both flow-cytometric analysis and in situ localisation of fragmented DNA in tissue sections. Apoptosis-induced DNA fragments were also assessed by enzyme-linked immunosorbent assay (ELISA) in homogenised testicular parenchyma. As expected, the testis mass and the percentage of haploid cells in roe deer showed a seasonal pattern with a significant maximum during the rut (August), whereas no annual variation of these parameters was found in bulls. All three methods for determining apoptosis showed similar findings. Roe deer exhibited significant seasonal fluctuation of total apoptotic activity (ELISA, apoptotic cells per tubule cross section) with a maximum during the breeding season. However, the seasonal differences in the number of apoptotic cells corresponded to the variable total numbers of spermatogonia and spermatocytes per tubule cross section. Thus, the percentages of TUNEL-positive cells related to the combined number of both germ cell types showed no seasonal variance, as confirmed by percentages of apoptotic cells analysed flow-cytometrically. The maximum level of apoptosis during the rut in roe deer was similar to the values obtained during the invariably high spermatogenic activity in cattle. These results suggest that, in roe deer, apoptosis is not the cause of the seasonal involution of testes. This study was partially supported by grant Bl 319/6-1 from the Deutsche Forschungsgemeinschaft.  相似文献   

5.
Roe deer are seasonal breeders with a short rutting season from mid-July to mid-August. The seasonality of reproductive activity in males is associated with cyclic changes between growth and involution of both testes and the accessory sex glands. This study characterizes morphological and functional parameters of these organs prior to, during and after breeding season in live adult roe deer bucks. Size and morphology of the reproductive tract was monitored monthly by transcutaneous (testes, epididymis) and transrectal (accessory glands) ultrasonography. Semen was collected by electroejaculation. Concentration, motility and morphological integrity of spermatozoa as well as the content of proteins and testosterone in semen plasma were evaluated. Proportions of haploid, diploid and tetraploid cells were estimated by flow cytometry in testicular tissue biopsies. Serum testosterone was measured by enzyme immunoassay. Most parts of the male reproductive tract showed distinct circannual changes in size and texture. These changes were most pronounced in the testes, seminal vesicles, and prostate. All reproductive organs were highly developed during the rut only. The volume of ejaculates, total sperm number and percentages of motile and intact spermatozoa also showed a maximum during this period and corresponded with high proportions of haploid cells in the testis. The highest percentages of tetraploid cells were found in the prerutting period. The production of motile and intact spermatozoa correlated with both the protein content of semen plasma and the concentration of testosterone in semen plasma and blood serum. These results suggest the importance of combined actions of the testes and accessory sex glands and the crucial role of testosterone in facilitating the optimal timing of intensified semen production to ensure sufficient numbers of normal spermatozoa in seasonal breeders.  相似文献   

6.
7.
The roe deer (Capreolus capreolus) is a seasonal breeder. The cyclic changes between totally arrested and highly activated spermatogenesis offer an ideal model to study basic mechanisms of spermatogenesis. In this study, we demonstrated, to our knowledge for the first time, c-kit receptor-positive cells in the testis of roe deer. They were immunohistologically identified mainly as spermatogonia. Analysis of the amount of those cells by flow cytometry shows a distinct seasonal pattern, with pronounced differences between cells in the diploid state and in the G2/M phase of mitosis. The specific seasonal pattern of spermatogonial proliferation results in the increased relative abundance of spermatogonia as well as in their increased total number per testis in November and December. This suggests that cell divisions continue on a level sufficient to accumulate spermatogonia during winter. The serum concentrations of LH and FSH showed a peak in spring; testosterone showed a maximum concentration during the rut (July/August). The peak of both gonadotropins seems to precede the period of stimulated spermatogonial proliferation in spring. The testosterone peak coincides with maximal meiotic intensity in August. The results suggest the importance of testosterone for sperm production, and they provide a basis for detailed investigations of regulatory factors of the proliferation of spermatogonia.  相似文献   

8.
Reproductive biology of the relaxin-like factor (RLF/INSL3)   总被引:11,自引:0,他引:11  
The relaxin-like factor (RLF), which is the product of the insulin-like factor 3 (INSL3) gene, is a new circulating peptide hormone of the relaxin-insulin family. In male mammals, it is a major secretory product of the testicular Leydig cells, where it appears to be expressed constitutively but in a differentiation-dependent manner. In the adult testis, RLF expression is a good marker for fully differentiated adult-type Leydig cells, but it is only weakly expressed in prepubertal immature Leydig cells or in Leydig cells that have become hypertrophic or transformed. It is also an important product of the fetal Leydig cell population, where it has been demonstrated using knockout mice to be responsible for the second phase of testicular descent acting on the gubernaculum. INSL3 knockout mice are cryptorchid, and in estrogen-induced cryptorchidism, RLF levels in the testis are significantly reduced. RLF is also made in female tissues, particularly in the follicular theca cells of small antral follicles and in the corpus luteum of the cycle and pregnancy. The ruminant ovary has a very high level of RLF expression, and analysis of primary cultures of ovarian theca-lutein cells indicated that, as in the testis, expression is probably constitutive but differentiation dependent. Female INSL3 knockout mice have altered estrous cycles, where RLF may be involved in follicle selection, an idea strongly supported by observations on bovine secondary follicles. Recently, a novel 7-transmembrane domain receptor (LGR8 or Great) has been tentatively identified as the RLF receptor, and its deletion in mice leads also to cryptorchidism.  相似文献   

9.
The effects of single or combined daily treatment with an LHRH agonist and low or high doses of LH upon the testes of adult hypophysectomized rats were studied for up to 2 weeks in which changes in testicular histology, particularly the interstitial tissue, were examined by morphometry and related to functional assessment of the Leydig cells in vivo and in vitro. Compared to saline-treated controls, LHRH agonist treatment did not alter testis volume or the composition of the seminiferous epithelium or any of the interstitial tissue components although serum testosterone and in-vitro testosterone production by isolated Leydig cells were significantly reduced. With 2 micrograms LH for treatment, testis volume was increased, spermatogenesis was qualitatively normal, total Leydig cell volume was increased, serum testosterone values were initially elevated but subsequently declined and in-vitro testosterone production was enhanced. Testis volume with 20 micrograms LH treatment was unchanged compared to saline treatment, the seminiferous epithelium exhibited severe disruption but total Leydig cell volume was greatly increased due to interstitial cell hyperplasia. This group showed elevated serum testosterone concentrations and major increases in testosterone production in vitro. Treatment with LHRH agonist with either dose of LH resulted in reduced testis volume, moderate to very severe focal spermatogenic disruption and increased total Leydig cell volume although serum testosterone values and in-vitro testosterone production were markedly reduced compared to control rats. It is concluded that, in the absence of the pituitary, LHRH agonist fails to disrupt spermatogenesis and the previously described antitesticular action of LHRH agonists in intact rats is therefore dependent upon the presence of LH, which alone or in combination with LHRH agonist, may focally disrupt spermatogenesis in hypophysectomized rats whereas the Leydig cells undergo hyperplasia. The findings show that impairment of spermatogenesis is accompanied by alterations of the interstitial tissue and suggest that communication between these two compartments is involved in the regulation of testicular function.  相似文献   

10.
The exact seasonal timing of normal testis function is a crucial precondition for the reproductive fitness of roe bucks and for successful breeding during rut in July–August. Production of spermatozoa and testosterone requires both endocrine regulation and local testicular control by autocrine/paracrine factors. These local control mechanisms include the action of several growth factors. Our short review assigns histological organization of roe deer testis to new data on the involvement of several growth factors in its regulation. The expression of growth factors is season-specific and cell-type-specific. This suggests its functional role in the complex interaction between germinative and somatic cells for the regulation of testis growth, spermatogenesis and function of hormone-producing cells. The authors dedicate this review to Prof. Dr. Christian Pitra who celebrates his 65th birthday in April 2006.  相似文献   

11.
In vitro data have indicated that nitric oxide (NO) inhibits Leydig cell testosterone production, suggesting that NO may play a role in the suppression of steroidogenesis and spermatogenic function during inflammation. Consequently, we investigated expression of the inflammation-inducible isoform of NO synthase (iNOS) in the inflamed adult rat testis and the ability of a broad-spectrum inhibitor of NO production, L-nitro-L-arginine methyl ester, to prevent Leydig cell dysfunction during inflammation. Unexpectedly, immunohistochemical and mRNA data established that iNOS is expressed constitutively in Leydig cells and in a stage-specific manner in Sertoli, peritubular, and spermatogenic cells in the normal testis. Expression was increased in a dose-dependent manner in all these cell types during lipopolysaccharide (LPS)-induced inflammation. In noninflamed testes, treatment with the NO synthase inhibitor reduced testicular interstitial fluid formation and testosterone production without any effect on serum LH levels. Administration of the inhibitor did not prevent the suppression of testicular interstitial fluid and testosterone production that occurs within 6 h after LPS treatment. Collectively, these data indicate a novel role for iNOS in autocrine or paracrine regulation of the testicular vasculature, Leydig cell steroidogenesis, and spermatogenesis in the normal testis. The data suggest that increased NO is not the major cause of acute Leydig cell dysfunction in the LPS-treated inflammation model, although a role for NO in this process cannot be excluded, particularly at other time points. Moreover, up-regulation of iNOS may contribute to the seminiferous epithelium damage caused by LPS-induced inflammation.  相似文献   

12.
13.
Adult roe deer males show seasonal cycles of testicular growth and involution. The exact timing of these cycles requires endocrine regulation and local testicular control by autocrine/paracrine factors. Recent findings suggest that the vascular endothelial growth factor (VEGF) might have effects on both vascular and germinative cells in testis. Thus, we studied the expression pattern of vascular endothelial growth factor (VEGF) in roe deer testis using quantitative RT-PCR. The strength of VEGF mRNA expression depended on season. It reached its highest level at the peak of spermatogenesis during the pre-rutting period and had its nadir at the end of the rut when involution already began. The results suggested that VEGF may directly affect the regulation of spermatogenesis but may not be involved predominantly in testicular microvasculature as initially expected.  相似文献   

14.
Seasonal cycles of testicular activity occur in many mammals and can include transitions between total arrest and recrudescence of spermatogenesis. We hypothesize that involution and reactivation of testis result from two antagonistic processes, proliferation and programmed cell death (apoptosis), which are activated at different times. To test this hypothesis, quantitative measurements of both proliferation-specific marker and apoptotic produced nucleosomes have been compared with sperm and testosterone production in testes from adult roe deer during breeding and non-breeding seasons (May to September). Testes of brown hare were included from periods of testes regression (June to August) and recrudescence (November to December). The highest testicular weights in roe deer were found in the rutting period from late July to early August (27.25 +/- 8.56 g), corresponding with the highest number of testicular sperm/g parenchyma. The peak of sperm production coincided with a peak in testosterone concentration (1.19 +/- 0.53 microg/g testis). The maximum level of proliferation-specific marker was also found during the breeding season (98.6 +/- 58.2 U/g testis in comparison to 20.1 +/- 22.0 U/g in the prerutting period). In contrast, the most significant apoptosis was observed in the nonbreeding season than the breeding period (71.11 +/- 5.79 U/mg testis and 18.88 +/- 6.79 U/mg, respectively). Testicular proliferation was low in the brown hare (0.061 +/- 0.062 U/g) during involution of the testes. It was newly activated in November and December (0.85 +/- 0.33 U/g), preceding the increase in testicular volume. Testosterone production increased in conjunction with testicular proliferation. At this time, testicular apoptosis was significantly lower (14.16 +/- 2.12 U/mg testis) than during the period of pronounced testicular regression (30.16 +/- 19.95 U/g). These results suggest that regulation of seasonal testicular activity is characterized by an inverse relationship of proliferation and apoptosis.  相似文献   

15.
RLF (relaxin-like factor), also known as INSL3 (insulin-like peptide 3), is a novel member of the relaxin/insulin gene family that is expressed in testicular Leydig cells. Despite the implicated role of RLF/INSL3 in testis development, its native conformation remains unknown. In the present paper we demonstrate for the first time that boar testicular RLF/INSL3 is isolated as a monomeric structure with full biological activity. Using a series of chromatography steps, the native RLF/INSL3 was highly purified as a single peak in reverse-phase HPLC. MS/MS (tandem MS) analysis of the trypsinized sample provided 66% sequence coverage and revealed a distinct monomeric structure consisting of the B-, C- and A-domains deduced previously from the RLF/INSL3 cDNA. Moreover, the N-terminal peptide was four amino acid residues longer than predicted previously. MS analysis of the intact molecule and PMF (peptide mass fingerprinting) analysis at 100% sequence coverage confirmed this structure and indicated the existence of three site-specific disulfide bonds. RLF/INSL3 retained full bioactivity in HEK (human embryonic kidney)-293 cells expressing RXFP2 (relaxin/insulin-like family peptide receptor 2), the receptor for RLF/INSL3. Furthermore, RLF/INSL3 was found to be secreted from Leydig cells into testicular venous blood. Collectively, these results indicate that boar RLF/INSL3 is secreted from testicular Leydig cells as a B-C-A monomeric structure with full biological activity.  相似文献   

16.
Changes in the rat testis interstitium from birth to adulthood were studied using Sprague Dawley rats of 1, 7, 14, 21, 28, 40, 60, and 90 days of age. Our objectives were 1) to understand the fate of the fetal Leydig cells (FLC) in the postnatal rat testis, 2) to determine the volume changes in testicular interstitial components and testicular steroidogenic capacity in vitro with age, 3) to differentially quantify FLC, adult Leydig cells (ALC), and different connective tissue cell types by number and average volume, and 4) to investigate the relationship between mesenchymal and ALC numbers during testicular development. FLC were present in rat testes from birth to 90 days, and they were the only steroidogenic cells in the testis interstitium at Days 1 and 7. Except for FLC, all other interstitial cell numbers and volumes increased from birth to 90 days. The average volume of an FLC and the absolute volume of FLC per testis were similar at all ages except at Day 21, when lower values were observed for both parameters. FLC number per testis remained constant from birth through 90 days. The observations suggested that the significance of FLC in the neonatal-prepubertal rat testis is to produce testosterone to activate the hypothalamo-hypophyseal-testicular axis for the continued development of the male reproductive system. ALC were the abundant Leydig cell type by number and absolute volume per testis from Day 14 onwards. The absolute numbers of ALC and mesenchymal cells per testis increased linearly from birth to 90 days, with a slope ratio of 2:1, respectively, indicating that the rate of production of Leydig cells is 2-fold greater than that of mesenchymal cells in the postnatal rat testis through 90 days. In addition, this study showed that the mesenchymal cells are an active cell population during testis development and that their numbers do not decrease but increase with Leydig cell differentiation and testicular growth up to sexual maturity (90 days).  相似文献   

17.
Summary Five-day-old male rats received a single treatment of ethane dimethanesulphonate (EDS), and the response of the testis on days 6–10 and 21 was examined by light microscopy and morphometry, supplemented by measurement of peripheral testosterone levels. One day after treatment, foetal Leydig cells degenerated, showing fragmentation, condensation and nuclear pyknosis. Macrophages phagocytosed the foetal Leydig cells resulting in their disappearance by day 7. Destruction of foetal Leydig cells was followed by an arrest of testicular growth in comparison to testes of intact age-matched control rats. In testes of EDS-treated rats, gonocytes and spermatogonia also degenerated, forming pyknotic bodies within the seminiferous cords. In contrast, interstitial fibroblasts and mesenchymal cells showed proliferative activity, which on days 4 and 5 after treatment resulted in peritubular hyperplasia surrounding each seminiferous cord. Thereafter, on day 21 after EDS administration, the previously depressed serum testosterone levels became markedly elevated coincident with the development of many immature-type Leydig cells, of which the total volume per testis was similar to that of Leydig cells in control testes, despite a four- to five-fold difference in testicular volumes. The results indicate that, although EDS destroys the foetal Leydig cells and impairs spermatogenesis, the interstitial tissue exhibits increased cell growth. The latter probably occurs in response to altered gonadotrophic stimulation and/or disturbances in the interaction between the seminiferous cords and the interstitial tissue.  相似文献   

18.
The objective was to determine the effects of estradiol-17β, monobutyl phthalate (MBP) and mono-(2-ethylhexyl) phthalate (MEHP) on testosterone and insulin-like peptide 3 (INSL3) secretions in cultured testicular interstitial cells isolated (enzymatic dispersion) from scrotal and retained testes of small-breed dogs. Suspension cultures were treated with estradiol-17β (0, 10, and 100 ng/mL), MBP (0, 0.8, and 8 mmol/L) or MEHP (0, 0.2, and 0.8 mmol/L) for 18 h, in the presence or absence of 0.1 IU/mL hCG. Testosterone (both basal and hCG-induced) and INSL3 (basal) concentrations were measured in spent medium. Effects of estradiol-17β, MBP, and MEHP on testosterone and INSL3 secretions were not affected (P > 0.15) by cell source (scrotal versus retained testis); therefore, data were combined and analyzed, and outcomes reported as percentage relative to the control. In testicular interstitial cells, basal testosterone secretion was increased (P < 0.01) by 100 ng/mL estradiol-17β (130.2 ± 10.6% of control). Among phthalates, 0.2 and 0.8 mmol/L MEHP stimulated (P < 0.01) basal testosterone secretion (135.5 ± 8.3% and 154.6 ± 12.9%, respectively). However, hCG-induced testosterone secretion was inhibited (P < 0.01) by 8 mmol/L MBP (67.7 ± 6.0%), and tended to be inhibited (P = 0.056) by 0.8 mmol/L MEHP (84.5 ± 5.6%). Basal INSL3 secretion was inhibited (P < 0.01) by 8 mmol/L MBP (73.6 ± 6.8%) and 0.8 mmol/L MEHP (76.9 ± 11.3%). In conclusion, we inferred that estradiol-17β and certain phthalate monoesters had direct effects on secretions of testosterone and INSL3 in canine testicular interstitial cells, with no significant difference between scrotal and retained testes.  相似文献   

19.
This review centers around studies which have used ethane dimethane sulphonate (EDS) selectively to destroy all of the Leydig cells in the adult rat testis. With additional manipulations such as testosterone replacement and/or experimental induction of severe seminiferous tubule damage in EDS-injected rats, the following questions have been addressed: 1) What are the roles and relative importance of testosterone and other non-androgenic Leydig cell products in normal spermatogenesis and testicular function in general? 2) What are the factors controlling Leydig cell proliferation and maturation? 3) Is it the Leydig cells or the seminiferous tubules (or both) which control the testicular vasculature? The findings emphasize that in the normal adult rat testis there is a complex interaction between the Leydig cells, the Sertoli (and/or peritubular) cells, the germ cells, and the vasculature, and that testosterone, but not other Leydig cell products, plays a central role in many of these interactions. The Leydig cells drive spermatogenesis via the secretion of testosterone which acts on the Sertoli and/or peritubular cells to create an environment which enables normal progression of germ cells through stage VII of the spermatogenic cycle. In addition, testosterone is involved in the control of the vasculature, and hence the formation of testicular interstitial fluid, presumably again via effects on the Sertoli and/or peritubular cells. When Leydig cells regenerate and mature after their destruction by EDS, it can be shown that both the rate and the location of regenerating Leydig cells is determined by an interplay between endocrine (LH and perhaps FSH) and paracrine factors; the latter emanate from the seminiferous tubules and are determined by the germ cell complement. Taken together with other data on the paracrine control of Leydig cell testosterone secretion by the seminiferous tubules, these findings demonstrate that the functions of all of the cell types in the testis are interwoven in a highly organized manner. This has considerable implications with regard to the concentration of research effort on in vitro studies of the testis, and is discussed together with the need for a multidisciplinary approach if the complex control of spermatogenesis is ever to be properly understood.  相似文献   

20.
Regulation of testicular descent is hormonally regulated, but the reasons for maldescent remain unknown in most cases. The main regulatory hormones are Leydig cell-derived testosterone and insulin-like factor 3 (INSL3). Luteinizing hormone (LH) stimulates the secretion of these hormones, but the secretory responses to LH are different: INSL3 secretion increases slowly and may reflect the LH dependent differentiated status of Leydig cells, whereas testosterone response to LH is immediate. Testosterone contributes to the involution of the suspensory ligament and to the inguinoscrotal phase of the descent, while INSL3 acts mainly in transabdominal descent by stimulating the growth of the gubernaculum. INSL3 acts through a G-protein coupled receptor LGR8. In the absence of either INSL3 or LGR8 mice remain cryptorchid. In humans only few INSL3 mutations have been described, whereas LGR8 mutations may cause some cases of undescended testis. Similarly, androgen insensitivity or androgen deficiency can cause cryptorchidism. Estrogens have been shown to down regulate INSL3 and thereby cause maldescent. Thus, a reduced androgen–estrogen ratio may disturb testicular descent. Environmental effects changing the ratio can thereby influence cryptorchidism rate. Estrogens and anti-androgens cause cryptorchidism in experimental animals. In our cohort study we found higher LH/testosterone ratios in 3-month-old cryptorchid boys than in normal control boys, suggesting that cryptorchid testes are not cabable of normal hormone secretion without increased gonadotropin drive. This may be either the cause or consequence of cryptorchidism. Some phthalates act as anti-androgens and cause cryptorchidism in rodents. In our human material we found an association of a high phthalate exposure with a high LH/testosterone ratio. We hypothesize that an exposure to a mixture of chemicals with anti-androgenic or estrogenic properties (either their own activity or their effect on androgen–estrogen ratio) may be involved in cryptorchidism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号