首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on self-sensitivity of producer mutant vs. sensitivity of non-producer parent and unrelated organism showed that versilin inhibited spore germination and sporulation in the self-sensitive producer mutant, non-producer parent Aspergillus versicolor N5 and the unrelated sensitive Trichophyton rubrum . Sporulation appeared to be more sensitive than spore germination. The inhibition of in vivo synthesis of protein was very marked, but inhibition of RNA and DNA was slight and moderate, respectively. Thus versilin was not specific in its action, but the principal sensitive site was protein synthesis, as further suggested by inhibition of polyU-directed in vitro synthesis of polyphenylalanine. The activation of leucine was unaffected, but the formation of leucyl-tRNA was severely inhibited in all three strains. The differences in sensitivities between the strains were the same, whether as whole cells or as cell-free extracts. Thus the nature of the sensitive site appeared to be identical in the self-sensitive producer and sensitive non-producer or unrelated organism.  相似文献   

2.
Antibiotically active producer mutants derived from the spontaneous degenerate parent Aspergillus versicolor N5 possessed not only mutual but also self-sensitive activity. The producer mutants, like the inactive parent, were only 3.5-fold less sensitive than the most sensitive unrelated organism, Trichophyton rubrum. The germination of spores is generally more sensitive than growth of vegetative cells. The antifungal spectrum of these mutual and self-sensitive mutants was fairly wide, unlike the host range specificity of bacteriocinogenic strains acting on organisms closely related to the producers. The self and mutual growth inhibitory principle was finally identified as the antibiotics mycoversilin and versilin in the case of producer mutants (N5)17 and N5T10(7), respectively, or Vx, an antibiotic of unknown molecular species, in the case of another producer mutant N5T10(8). Thus self-sensitivity, instead of self-resistance, of these antibiotically active mutant derivatives is a unique property among filamentous fungi in having simultaneously expressed two loci of contradictory functions, one for synthesis of, and the other for sensitivity towards, the same or related antibiotics.  相似文献   

3.
Antibiotically active producer mutants derived from the spontaneous degenerate parent Aspergillus versicolor N5 possessed not only mutual but also self-sensitive activity. The producer mutants, like the inactive parent, were only 3·5-fold less sensitive than the most sensitive unrelated organism, Trichophyton rubrum. The germination of spores is generally more sensitive than growth of vegetative cells. The antifungal spectrum of these mutual and self-sensitive mutants was fairly wide, unlike the host range specificity of bacteriocinogenic strains acting on organisms closely related to the producers. The self and mutual growth inhibitory principle was finally identified as the antibiotics mycoversilin and versilin in the case of producer mutants (N5)17 and N5T10(7), respectively, or Vx, an antibiotic of unknown molecular species, in the case of another producer mutant N5T10(8). Thus self-sensitivity, instead of self-resistance, of these antibiotically active mutant derivatives is a unique property among filamentous fungi in having simultaneously expressed two loci of contradictory functions, one for synthesis of, and the other for sensitivity towards, the same or related antibiotics.  相似文献   

4.
Commitment to germinate occurred in both Clostridium botulinum and Bacillus cereus spores during 0.5 min of exposure to 100 mM L-alanine or L-cysteine, measured by the inability of germination inhibitors (D form of amino acid) to inhibit germination. Spore germination at pH 4.5 was inhibited because the germinant did not bind to the trigger sites. C. botulinum spores exposed to 100 mM L-alanine or L-cysteine at pH 4.5 remained sensitive to D-amino acid inhibition at pH 7, indicating that no germinants had bound to the trigger site at pH 4.5. Inhibition of germinant binding at pH 4.5 was reversible but lagged in commitment to germinate upon transfer to pH 7. Spores sequentially exposed to pH 4.5 buffer and pH 7 buffer with the germinant also demonstrated a lag in commitment to germinate. The pH at which binding was inhibited was not significantly affected by composition of the buffer or by reduced germinant concentrations (10 mM). Nonspecific uptake of L-[3H]alanine by C. botulinum spores was not inhibited at pH 4.5. Inhibition of germinant binding in acidic environments appeared to be due to protonation of a functional group in or near the trigger site. This may represent a general mechanism for inhibition of spore germination in acidic environments.  相似文献   

5.
Spores of a Bacillus subtilis mutant temperature sensitive in deoxyribonucleic acid (DNA) replication proceeded through outgrowth at the nonpermissive temperature to the same extent as the wild-type parent spores. In contrast, the DNA synthesis inhibitor novobiocin completely prevented spore outgrowth while displaying a marginal effect on logarithmic growth during one generation time. Inhibition of outgrowth by novobiocin occurred in the absence of DNA replication, as demonstrated in an experiment with spores of the temperature-sensitive DNA synthesis mutant at the restrictive temperature. Novobiocin inhibited the initial rate of ribonucleic acid synthesis to the same extent in germinated spores and in exponentially growing cells. A novobiocin-resistant mutant underwent normal outgrowth in the presence of novobiocin. Therefore, novobiocin inhibition was independent of its effect on chromosome replication per se.  相似文献   

6.
Commitment to germinate occurred in both Clostridium botulinum and Bacillus cereus spores during 0.5 min of exposure to 100 mM L-alanine or L-cysteine, measured by the inability of germination inhibitors (D form of amino acid) to inhibit germination. Spore germination at pH 4.5 was inhibited because the germinant did not bind to the trigger sites. C. botulinum spores exposed to 100 mM L-alanine or L-cysteine at pH 4.5 remained sensitive to D-amino acid inhibition at pH 7, indicating that no germinants had bound to the trigger site at pH 4.5. Inhibition of germinant binding at pH 4.5 was reversible but lagged in commitment to germinate upon transfer to pH 7. Spores sequentially exposed to pH 4.5 buffer and pH 7 buffer with the germinant also demonstrated a lag in commitment to germinate. The pH at which binding was inhibited was not significantly affected by composition of the buffer or by reduced germinant concentrations (10 mM). Nonspecific uptake of L-[3H]alanine by C. botulinum spores was not inhibited at pH 4.5. Inhibition of germinant binding in acidic environments appeared to be due to protonation of a functional group in or near the trigger site. This may represent a general mechanism for inhibition of spore germination in acidic environments.  相似文献   

7.
Spores of mycobacillin producer and non-producer mutants ofBacillus subtilis of identical genetic background have been studied with reference to germinating capacity, inhibition of germination, heat resistance and ion-exchange properties. The spores are not physiologically equivalent.  相似文献   

8.
Early events during the germination of spores of the fern Onoclea sensibilis were studied to determine the time during germination when ethylene had its greatest inhibiting effect. Water imbibition by dry spores was rapid and did not appear to be inhibited by ethylene. During normal germination DNA synthesis occurred about four hours before the nucleus moved from a central position to the spore periphery. Following nuclear movement, mitosis and cell division occurred, partitioning the spore into a small rhizoid cell and a large protonemal cell. Cell division was complete approximately six hours after nuclear movement. Ethylene treatment of the spores blocked DNA synthesis, nuclear movement, and cell division. The earliest DNA replication in uninhibited spores was observed after 14 hours of germination, and the maximal rate of spore labeling with 3H-thymidine was between 16 and 20 hours. Spores were most sensitive to ethylene, however, during the stages of germination prior to DNA synthesis, and it was concluded that ethylene did not directly inhibit DNA replication but blocked germination at some earlier fundamental step. The effects of ethylene were reversible. since complete recovery from inhibition of germination was possible if ethylene was released and the spores were kept in light. Recovery was much slower in darkness. It was hypothesized that light acted photosynthetically to overcome the ethylene inhibition of germination. Consistent with this, it was shown that spores exhibit net photosynthesis after only two hours of germination.  相似文献   

9.
SG mutant and aged wild type spores of the cellular slime mold Dictyostelium discoideum germinate in the absence of an externally applied activation treatment. This type of germination is referred to as autoactivation. During the swelling stage of autoactivation, spores release a factor, the autoactivator, capable of stimulating germination in subsequent spore populations. The autoactivator was not present in the dormant spore, but it or a precursor was produced internally during the first hour of autoactivation. This production was sensitive to moderately high temperatures (+31° C) and was completely destroyed by heat activation (45° C for 30 min). Internal production of the autoactivator was not sensitive to protein synthesis inhibitors. However, the release of the activator from the spore appeared to be regulated by protein synthesis. Internal autoactivator was also produced in the aged wild type strain during the postautoactivation lag phase. The activator could not be directly isolated from within the germinating spore. Its activity on the rest of the spore population was dependent upon its release from the germinating spore. A model is presented integrating the effects of heat, cycloheximide, autoinhibitor and autoactivator on spores of D. discoideum.  相似文献   

10.
Microsporum gypseum macroconidia germinated at 37 C possessed from one to eight nuclei per germinated spore compartment. The distribution of nuclei per spore compartment was the result of a random packaging of nuclei from the available nuclear population. Partial inhibition of germination by incubation at 25 C or at 37 C in the presence of 10(-4)m phenyl methyl sulfonyl-fluoride resulted in an enrichment of germinated spores containing high numbers of nuclei per compartment. The selection for higher nuclear numbers was statistically significant. Compartments possessing high numbers of nuclei appeared to be precommitted to spore germination since they were not sensitive to germination inhibition. The effect of incubation temperature variation on spore germination is discussed with respect to the organism's natural environment.  相似文献   

11.
Application of 2,5-norbornadiene, a competitive inhibitor of ethylene, effectively inhibited the germination of Botrytis cinerea Pers. ex Fr. spores. The transfer of spores from 2,5-norbornadiene to air relieved inhibition by norbornadiene, indicating that its effects are non-toxic and reversible. Ethephon (2-chloroethylophosphonic acid), which stimulates spore germination of B. cinerea , does not affect germination in the presence of norbornadiene. However, ethephon appeared to be effective in relieving inhibition, when norbornadiene was removed from the atmosphere surrounding spores. The addition of ethylene to an atmosphere enriched with norbornadiene, counteracted the inhibition of spore germination. The inhibition of spore germination by 2,5-norbornadiene and the reversal of this effect by ethephon or ethylene, indicate that the action of ethylene is indispensable for germination of B. cinerea spores.  相似文献   

12.
We have isolated a mutant of Baccillus subtilis with a temperature-sensitive lesion in the process of spore germination. The temperature-sensitive mutation affects only germination and outgrowth, and the earliest defect observed is an early block of ribonucleic acid synthesis during germination at 46 C. Upon return to 35 C there is a complete repair of the impaired function, even in the absence of protein synthesis. Protein synthesis inhibition during germination of the mutant spores at 46 C has the effect of increasing the amount of ribonucleic acid made. The temperature-sensitive mutation is located near aroI.  相似文献   

13.
Summary The effects of an intercalating dye, ethidium bromide (EtBr), on the initiation of chromosome replication in Bacillus subtilis were studied. Spores of a thymine requiring mutant acquired the ability to initiate one round of replication in the absence of RNA and protein synthesis (initiation potential) during germination in a thymine starved medium. When EtBr was added after the initiation potential was fully established, initiation of replication was completely inhibited. This inhibition was reversible, and initiation was resumed when the drug was removed. The recovery of initiation occurred in the absence of protein synthesis but did require RNA synthesis and an active dna gene product.During germination both a DNA-protein complex and a DNA-membrane complex were formed at the replication origin in parallel with the establishment of initiation potential. EtBr destroyed both of these complexes at the concentration which inhibited initiation.The first round of replication of a plasmid DNA, pSL103, during spore germination was also prevented by EtBr. However a higher concentration was required to inhibit plasmid replication. It was found that the plasmid formed two complexes identical to the S- and M-complex of the chromosome origin. Compared to the chromosome complexes the plasmid complexes were less sensitive to EtBr. The loss of sensitivity was equivalent to that for the initiation of the plasmid compared to the chromosome. These results indicate that the target of EtBr is the DNA in the S- and M-complexes whose conformation is essential for the initiation of chromosome and plasmid replication.III of this series is Murakami et al. 1976  相似文献   

14.
A Bacillus subtilis strain with a base substitution in the ribosome-binding site of spoVAC was temperature sensitive (ts) in sporulation and spores prepared at the permissive temperature were ts in L-alanine-triggered germination, but not in germination with Ca2+-dipicolinic acid (DPA) or dodecylamine. Spores of a ts spo mutant with a missense mutation in the spoVAC coding region were not ts for germination with l-alanine, dodecylamine or Ca2+-DPA. These findings are discussed in light of the proposal that SpoVA proteins are involved not only in DPA uptake during sporulation, but also in DPA release during nutrient-mediated spore germination.  相似文献   

15.
Spore pool glutamic acid as a metabolite in germination   总被引:5,自引:4,他引:5       下载免费PDF全文
Spore glutamic acid pools were examined in dormant and germinating spores using colorimetric and (14)C analytical procedures. Germination of spores of Bacillus megaterium (parent strain), initiated by d-glucose, was accompanied by a rapid drop in the level of spore pool glutamate, from 12.0 mug/mg of dry spores to 7.7 mug/mg of dry spores after 30 sec of germination. Similar decreases in extractable spore pool glutamate were observed with l-alanine-initiated germination of B. licheniformis spores. On the other hand, glutamate pools of mutant spores of B. megaterium, with a requirement of gamma-aminobutyric acid for spore germination, remained unchanged for 9 min of germination, at which time more than 50% of the spore population had germinated. Evidence for conversion of spore pool glutamate to gamma-aminobutyric acid during germination of spores of B. megaterium (parent strain) was obtained.  相似文献   

16.
Two mutant strains of Escherichia coli K 12 Doc-S resistant to the uncoupling agents 4,5,6,7-tetrachloro-2-trifluoromethyl benzimidazole and carbonyl cyanide m-chlorophenylhydrazone were isolated. These strains, designated TUV and CUV, were capable of (a) growth, (b) the transport of succinate and L-proline and (c) electron-transport-linked oxidative synthesis of ATP in the presence of titres of uncoupler which inhibited these processes in strain Doc-S. The inhibition of transport of L-proline by a fixed titre of uncoupler was sharply pH dependent in strain Doc-S: uptake was unaffected at pH 7.6 but completely inhibited at pH 5.6. This pH dependence was not shown by the resistant strains. We believe that uncouplers were equally accessible to their site(s) of action in the energy-conserving membrane of the sensitive and resistant strains. We conclude that uncoupler resistance in these strains of E. coli has arisen as a consequence of mutations which directly affect a specific site of uncoupler action within the cytoplasmic membrane, rather than as a consequence of a decrease in the permeability of cells to uncoupler.  相似文献   

17.
The nature of the deoxyribonucleic acid synthesis reported by others to occur at 45 degrees C in germinating spores of the temperature-sensitive deoxyribonucleic acid initiation mutant of Bacillus subtilis 168, TsB134, has been investigated. Density transfer experiments, using 5-bromouracil, show that a normal round of replication can occur in a significant fraction of the spore population under such conditions. No repair synthesis is detectable. The possibility raised by this finding, that initiation of the first round of replication during spore outgrowth is unique in that its initiation is determined prior to germination, has been investigated by comparing the behavior of germinating spores of isogenic strains of B. subtilis 168, one carrying and the other without the dnaB (Ts)134 mutation. It is shown that deoxyribonucleic acid synthesis in the Ts strain is very sensitive to temperature in the vicinity of 45 degrees C. At a slightly higher temperature, 49 degrees C, initiation of the first round of replication in the Ts strain is completely (greater than 96%) blocked, but it proceeds normally in the Ts(+) strain. Thus, it is concluded that, after the germination of a spore, the action of the dnaB134 gene product is an obligatory requirement for initiation of the first round of replication. The initiation of replication that can occur in spores of the original TsB134 strain germinating at 45 degrees C is presumably due to incomplete inactivation of the dnaB134 gene product under such conditions.  相似文献   

18.
Nalidixic Acid and the Metabolism of Escherichia coli   总被引:23,自引:7,他引:16       下载免费PDF全文
Nalidixic acid (NAL) is bactericidal for E. coli B. Synthesis of deoxyribonucleic acid (DNA), ribonucleic acid and protein was necessary to initiate the lethal effect, but only protein synthesis was necessary to sustain it. NAL inhibited DNA synthesis specifically, but this inhibition occurred even under conditions that were not lethal to the bacteria. In contrast to other inhibitors of DNA synthesis, NAL did not cause the solubilization of cellular DNA even when bacteria were exposed to it for 2 hr. A bacterial mutant deficient in DNA polymerase was much more sensitive to the lethal action of NAL than its parent strain. Moreover, inhibition of protein synthesis did not protect this mutant from NAL-induced killing. NAL inhibited neither DNA polymerase, nor thymidine or thymidylate kinases. The data are interpretated as suggesting that NAL altered the structure of DNA or a protein attached to nascent DNA and that this lesion can be partially repaired by DNA polymerase.  相似文献   

19.
Spores may be reversibly activated by the application of heat, dimethyl sulfoxide, urea, or ethylene glucol. Severe changes in four environmental variables (high osmotic pressure, low oxygen tension, low or high pH, and low or high temperature) interfere with the germination process. Spores at the end of the postactivation lag phase of germination were usually deactivated if exposed to severe environmental conditions and thus did not swell; spores in the swelling and oxygen uptake which began during spore activation was primarily attributable to a cyanide-sensitive pathway and secondarily to a salicylhydroxamic acid (SHAM) sensitive pathway. Inhibition of the SHAM-sensitive pathway did not cause spore deactivation while the addition of cyanide resulted in rapid spore deactivation. Treatment of activated spores with azide or environmental shifts also resulted in inhibition of oxygen uptake and spore deactivation. Deactivating spores did not demonstrate the amino acid incorporation, uridine incorporation, and expression of trehalase activity which is found in the later stages of germinating control spores. Protein synthesis inhibitors did not cause spore deactivation or a decrease in oxygen uptake but they inhibited amino acid incorporation and the expression trehalase activity in swollen spores. It is concluded that control of respiratory activity is involved in regulation of reversible activation.  相似文献   

20.
The bacitracin effect on spore germination in Bacillus licheniformis 28 KA--the producer of this antibiotic on media of various composition has been studied. Different intensity of antibiotic synthesis has been revealed on various media. A high content of presynthesized bacitracin has an inhibitory effect on spore germination in B. licheniformis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号