首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pain inhibition can be induced by immune‐derived opioids interacting with opioid receptors on peripheral sensory nerves. These receptors are up‐regulated in inflammation (1). Opioid peptides are synthesised in circulating immune cells which migrate to injured tissue. This is orchestrated by selectins and other adhesion molecules located on immunocytes and on vascular endothelium (2). In response to releasing stimuli the opioids are secreted, activate peripheral opioid receptors and produce analgesia by inhibiting the excitability of sensory nerves and/or the release of excitatory neuropeptides. These effects occur in the periphery and are devoid of central side‐effects such as respiratory depression, sedation, dysphoria or dependence. Targeting of immune cells containing opioids to injured tissues is a novel concept of pain control and opens potential new therapeutic approaches.  相似文献   

2.
Pain inhibition can be induced by immune-derived opioids interacting with opioid receptors on peripheral sensory nerves. These receptors are up-regulated in inflammation (1). Opioid peptides are synthesised in circulating immune cells which migrate to injured tissue. This is orchestrated by selectins and other adhesion molecules located on immunocytes and on vascular endothelium (2). In response to releasing stimuli the opioids are secreted, activate peripheral opioid receptors and produce analgesia by inhibiting the excitability of sensory nerves and/or the release of excitatory neuropeptides. These effects occur in the periphery and are devoid of central side-effects such as respiratory depression, sedation, dysphoria or dependence. Targeting of immune cells containing opioids to injured tissues is a novel concept of pain control and opens potential new therapeutic approaches.  相似文献   

3.
Charles AC  Hales TG 《Life sciences》2004,76(5):479-485
Opioids have excitatory effects in multiple regions of the nervous system. Excitation by opioids is generally attributed to inhibition of inhibitory pathways (disinhibition). However, recent studies indicate that opioids can directly excite individual cells. These effects may occur when opioid receptors interact with other G protein coupled receptors, when different subtypes of opioid receptors interact, or when opioids transactivate other receptors such as receptor tyrosine kinases. Changes in the relative level of expression of different receptors in an individual cell may therefore determine its functional response to a given ligand. This phenomenon could represent an adaptive mechanism involved in tolerance, dependence and subsequent withdrawal.  相似文献   

4.
5.
背根神经节神经元阿片受体和离子通道的研究进展   总被引:9,自引:0,他引:9  
Wang GD  Zhao ZQ  Li CQ 《生理科学进展》1997,28(4):311-316
阿片及阿片受体与外周神经系统镇痛机制的研究,随着分子生物学技术的发展,已在受体的分子结构、形态学、分子药理学、离子通道和细胞内信号转导系统等方面取得了显著进展。μ、δ、κ阿片受体分子结构上的部分差异决定了它们各自的功能特征。三种受体在初级感觉神经元分布的比例不同,但都能介导细胞Ca^2+通道的抑制和K^+电流增加及减少。阿片受体和通道之间由多种第二信使系统偶联。分子药理学研究表明它们还存在亚型受体  相似文献   

6.
Opioid analgesics are elective for treating moderate to severe pain but their use is restricted by severe side effects. Signaling bias has been proposed as a viable means for improving this situation. To exploit this opportunity, continuous efforts are devoted to understand how ligand-specific modulations of receptor functions could mediate the different in vivo effects of opioids. Advances in the field have led to the development of biased agonists based on hypotheses that allocated desired and undesired effects to specific signaling pathways. However, the prevalent hypothesis associating β-arrestin to opioid side effects was recently challenged and multiple of the newly developed biased drugs may not display the superior side effects profile that was sought. Moreover, biased agonism at opioid receptors is now known to be time- and cell-dependent, which adds a new layer of complexity for bias estimation. Here, we first review the signaling mechanisms underlying desired and undesired effects of opioids. We then describe biased agonism at opioid receptors and discuss the different perspectives that support the desired and undesired effects of opioids in view of exploiting biased signaling for therapeutic purposes. Finally, we explore how signaling kinetics and cellular background can influence the magnitude and directionality of bias at those receptors.  相似文献   

7.
Both therapeutic and chronic uses of opioids compromise the optimal functioning of the immune system. Overwhelming evidence suggests that opioid use affects both innate immunity and adaptive immunity. Chronic administration of opioids decreases the proliferative capacity of macrophage progenitor cells and lymphocytes. Additionally, the differentiated function of immune cells is significantly affected by opioids. These effects are mediated by either a direct action of opioids on the target cells or by indirect centrally mediated pathways. Molecular biological and biochemical characterization suggest that immune cells differentially express classical opioid receptors. Interestingly, these studies also reveal the presence of a novel class of opioid receptors in immune cells. We believe that this low affinity morphine binding site mediates the antiproliferative effects of morphine. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

8.
Opioid peptides and opiate drugs such as morphine, mediate their analgesic effects, but also undesired side effects, mostly through activation of the mu opioid receptor. However, delta- and kappa-opioid receptors can also contribute to the analgesic effects of opioids. Recent findings showed that simultaneous activation of multiple opioid receptors may result in additional analgesia with fewer side effects. Here, we evaluated the pharmacological profile of our formerly developed mixed mu/kappa-opioid receptor ligands, Dmt-c[D-Lys-Phe-Phe-Asp]NH2 (C-36) and Dmt-c[D-Lys-Phe-p-CF3-Phe-Asp]NH2 (F-81). The ability of these peptides to cross the blood–brain barrier was tested in the parallel artificial membrane permeability (PAMPA) assay. On the basis of the hot-plate test in mice after central and peripheral administration, analog F-81 was selected for the anti-nociceptive and anti-inflammatory activity assessment after peripheral administration.  相似文献   

9.
Naloxone-depending potentiation of morphine antinociception by some non-opioidergic compounds between different classes of drugs was found in experiments on mice using nociceptive stimuli of different modality. This potentiation can or cannot be bound with elevation of sensitivity of opioid receptors, release of endogenous opioids or destruction of blood-brain barrier function mor morphine peripheral administration. This potentiation named as "release of functional reserve of opioid antinociceptive response" can or cannot be accompanied by an increase of breathing function depression. Taking into account the data of literature about the dissociation of analgetic positive-supporting morphine effects and also the capability of some compounds to lower the narcogenic opiates potential, the supposition about the real possibility of creating combined drugs is made.  相似文献   

10.
The demonstration of opioid receptors by radioligand binding and the discovery of their endogenous peptide ligands has provided a new class of compounds that can be used for the development of novel opioids. The number of potential receptor targets for such opioids has been expanded by the identification of multiple opioid receptor types. The development of highly selective opioid peptides using the principles of conformational restriction permits the analysis of the structure-activity requirements of each receptor type, and is facilitating the elucidation of the functional properties of the different opioid receptors.  相似文献   

11.
Cichewicz DL 《Life sciences》2004,74(11):1317-1324
Cannabinoids and opioids both produce analgesia through a G-protein-coupled mechanism that blocks the release of pain-propagating neurotransmitters in the brain and spinal cord. However, high doses of these drugs, which may be required to treat chronic, severe pain, are accompanied by undesirable side effects. Thus, a search for a better analgesic strategy led to the discovery that delta 9-tetrahydrocannabinol (THC), the major psychoactive constituent of marijuana, enhances the potency of opioids such as morphine in animal models. In addition, studies have determined that the analgesic effect of THC is, at least in part, mediated through delta and kappa opioid receptors, indicating an intimate connection between cannabinoid and opioid signaling pathways in the modulation of pain perception. A host of behavioral and molecular experiments have been performed to elucidate the role of opioid receptors in cannabinoid-induced analgesia, and some of these findings are presented below. The aim of such studies is to develop a novel analgesic regimen using low dose combinations of cannabinoids and opioids to effectively treat acute and chronic pain, especially pain that may be resistant to opioids alone.  相似文献   

12.
Stevens CW  Newman LC 《Life sciences》1999,64(10):PL125-PL130
In mammals, opioids act by interactions with three distinct types of receptors: mu, delta, or kappa opioid receptors. Using a novel assay of antinociception in the Northern grass frog, Rana pipiens, previous work demonstrated that selective mu, delta, or kappa opioids produced a potent antinociception when administered by the spinal route. The relative potency of this effect was highly correlated to that found in mammals. Present studies employing selective opioid antagonists, beta-FNA, NTI, or nor-BNI demonstrated that, in general, these antagonists were not selective in the amphibian model. These data have implications for the functional evolution of opioid receptors in vertebrates and suggest that the tested mu, delta, and kappa opioids mediate antinociception via a single type of opioid receptor in amphibians, termed the unireceptor.  相似文献   

13.
The role of endogenous opioids in immunological mechanisms was examined by subjecting athymic (nu/nu) mice to chronic injections of the opioid agonist [Met5]-enkephalin (MET) or continuous opioid receptor blockade with naltrexone (NTX). After 8 days of treatment, neither excess peptide nor deprivation of opioids from receptors had any effect on body weight, spleen index (spleen to body weight ratio), total and differential white blood cell counts, and natural killer (NK) cell activity in peripheral blood or splenic lymphocytes. At 28 days, chronic treatment with MET or NTX had no effect on any of these parameters with the exception of an elevation from controls in NK cell activity in peripheral blood in mice receiving NTX, and subnormal NK cell activity related to splenic lymphocytes in the MET group. These results suggest that chronic exposure to an opioid agonist, or persistent opioid receptor blockade, have little influence on a variety of immunological properties in athymic mice, suggesting that native opioids such as MET do not play a marked role in defense mechanisms in the athymic mouse.  相似文献   

14.
Although orphanin FQ/nociceptin (OFQ/N) receptors are a member of the opioid receptor family of receptors, they bind traditional opioids with very poor affinity. We now demonstrate that mu opioid receptors can physically associate with OFQ/N receptors, resulting in a complex with a unique binding selectivity profile. Immunoprecipitation of epitope-tagged OFQ/N receptors co-precipitates mu receptors. When the two receptors were co-expressed in CHO cells, [3H]OFQ/N retained its high binding affinity for its receptor. However, co-expression of the two receptors increased by up to 250-fold the affinity of a series of opioids in [3H]OFQ/N binding assays. This enhanced affinity was limited to agonists with high affinity for mu receptors. Selective kappa(1) and delta opioids did not lower binding. Despite the dramatic increase in affinity for the opioid agonists in co-expressing cells, the opioid antagonists naloxone and diprenorphine failed to compete [3H]OFQ/N binding.  相似文献   

15.
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).  相似文献   

16.
Smith AP  Lee NM 《Life sciences》2003,73(15):1873-1893
The pharmacological effects of opioid drugs and endogenous opioid peptides are mediated by several kinds of receptors, the major ones being mu, delta and kappa. Though classically it has been thought that a particular effect mediated by a drug or other ligand results from its interaction with a single type of receptor, accumulating evidence demonstrates that interactions between receptors play a major role in opioid actions. These interactions may be either local, involving receptors within the same tissue, or nonlocal, between receptors located in different tissues. Nonlocal interactions always involve intercellular mechanisms, whereas local interactions may involve either intercellular or intracellular interactions, the latter including physical association of receptors. Both local and nonlocal interactions, moreover, may be either symmetric, with ligand interaction at one receptor affecting interaction at the other, or asymmetric; and either potentiating or inhibitory. In this article we discuss major examples of these kinds of interactions, and their role in the acute and chronic effects of opioids. Knowledge of these interactions may have important implications for the design of opioids with more specific actions, and for eliminating the addictive liability of these drugs.  相似文献   

17.
It is known today that the immune system is influenced by various types of psychological and physiological stressors, including physical activity. It is well known that physical activity can influence neuropeptide levels both in the central nervous system as well as in peripheral blood. The reported changes of immune function in response to exercise have been suggested to be partly regulated by the activation of different neuropeptides and the identification of receptors for neuropeptides and steroid hormones on cells of the immune system has created a new dimension in this endocrine-immune interaction. It has also been shown that immune cells are capable of producing neuropeptides, creating a bidirectional link between the nervous and immune systems. The most common neuropeptides mentioned in this context are the endogenous opioids. The activation of endogenous opioid peptides in response to physical exercise is well known in the literature, as well as the immunomodulation mediated by opioid peptides. The role of endogenous opioids in the exercise-induced modulation of immune function is less clear. The present paper will also discuss the role of other neuroendocrine factors, such as substance P, neuropeptide Y and vasoactive intestinal peptide, and pituitary hormones, including growth hormone, prolactin and adrenocorticotrophin, in exercise and their possible effects on immune function.  相似文献   

18.
The brain is a target organ for recreational drugs and HIV-1. Epidemiological data demonstrate that opioid abuse is a risk factor for HIV-1 infection and progression to AIDS. Chemokines and their receptors have been implicated in the neuropathogenesis of HIV-1 infections. However, little is known about the effects of opioids on the expression of chemokines and their receptors (the latter also are HIV-1 coreceptors) by cells of the CNS. Herein we describe the effects of morphine on gene expression of the alpha- and beta-chemokines and their receptors by the astrocytoma cell line U87 and by primary normal human astrocyte (NHA) cultures. U87 cells treated with morphine showed significant down-regulation of IL-8 gene expression, whereas expression of the IL-8 receptor CXCR2 was reciprocally up-regulated as detected by RT-PCR. Treatment of NHAs with morphine suppressed IL-8 and macrophage-inflammatory protein-1beta gene expression, whereas expression of their receptor genes, CCR3 and CCR5, was simultaneously enhanced. These morphine-induced effects on U87 and NHA cells were reversed by the opioid mu receptor antagonist beta-funaltrexamine. Morphine also enhanced the constitutive expression of the opioid mu receptor on astroglial cells. Our results support the hypothesis that opioids play a significant role in the susceptibility of the CNS to HIV-1 infection and subsequent encephalopathy by inhibiting local production of HIV-1-protective chemokines (IL-8 and macrophage-inflammatory protein-1beta) and enhancing expression of HIV-1 entry coreceptor genes (CCR3, CCR5, and CXCR2) within the CNS. These effects of opioids appear to be mediated through the opioid mu receptor that we demonstrated on astroglial cells.  相似文献   

19.
《Life sciences》1996,59(15):PL235-PL238
We administered methylnaltrexone, a peripheral opioid receptor antagonist, to guinea pigs previously injected with morphine sulfate to determine whether the compound could block opioid-induced cough suppression without blocking antinociception. The effects of methylnaltrexone (2.0, 1.6, 0.8 mg/kg) and of naltrexone (0.32, 0.16, 0.02 and 0.01 mg/kg) were compared in animals who had been injected with morphine sulfate (8.1 mg/kg). At 2.0 mg/kg methylnaltrexone, number of coughs returned to baseline value and nociception remained unaffected. At the two higher doses of naltrexone (0.32 and 0.16 mg/kg), morphine-induced antitussive effect was blocked, but antinociception was reversed. Our results suggested that methylnaltrexone possesses opioid antagonist activity in receptors peripheral to the blood-brain barrier. Its peripheral activity makes methylnaltrexone a clinically interesting agent for maintaining the cough reflex in those who must take opioids for analgesia.  相似文献   

20.
To examine the possible involvement of multiple opioid receptors in animal hibernation, we infused opioids selective for mu, kappa, and delta opioid receptors into summer-active ground squirrels (Citellus tridecemlineatus). The effects of those opioid treatments on the hibernation induced by HIT (Hibernation Induction Trigger) were also examined. Mu opioids morphine (1.50 mg/kg/day) and morphiceptin (0.82 mg/kg/day) and kappa opioid peptide dynorphin A (0.82 mg/kg/day) did not induce hibernation. On the contrary, morphine, morphiceptin and dynorphin A antagonized HIT-induced hibernation in summer-active ground squirrels. Infusion of delta opioid DADLE (D-Ala2-D-Leu5 enkephalin; 1.50 mg/kg/day), however, induced summer hibernation in a manner comparable to that induced by HIT. It is concluded therefore that delta opioid receptor and its ligand may be intimately involved in animal hibernation. In view of the fact that HIT was obtained from winter hibernating animals and might therefore be responsible for natural hibernation, our results also suggest that naturally occurring mu and kappa opioids may play an important role in the arousal state of hibernation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号