首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Gonadotropin-releasing hormone (GnRH) regulates pituitary gonadotropin release by a Ca2+-dependent mechanism involving receptor-mediated phosphoinositide hydrolysis. Previous studies indicate that activation of pituitary protein kinase C (PKC), while not required for acute gonadotropin release in response to GnRH, is likely involved in the chronic regulation of gonadotrope responsiveness. Studies from our laboratory have shown that activation of PKC by phorbol esters produces both the uncoupling of GnRH-stimulated phosphoinositide hydrolysis and the selective enhancement of GnRH agonist binding in pituitary cell cultures. In the present work, we have examined the possibility that these processes are related in mechanism. Dissociation of bound agonist radioligand at 23 degrees C was found to be reduced in the presence of phorbol esters, and ligand bound in the presence of phorbol ester was resistant to displacement by competing ligands at 4 degrees C. However, agonist bound in the presence of phorbol ester was dissociable by subsequently washing cells at pH 3. Receptor photoaffinity labeling studies confirmed that agonist association with membrane component(s) identified as the GnRH receptor was increased in the presence of phorbol ester. These results suggest that, in the presence of a phorbol ester PKC activator, agonist-occupied GnRH receptors remain at the cell surface, but are sequestered in some manner. In other experiments, cell preloaded with [3H]inositol were treated with GnRH agonist ligand and phorbol ester at 4 degrees C to form a pool of sequestered, agonist-occupied receptors, and then displaceable (nonsequestered) agonist was removed by incubation with antagonist ligand. After addition of LiCl and warming to 37 degrees C, [3H]inositol phosphate production (an index of phosphoinositide hydrolysis) in phorbol ester-treated cells was reduced to 67% of vehicle control, although residual specific agonist binding had been increased to greater than 300% of control. The appearance of sequestered receptors and inhibition of [3H]inositol phosphate production had similar phorbol ester concentration dependencies. These results suggest that the same agonist-occupied GnRH receptors sequestered as a result of PKC activation also are preferentially uncoupled from phosphoinositide hydrolysis.  相似文献   

2.
The T84 colonic cell line, a cultured Cl- secretory cell, elevates intracellular free Ca2+ [( Ca2+]i) in a concentration-dependent manner when exposed to carbachol or histamine. As determined with a fluorescence microscope imaging system, exposure of T84 cells to 100 microM carbachol or histamine resulted in an immediate [Ca2+]i rise of approximately 50-80 nM in all cells. Preincubation of monolayers for 1 h or longer with 0.4 microM phorbol 12,13-dibutyrate (PDB) reduced the number of cells which responded to histamine or carbachol and reduced the magnitude of the increase in the responding cells. This effect reached its maximum after 2 h and persisted for at least 24 h of PDB incubation. Binding of quinuclidinyl benzilate, a cholinergic receptor antagonist, indicated that down-regulation of external receptors was not an explanation for this effect. Examination of phospholipase C activity in T84 cell membranes showed increased basal activity in PDB-treated compared with control cells. Measurement of inositol phosphates generated by intact cells using myo-[3H]inositol incorporation or receptor binding assays showed that 2 h of incubation with PDB elevated basal levels of inositol 1,4,5-trisphosphate and prevented any further carbachol-induced generation of inositol trisphosphate. Probably as a consequence, both total cell calcium and Ca2+ ionophore-releasable calcium were decreased after 2 h of PDB incubation. Membrane-associated protein kinase C activity was elevated after a 2 h exposure to PDB but was below the level of detection after 24 h with PDB. Protein kinase C antagonists neither duplicated nor blocked the uncoupling of carbachol receptors induced by long term treatment with PDB. The results suggest that prolonged PDB incubation caused uncoupling and elevation of phospholipase C activity from cholinergic and histaminergic receptor regulation resulting in increased basal levels of inositol 1,4,5-trisphosphate. Protein kinase C apparently is not involved directly in the mechanism that leads to these effects.  相似文献   

3.
N-Formyl-methionyl-leucyl-phenylalanine (fMLP) and leukotriene B4 stimulate human polymorphonuclear neutrophils (PMN) to translocate protein kinase C from the cytosol to plasmalemma as judged by their abilities to increase PMN binding of and receptor numbers for [3H]phorbol dibutyrate [( 3H]PDB) (O'Flaherty, J.T., Jacobson, D.P., Redman, J.F., and Rossi, A.G. (1990) J. Biol. Chem. 265, 9146-9152). Platelet-activating factor (PAF) had these same effects. Moreover, two potent PAF analogs (but not an inactive analog) increased [3H]PDB binding; a PAF antagonist blocked responses to PAF without altering those to fMLP; and PMN treated with PAF became desensitized to PAF while retaining sensitivity to fMLP. Indeed, PMN incubated with 1-100 nM PAF for 5-40 min had markedly enhanced [3H]PDB binding responses to fMLP. PAF thus acted through its receptors to stimulate and prime protein kinase C translocation. Its effects, however, did not necessarily proceed by a standard mechanism: Ca2(+)-depleted PMN failed to raise Fura-2-monitored cytosolic Ca2+ concentrations [( Ca2+]i), yet increased [3H]PDB binding and receptor numbers almost normally after PAF challenge. PAF also primed Ca2(+)-depleted PMN to fMLP. Nevertheless, [3H]PDB binding responses to PAF were blocked in PMN loaded with Ca2+ chelators, viz. Quin 2, Fura-2, or 5,5'-dimethyl-1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Exogenous Ca2+ reversed Quin 2 inhibition, and a weak chelator 4,4'-difluoro-BAPTA, lacked inhibitory actions. The chelators similarly influenced fMLP and leukotriene B4. Thus, PMN can by-pass [Ca2+]i to translocate protein kinase C. They may achieve this using a regulatable pool of Ca2+ that evades conventional [Ca2+]i monitors or a signal that needs cell Ca2+ to form and/or act. This signal may mediate function in Ca2(+)-depleted cells, the actions of [Ca2+]i-independent stimuli, cell priming, and protein kinase C movements that otherwise seem [Ca2+]i-induced.  相似文献   

4.
The demonstration that GnRH provokes the accumulation of diacylglycerol and the redistribution of protein kinase C to the membrane fraction in gonadotropes suggests a role for this enzyme as a mediator of GnRH action. In the present work we have investigated the possibility that protein kinase C might mediate GnRH-stimulated receptor down-regulation and desensitization. Pretreatment of pituitary cells for 6 h with GnRH (10(-11) - 10(-6) M) caused a biphasic change in GnRH receptor number [the maximum binding (Bmax) for 125I-buserelin binding was increased by 10(-10) M GnRH and reduced by 10(-7) and 10(-6) M GnRH] and caused desensitization (pretreatment with 10(-9) - 10(-6) M GnRH reduced the proportion of cellular LH released in a subsequent challenge with GnRH). Pretreatment for 6 h with 0.2-200 nM phorbol myristate acetate (a protein kinase C-activating phorbol ester) did not cause desensitization, but at 200 nM, did reduce GnRH receptor number. As a further test of the requirement for protein kinase C for GnRH action, cells were depleted of all measurable protein kinase C (and rendered unresponsive to protein kinase C activators) by prior treatment with a high dose of phorbol myristate acetate (500 nM for 6 h followed by 12 h in plating medium). Depletion of protein kinase C did not alter the ability of GnRH to desensitize gonadotropes or down-regulate its own receptors. The demonstration that the effects of GnRH on receptor number and gonadotrope responsiveness are neither blocked by depletion of protein kinase C nor entirely mimicked by activation of protein kinase C suggests that these effects of the releasing hormone are not solely mediated by this enzyme.  相似文献   

5.
The activation of NK1 receptors on U373 MG human astrocytoma cells by substance P (SP) and related tachykinins was accompanied by an increase in taurine release and an accumulation of inositol phosphates. Both of these effects could be inhibited by spantide, a SP receptor antagonist. The relative potency of tachykinins in stimulating 3H-inositol phosphate accumulation correlated very well with their effects in stimulating the release of [3H]-taurine and inhibition 125I-Bolton-Hunter reagent-conjugated SP binding. The effect on [3H]taurine release was mimicked by a protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA). The inactive phorbol ester analogue 4-alpha-phorbol 12,13-didecanoate, however, was without effect. Both SP- and PMA-induced releases of [3H]-taurine were markedly inhibited by staurosporine, a potent PKC inhibitor. Pretreatment of U373 MG cells with 10 microM PMA for 19 h to down-regulate PKC activity also markedly inhibited both SP- and PMA-induced releases of [3H]-taurine. Treatment of cells with 100 nM SP induced a time-dependent translocation of PKC from the cytosolic fraction to the membrane fraction. These findings are consistent with the hypothesis that an activation of NK1 receptors on U373 MG cells results in the release of inositol phosphates and activation of PKC, which in turn may regulate the release of taurine.  相似文献   

6.
Phosphoinositide hydrolysis was studied in a washed membrane preparation of 1321N1 astrocytoma cells prelabeled with [3H]inositol. GTP gamma S stimulated the formation of [3H]inositol mono-, bis-, and trisphosphate ([3H]InsP, [3H]InsP2, and [3H]InsP3) with a half-maximal effect on [3H]InsP formation at 5 microM. Carbachol increased the accumulation of [3H]inositol phosphates only in the presence of added guanine nucleotide. Calcium increased [3H]InsP3 accumulation over a range of concentrations (10 nM-3 mM free calcium). When 1321N1 cells were treated with phorbol ester (100 nM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA)) prior to preparation of the membranes, the maximal [3H]InsP formation induced by GTP gamma S or GTP gamma S plus carbachol was decreased by 50-75%. In contrast, the response to a maximal calcium concentration presumed to activate phospholipase C directly was minimally inhibited (approximately 15%). PMA treatment did not affect muscarinic receptor affinity for carbachol or the effect of GTP on agonist binding. PMA treatment was also without effect on the breakdown of exogenous [3H]InsP3 in homogenates, permeabilized cells, and membranes, indicating that the InsP3-phosphatase was not the site of phorbol ester action. PMA treatment inhibited [3H] InsP3 formation only in membranes and not in cytosol prepared from the same cells, suggesting a membrane site of PMA action. Membranes were also required to demonstrate GTP gamma S-stimulated [3H]InsP3 formation although calcium-stimulated [3H]InsP3 formation was demonstrable in both membranes and cytosol. The addition of purified protein kinase C to the membranes mimicked the effect of PMA treatment to decrease GTP gamma S-stimulated [3H]InsP3 production. These data indicate that the effect of PMA on phosphoinositide metabolism is demonstrable in a cell-free system and that it can be mimicked by protein kinase C. We suggest that the ability of PMA to block GTP gamma S-stimulated formation of [3H]InsP3 results from inhibition of the G protein interaction with phospholipase C.  相似文献   

7.
Many recent reports have indicated that the effect of the phorbol ester tumor promoters is mediated through the Ca2+/phospholipid dependent protein kinase C. We have investigated the effect of two biologically active phorbol esters, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) and 4 beta-phorbol 12 beta,13 alpha-didecanoate (beta PDD) on muscarinic agonist binding and receptor-stimulated phosphoinositide breakdown in cultured human neuroblastoma (SH-SY5Y) cells. Preincubation of these cells with phorbol esters significantly reduced the carbachol-stimulated breakdown of inositol phospholipids and caused a decrease of agonist affinity for [3H](-)methyl quinuclidinyl benzilate ([3H](-)MQNB) binding without affecting the affinity of antagonist to the muscarinic receptor. The nontumor promoting 4 alpha-phorbol 12 beta,12 alpha-didecanoate (alpha PDD) was ineffective in our studies. These results suggest that the activation of protein kinase C may play an important role in regulating the muscarinic receptor system.  相似文献   

8.
We have examined some of the characteristics of phorbol ester- and agonist-induced down-regulation of astrocyte receptors coupled to phosphoinositide metabolism. Our results show that preincubation of [3H]inositol-labelled astrocyte cultures with phorbol 12-myristate 13-acetate (PMA) resulted in a time- (t 1/2, 1-2 min) and concentration-dependent (IC50, 1 nM) decrease in the accumulation of [3H]inositol phosphates (IP) evoked by muscarinic receptor stimulation. Much longer (30-40 min) preincubation periods with higher concentrations (IC50, 600 microM) were required to elicit the same effect with the receptor agonist carbachol. Following preincubation, agonist-stimulated [3H]IP accumulation recovered with time; in both cases pretreatment levels of inositol lipid metabolism were attained within 2 days. Both phorbol ester and agonist pretreatments were also effective in reversing the carbachol-evoked mobilisation of 45Ca2+ in these cells. However, their effects on phosphoinositide metabolism were found not to be additive. Although neither pretreatment affected the incorporation of [3H]inositol into phosphoinositides, both resulted in a loss of membrane muscarinic receptors as assessed by [3H]N-methylscopolamine binding. In washed membranes prepared from [3H]inositol-labelled cultures, the guanine nucleotide analogue, guanosine 5'-O-thiotriphosphate (GTP-gamma-S), caused a dose-dependent increase in [3H]IP formation. This response was enhanced when carbachol was also included in the incubation medium, although the agonist alone was without effect. Pretreatment with either PMA or carbachol had no effect on GTP-gamma-S-stimulated [3H]IP accumulation but did reduce the ability of carbachol to augment this response. Similar findings were obtained when membranes were exposed directly to PMA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of phorbol esters [phorbol 12,13-dibutyrate (PDB), 12-O-tetradecanoylphorbol 13-acetate (TPA), and phorbol 13-acetate] were investigated on the release of [3H]norepinephrine, 45Ca2+ accumulation, and protein kinase C activity in cultured sympathetic neurons of the chick embryo. Sympathetic neurons derived from 10-day-old chick embryo were cultured in serum-free medium supplemented with insulin, transferrin, and nerve growth factor. After 3 days, neurons were loaded with [3H]-norepinephrine and the release of [3H]norepinephrine was determined before and after electrical stimulation. Stimulation at 1 Hz for 15 s increased the release of [3H]-norepinephrine over the nonstimulation period. Stimulation-evoked release gradually declined with time during subsequent stimulation periods. Incubation of neurons in Ca2+-free Krebs solution containing 1 mM EGTA completely blocked stimulation-evoked release of [3H]-norepinephrine. Stimulation-evoked release of [3H]-norepinephrine was markedly facilitated by 3 and 10 nM PDB or TPA. The spontaneous release was also enhanced by PDB and TPA. The net accumulation of 45Ca2+ during stimulation of sympathetic neurons was increased by two- to fourfold in the presence of PDB or TPA. PDB at 1-100 nM produced a concentration-dependent increase in the activation of protein kinase C. PDB at 30 nM increased the activity of protein kinase C of the particulate fraction from 0.09 to 0.58 pmol/min/mg protein. There was no significant change in protein kinase C activity of the cytosolic fraction (0.14 pmol/min/mg versus 0.13 pmol/min/mg protein). The ratio of the particulate to cytosolic protein kinase C increased from a control value of 0.62 to 4.39 after treatment with 30 nM PDB. TPA (10 and 30 nM) also increased protein kinase C activity of the particulate fraction by six- to eightfold. Phorbol 13-acetate had no effect on protein kinase C activity, [3H]norepinephrine release, and 45Ca2+ accumulation. These results provide direct evidence that activation of protein kinase C enhances Ca2+ accumulation, which in turn leads to the facilitation of transmitter release in sympathetic neurons.  相似文献   

10.
The hypothesis that protein kinase C may be an important regulator of ovarian theca-interstitial cell steroidogenesis was tested by using phorbol-12-myristate-13-acetate (PMA) and phorbol-12, 13-dibutyrate (PDB) to directly stimulate protein kinase C activity. Collagenase-dispersed cells (4 x 10(5) viable cells/dish) form ovaries of hypophysectomized immature rats were cultured in serum-free medium in the presence and absence of 0-100 ng/ml of luteinizing hormone (LH), PMA (0-100 nM), and/or PDB (0-100 nM). Treatment with 100 ng/ml LH stimulated androsterone production 100-fold at Day 4 of culture. The presence of 100 nM PMA or PDB had no effect on basal androsterone production; however, treatment with increasing concentrations of PMA or PDB (0-100 nM) caused a dose-related inhibition (maximum 70%) of LH-stimulated androsterone synthesis (ID50 = 1.8 nM and 2.4 nM, respectively). PMA and PDB did not significantly alter DNA, protein, or cell viability, indicating that their inhibitory effects were not due to changes in cell number or viability. Cells treated with LH and 100 nM 4 alpha-phorbol didecanoate (4 alpha-PDD; a phorbol ester that does not activate protein kinase C) failed to show significant decreases in androsterone production. Time-course studies revealed that when PMA treatment was delayed until Day 2 or 4 of culture, dramatic inhibitory effects on LH-stimulated androsterone production were still observed. These results suggest that the biological activity of protein kinase C is retained after the cells have expressed their differentiated state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We have investigated phospholipase D activity in rat brain cortical slices prelabeled with [32P]orthophosphoric acid. In the presence of ethanol (170 mM), norepinephrine stimulated, in a dose-dependent manner (EC50 = 2.2 microM), the accumulation of [32P]phosphatidylethanol as a result of phospholipase D activity. Norepinephrine-stimulated phospholipase D activity was completely inhibited by prazosin, a specific alpha 1-adrenergic antagonist (Ki = 2.8 nM). However, no accumulation of phosphatidylethanol was observed in the presence of the muscarinic agonist carbachol. The Ca2+ ionophore ionomycin and the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) also stimulated [32P]phosphatidylethanol accumulation in cortical slices, in a dose- and time-dependent manner, whereas the inactive phorbol, 4 alpha-phorbol 12,13-didecanoate, did not stimulate phospholipase D activity. Staurosporine and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, two potent inhibitors of protein kinase C, inhibited PMA and ionomycin stimulation of phospholipase D activity, but did not affect the response to norepinephrine. Furthermore, the effects of PMA and norepinephrine were additive. Differences between PMA and norepinephrine stimulation of phospholipase D activity were also found with regard to the extracellular Ca2+ requirement and time course of phosphatidylethanol accumulation. No stimulation of phospholipase D activity by norepinephrine was observed in slices from cerebellum, a brain area with a low density of alpha 1-adrenergic receptors, while the effect of PMA was greater in the cerebellum than in cortical or hippocampal slices. These results strongly suggest that activation of phospholipase D in cortical slices by norepinephrine and PMA involve different mechanisms.  相似文献   

12.
The feedback regulatory control mechanism exerted by activated Ca2+/phospholipid-dependent protein C kinase upon gonadotropin releasing hormone (GnRH) binding, stimulation of phosphoinositide turnover and gonadotropin secretion was investigated in cultured pituitary cells. Addition of the tumor promoter phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), at concentrations which activate pituitary protein C kinase, to cultured pituitary cells resulted in up-regulation of GnRH receptors (155% at 4 h). The stimulatory effect of GnRH on [3H]inositol phosphates (Ins-P) production in myo-[2-3H]inositol prelabeled pituitary cells was not inhibited by prior treatment of the cells with TPA (10(-9)-10(-7) M). Higher concentrations of TPA (10(-6)-10(-5) M) inhibited the effect of GnRH on [3H]Ins-P production. Increasing concentrations of TPA or the permeable analog of diacylglycerol 1-oleoyl-2-acetylglycerol (OAG) stimulated luteinizing hormone (LH) release from cultured pituitary cells with ED50 values of 5 x 10(-9) M and 10 micrograms/ml, respectively. No consistent inhibition or additivity of LH release was observed when increasing doses of TPA or OAG were added with a submaximal dose of GnRH. These results suggest that protein C kinase might mediate the known homologous up-regulation of GnRH receptors during the reproductive cycle. Protein C kinase is positively involved in mediating the process of gonadotropin secretion. Unlike many other systems, activation of protein C kinase in pituitary gonadotrophs is not involved in negative feed-back regulation of stimulus-secretion-coupling mechanisms in GnRH-stimulated gonadotrophs.  相似文献   

13.
It has previously been shown that neurotensin binds to high-affinity receptors in the adenocarcinoma HT29 cell line, and that receptor occupancy leads to inositol phosphate formation. The present study was designed to investigate further the effects of neurotensin on calcium mobilization and protein kinase C (PKC) activation in HT29 cells, and to assess the role of GTP-binding proteins (G-proteins) in the neurotensin response. Direct measurements of cytosolic Ca2+ variations using the fluorescent indicator quin 2 showed that neurotensin (0.1-1 microM) elicited Ca2+ transients in HT29 cells. These transients occurred after the neurotensin-stimulated formation of Ins(1,4,5)P3, as measured by means of a specific radioreceptor assay. In addition, the peptide induced a decrease in the 45Ca2+ content of cells previously equilibrated with this isotope. The peptide effect was rapid, long-lasting and concentration-dependent, with an EC50 of 2 nM. Phorbol 12-myristate 13-acetate (PMA) inhibited by 50% the neurotensin effects on both intracellular Ca2+ and inositol phosphate levels. The inhibition by PMA was abolished in PKC-depleted cells. Pertussis toxin had no effect on either the Ca2+ or inositol phosphate responses to neurotensin. Epidermal growth factor (EGF) receptors which are present in HT29 cells have been shown to be down-regulated through phosphorylation by PKC in a variety of systems. Here, PMA markedly (70-80%) inhibited EGF binding to HT29 cells. Scatchard analysis revealed that PMA abolished the high-affinity component of EGF binding, an effect that was totally reversed in PKC-depleted cells. In contrast, neurotensin slightly (10-20%) inhibited EGF binding to HT29 cells, and its effect was only partly reversed by PKC depletion. Neurotensin had no detectable effect on sn-1,2-diacylglycerol levels in HT29 cells, as measured by a specific and sensitive enzymic assay. In membranes prepared from HT29 cells, monoiodo[125I-Tyr3]neurotensin bound to a single population of receptors with a dissociation constant of 0.27 nM. Sodium and GTP inhibited neurotensin binding in a concentration-dependent manner. Maximal inhibition reached 80% with Na+ and 35% with GTP.IC50 values were 20 mM and 0.2 microM for Na+ and GTP respectively. Li+ and K+ were less effective than Na+ and the effects of GTP were shared by GDP and guanosine-5'-[beta gamma- imido]triphosphate but not by ATP. Scatchard analysis of binding data indicated that Na+ and GTP converted the high-affinity neurotensin-binding sites into lower affinity binding sites. The properties of the effects of Na+ and GTP on neurotensin-receptor interactions are characteristic of those receptors which interact with G-proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Somatostatin binding to its receptors on rat pancreatic acinar membranes was characterized with [125I-Tyr1]somatostatin. Binding at 24 degrees C was rapid reaching a maximum after 60 min and was reversible upon the addition of 1 microM unlabeled ligand. Scatchard analysis revealed a single class of binding sites, with a Kd of 0.32 +/- 0.03 nM and a binding capacity of 600 +/- 54 fmol/mg of protein. Specificity for the somatostatin was demonstrated with the inhibition of labeled hormone binding by somatostatin analogs in proportion to their biological activities. When [125I-Tyr1]somatostatin was cross-linked to its receptors with the photoreactive cross-linker n-hydroxysuccinimidyl-4-azidobenzoate, the hormone was associated with Mr = 90,000 protein. Similar mobilities of the radioactive band were observed in the presence and absence of dithiothreitol. In contrast to other unrelated peptides, cholecystokinin (CCK) and its analogs directly reduced [125I-Tyr1] somatostatin binding to isolated membranes. The effect of CCK was one-half-maximal at 3 nM and maximal at 100 nM. In the presence of 3 nM CCK8, the binding capacity for somatostatin was decreased to 237 +/- 39 fmol/mg of protein without a significant change in affinity. Dibutyryl cyclic GMP, a CCK receptor antagonist, blocked this action of CCK8 indicating that the CCK receptor mediated the decrease in [125-Tyr1]somatostatin binding. In contrast cerebral cortex membranes, which also possess a somatostatin receptor, were not regulated by CCK. These results indicate, therefore, that 1) purified pancreatic acinar plasma membranes contain specific receptors for somatostatin, 2) the receptor has an apparent Mr of about 90,000, and 3) the binding of somatostatin to its receptor on pancreatic plasma membranes is regulated by CCK analogs acting via the CCK receptor.  相似文献   

15.
The redistribution of protein kinase C (Ca2+/phospholipid-dependent protein kinase) from a cytosolic or a loosely associated membrane compartment to a more integral membrane compartment is stimulated by Ca2+ in vitro. This event is thought to be necessary for activation of the enzyme. To determine whether such a redistribution of protein kinase C occurs following hormonally stimulated increases in cytoplasmic Ca2+, we measured [3H]phorbol 12,13-dibutyrate ([3H]PDB) binding to protein kinase C in intact 1321N1 astrocytoma cells. The muscarinic agonist carbachol causes a 2-fold increase in [3H]PDB binding. This increase is transient, peaking at 1 min and returning toward control levels by 5 min. Scatchard analysis of [3H]PDB binding in the presence of carbachol reveals a 2-fold increase in the Bmax and no change in the KD compared to control values. This increase in Bmax likely represents a redistribution of protein kinase C to the membrane because [3H]PDB binding in intact cells is predominantly to membrane-associated enzyme. The Ca2+ ionophore ionomycin, and two other Ca2+-mobilizing hormones, bradykinin and histamine, mimic the effects of carbachol. Furthermore, when hormone-sensitive Ca2+ stores are depleted by prior agonist treatment, the carbachol-induced increases in intracellular [Ca2+] and [3H]PDB binding are completely blocked. Under these conditions, phosphoinositide hydrolysis and diacylglycerol (DAG) formation are not inhibited. We also examined the time course of DAG accumulation in response to carbachol. DAG is not yet significantly elevated when the increase in [3H]PDB binding is maximal. Furthermore, [3H]PDB binding has returned to control levels when DAG concentrations are maximally elevated. These data suggest that hormone-stimulated increases in cytoplasmic Ca2+ cause a marked and rapid redistribution of protein kinase C which precedes any significant increase in DAG. Our findings also demonstrate that [3H]PDB binding to intact cells may be a useful measure of the ability of Ca2+-mobilizing hormones to affect protein kinase C.  相似文献   

16.
The structural requirements for diacylglycerols to mimic the action of tumor-promoting phorbol diesters on the epidermal growth factor (EGF) receptor of A431 human epidermoid carcinoma cells were investigated. Five biological effects were considered: inhibition of high affinity 125I-EGF binding, change in the phosphorylation state of the EGF receptor, inhibition of the EGF-dependent tyrosine phosphorylation of the EGF receptor, inhibition of [3H]phorbol 12 beta, 13 alpha-dibutyrate binding, and stimulation of calcium- and phospholipid-dependent protein kinase (C-kinase) in vitro. A marked effect of the acyl chain length, 3-10 carbons, of symmetric sn-1,2-diacylglycerols was observed on their ability to mimic the effect of 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA). sn-1,2-Dipropanoylglycerol did not mimic the effects of PMA, but sn-1,2-didecanoylglycerol potently mimicked PMA action. A correlation was found between the ability of these diacylglycerols to stimulate the activity of C-kinase in vitro and to mimic the effects of PMA on the EGF receptor in intact cells. Analogues of sn-1,2-dioctanoylglycerol in which the 3' hydroxyl group was substituted with hydrogen, thio or chloro moieties were inactive when assayed for their ability to stimulate C-kinase in vitro and mimic PMA action in intact cells. We conclude that the hydroxyl group of a diacylglycerol is vital for the interaction with the phorbol diester receptor. The stringent correlation between the potency of the 11 diacylglycerol analogues tested to modulate C-kinase in vitro and to mimic PMA action in vivo provides strong evidence for the hypothesis that C-kinase plays a central role in the regulation of A431 cell EGF receptors by tumor-promoting phorbol diesters.  相似文献   

17.
Angiotensin II acts on cultured rat aortic vascular smooth muscle cells (VSMC) to induce the rapid, phospholipase C-mediated generation of inositol trisphosphate from phosphatidylinositol 4,5-bisphosphate and mobilization of intracellular Ca2+. sn-1,2-Diacylglycerol, the other major product of inositol phospholipid breakdown, is known to activate protein kinase C, but its role in angiotensin II action on VSMC has not been defined. We report herein that, in cultured VSMC prelabeled with [3H]myoinositol, brief incubations (2-5 min) with 4 beta-phorbol 12-myristate 13-acetate (PMA) (1-100 nM) or 1-oleoyl-2-acetylglycerol (10-100 microM), two potent activators of protein kinase C, inhibit subsequent angiotensin II (100 nM)-induced increases in phosphatidylinositol 4,5-bisphosphate breakdown and inositol trisphosphate formation. In addition, pretreatment of VSMC with either PMA (IC50 approximately 1 nM) or 1-oleoyl-2-acetylglycerol (IC50 approximately 7.5 microM) also markedly inhibits angiotensin II (1 nM)-stimulated increases in cytosolic free Ca2+, as measured with the calcium-sensitive fluorescent indicator quin 2, or 45Ca2+ efflux. Neither PMA nor 1-oleoyl-2-acetylglycerol initiated phosphatidylinositol 4,5-bisphosphate breakdown or Ca2+ flux by itself. PMA treatment (10 nM, 5 min) did not influence the number or affinity of 125I-angiotensin II-binding sites in intact cells. These data suggest that one function of angiotensin II-generated sn-1,2-diacylglycerol in vascular smooth muscle may be to modulate, by protein kinase C-mediated mechanisms, angiotensin II receptor coupling to phospholipase C.  相似文献   

18.
The hypothesis that protein kinase C (PKC) participates in agonist-mediated desensitization of formyl peptide receptors in HL-60 granulocytes was tested. fMet-Leu-Phe and leukotriene B4(LTB4) produced homologous desensitization of agonist-stimulated intracellular calcium transients. Pre-treatment with the PKC activator, phorbol myristate acetate (PMA; 10 nM), abolished both fMet-Leu-Phe and LTB4-stimulated calcium transients. Membranes prepared from control HL-60 granulocytes (NM) or cells treated with 10 nM PMA (PMA-M) demonstrated increased formyl peptide receptor and G protein density, as determined by radioligand binding and pertussis toxin- and cholera toxin-catalysed ADP ribosylation. fMet-Leu-Phe stimulation of guanosine 5′-[γ-thio]-triphosphate (GTPγS) binding and GTP hydrolysis and GDP inhibition of fMet-Leu-Phe binding were not different between NM and PMA-M. Pre-treatment with 10 nM PMA did not inhibit subsequent fMet-Leu-Phe-stimulated superoxide generation or phospholidase D activation. We conclude that PKC desensitizes fMet-Leu-Phe-stimulated phospholipase C, but not phospholipase D, responses and that PKC activation does not mediate agonist-induced desensitization of formyl peptide receptors.  相似文献   

19.
The demonstration that activators of the Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C), such as phorbol esters and diacylglycerols, can provoke luteinizing hormone (LH) release from pituitary gonadotropes, suggests a possible role for protein kinase C in stimulus-release coupling. We now report that administration of phorbol myristate acetate (PMA) to pituitary cell cultures causes a sustained reduction in Triton X-100-extracted protein kinase C activity. Further, phorbol ester- and diacylglycerol-stimulated LH release, as well as inhibition by PMA of gonadotropin-releasing hormone (GnRH)-stimulated inositol phosphate production, were reduced by pretreatment with PMA. The effects of phorbol ester pretreatment on PMA-stimulated LH release and protein kinase C activity were dose-dependent, sustained (greater than or equal to 24 h) and specific (no measurable effect with 4 alpha-phorbol didecanoate). The effect on PMA-stimulated LH release was apparently Ca2+-independent. In pituitary cell cultures with reduced protein kinase C activity, the gonadotropes have reduced responsiveness to PMA but release a similar proportion of cellular LH in response to Ca2+-mobilizing secretagogues (GnRH and A23187) as do control cells. The normal responsiveness to GnRH of cells with reduced responsiveness to protein kinase C activators calls into question the requirement for this enzyme for GnRH-stimulated LH release.  相似文献   

20.
The effects of various phorbol esters on the interaction of human cells with recombinant human tumor necrosis factor-alpha (rTNF-alpha) was investigated. Preexposure of several different types of cells with only biologically active tumor promoter, i.e. 4 beta-phorbol 12-myristate 13-acetate (PMA), inhibited the specific binding of rTNF-alpha to its receptor. The reduction in specific binding of TNF-alpha was observed only by PMA but not with several other phorbol esters tested. 1-oleoyl-2-acetylglycerol, which is an analogue of the natural protein kinase C activator, diacylglycerol, was active in down-regulating TNF-alpha receptors but only at 1000 times concentration than PMA. Scatchard analysis of the binding data on U-937 cells revealed that PMA caused a decrease in high affinity cell surface receptor number (approximately 8300 versus approximately 2500 binding sites/cell) without any significant change in the dissociation constant (0.38 nM versus 0.32 nM). This decrease in receptor number is dependent on temperature, the time of exposure, and dose of PMA. Greater than 95% of the specific binding of 125I-TNF-alpha could be abolished within 10 min by preexposure of cells to 10 nM PMA at 37 degrees C. The down-regulation of receptors by PMA occurred only at 37 degrees C but not at 4 degrees C, suggesting a probable internalization of the receptors. The specific binding of TNF-alpha to detergent-solubilized cell extracts remained unchanged after exposure of cells to PMA. The rates of dissociation of TNF-alpha from the cell surface and the rate of internalization was not significantly affected by PMA, but the rate of disappearance from cell interior and its appearance into the medium was slightly enhanced by PMA. PMA did not alter the rate of degradation of the TNF-alpha nor cause the shedding of receptors into the medium. Approximately 70% of TNF-alpha cell surface receptors could be regenerated within 16 h after PMA removal. These results suggest the involvement of PMA-activated protein kinase C in down-regulation and redistribution of TNF-alpha receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号