首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Types of cell death include apoptosis, necrosis, and autophagic cell death. The latter can be defined as death of cells containing autophagosomes, autophagic bodies, and/or vacuoles. Are autophagy and vacuolization causes, consequences, or side effects in cell death with autophagy? Would control of autophagy suffice to control this type of cell death? We disrupted the atg1 autophagy gene in Dictyostelium discoideum, a genetically tractable model for developmental autophagic vacuolar cell death. The procedure that induced autophagy, vacuolization, and death in wild-type cells led in atg1 mutant cells to impaired autophagy and to no vacuolization, demonstrating that atg1 is required for vacuolization. Unexpectedly, however, cell death still took place, with a non-vacuolar and centrally condensed morphology. Thus, a cell death mechanism that does not require vacuolization can operate in this cell death model showing conspicuous vacuolization. The revelation of non-vacuolar cell death in this protist by autophagy gene disruption is reminiscent of caspase inhibition revealing necrotic cell death in animal cells. Thus, hidden alternative cell death pathways may be found across kingdoms and for diverse types of cell death.  相似文献   

2.
Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom.  相似文献   

3.
We investigated the mechanisms of anti-IgM antibody-induced cell death in a recently established human surface IgM+ IgD+ B lymphoma cell line, B104, the growth of which is irreversibly inhibited by anti-IgM antibody but not by anti-IgD antibody, and compared it with the cell death of T cells via TCR/CD3 complex and with the cell death of a murine anti-IgM antibody-sensitive B lymphoma cell line, WEHI-231. The rapid time course of B104 cell death and its requirements for de novo macromolecular synthesis and Ca2+ influx suggest that anti-IgM antibody-induced B104 cell death is an active Ca(2+)-dependent programmed cell death. Moreover, cyclosporin A rescued B104 cells from this lethal signal, via surface IgM, suggesting that the intracellular mechanisms involved are quite similar to those of T cell death. DNA fragmentation, which has been reported in TCR/CD3 complex-mediated T cell death, apoptosis, was not involved in the B104 cell death process, but the possible involvement of DNA single-strand breaks was suggested. Observations under light microscopy and transmission electron microscopy indicated that the morphologic features of dying B104 cells resembled necrosis rather than apoptosis. B104 cell death was shown to be quite distinct from that of WEHI-231 in cell death kinetics, the mode of cell death, and the response to cyclosporin A. These data collectively indicate that the death of B104 cells resulting from surface IgM cross-linking represents a hitherto undefined mode of programmed cell death.  相似文献   

4.
Members of the inhibitor of apoptosis protein (IAP) family can inhibit caspases and cell death in a variety of insect and vertebrate systems. Drosophila IAP1 (DIAP1) inhibits cell death to facilitate normal embryonic development. Here, using RNA interference, we showed that down-regulation of DIAP1 is sufficient to induce cell death in Drosophila S2 cells. Although this cell death process was accompanied by elevated caspase activity, this activation was not essential for cell death. We found that DIAP1 depletion-induced cell death was strongly suppressed by a reduction in the Drosophila caspase DRONC or the Drosophila apoptotic protease-activating factor-1 (Apaf-1) homolog, Dark. RNA interference studies in Drosophila embryos also demonstrated that the action of Dark is epistatic to that of DIAP1 in this cell death pathway. The cell death caused by down-regulation of DIAP1 was accelerated by overexpression of DRONC and Dark, and a caspase-inactive mutant form of DRONC could functionally substitute the wild-type DRONC in accelerating cell death. These results suggest the existence of a novel mechanism for cell death signaling in Drosophila that is mediated by DRONC and Dark.  相似文献   

5.
Shen HM  Codogno P 《Autophagy》2011,7(5):457-465
The concept of autophagic cell death was first established based on observations of increased autophagic markers in dying cells. The major limitation of such a morphology-based definition of autophagic cell death is that it fails to establish the functional role of autophagy in the cell death process, and thus contributes to the confusion in the literature regarding the role of autophagy in cell death and cell survival. Here we propose to define autophagic cell death as a modality of non-apoptotic or necrotic programmed cell death in which autophagy serves as a cell death mechanism, upon meeting the following set of criteria: (i) cell death occurs without the involvement of apoptosis; (ii) there is an increase of autophagic flux, and not just an increase of the autophagic markers, in the dying cells; and (iii) suppression of autophagy via both pharmacological inhibitors and genetic approaches is able to rescue or prevent cell death. In light of this new definition, we will discuss some of the common problems and difficulties in the study of autophagic cell death and also revisit some well-reported cases of autophagic cell death, aiming to achieve a better understanding of whether autophagy is a real killer, an accomplice or just an innocent bystander in the course of cell death. At present, the physiological relevance of autophagic cell death is mainly observed in lower eukaryotes and invertebrates such as Dictyostelium discoideum and Drosophila melanogaster. We believe that such a clear definition of autophagic cell death will help us study and understand the physiological or pathological relevance of autophagic cell death in mammals.  相似文献   

6.
Pathways of apoptosis and importance in development   总被引:4,自引:0,他引:4  
The elimination of cells by programmed cell death is a fundamental event in development where multicellular organisms regulate cell numbers or eliminate cells that are functionally redundant or potentially detrimental to the organism. The evolutionary conservation of the biochemical and genetic regulation of programmed cell death across species has allowed the genetic pathways of programmed cell death determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster to act as models to delineate the genetics and regulation of cell death in mammalian cells. These studies have identified cell autonomous and non-autonomous mechanisms that regulate of cell death and reveal that developmental cell death can either be a pre-determined cell fate or the consequence of insufficient cell interactions that normally promote cell survival.  相似文献   

7.
《Autophagy》2013,9(5):457-465
The concept of autophagic cell death was first established based on observations of increased autophagic markers in dying cells. The major limitation of such a morphology-based definition of autophagic cell death is that it fails to establish the functional role of autophagy in the cell death process, and thus contributes to the confusion in the literature regarding the role of autophagy in cell death and cell survival. Here we propose to define autophagic cell death as a modality of non-apoptotic or necrotic programmed cell death in which autophagy serves as a cell death mechanism, upon meeting the following set of criteria: (i) cell death occurs without the involvement of apoptosis; (ii) there is an increase of autophagic flux, and not just an increase of the autophagic markers, in the dying cells; and (iii) suppression of autophagy via both pharmacological inhibitors and genetic approaches is able to rescue or prevent cell death. In light of this new definition, we will discuss some of the common problems and difficulties in the study of autophagic cell death and also revisit some well-reported cases of autophagic cell death, aiming to achieve a better understanding of whether autophagy is a real killer, an accomplice or just an innocent bystander in the course of cell death. At present, the physiological relevance of autophagic cell death is mainly observed in lower eukaryotes and invertebrates

such as Dictyostelium discoideum and Drosophila melanogaster. We believe that such a clear definition of autophagic cell death will help us study and understand the physiological or pathological relevance of autophagic cell death in mammals.  相似文献   

8.
Autophagy (the process of self-digestion by a cell through the action of enzymes originating within the lysosome of the same cell) is a catabolic process that is generally used by the cell as a mechanism for quality control and survival under nutrient stress conditions. As autophagy is often induced under conditions of stress that could also lead to cell death, there has been a propagation of the idea that autophagy can act as a cell death mechanism. Although there is growing evidence of cell death by autophagy, this type of cell death, often called autophagic cell death, remains poorly defined and somewhat controversial. Merely the presence of autophagic markers in a cell undergoing death does not necessarily equate to autophagic cell death. Nevertheless, studies involving genetic manipulation of autophagy in physiological settings provide evidence for a direct role of autophagy in specific scenarios. This article endeavours to summarise these physiological studies where autophagy has a clear role in mediating the death process and discusses the potential significance of cell death by autophagy.  相似文献   

9.
《Autophagy》2013,9(3):359-360
Autophagic cell death is a prominent morphological form of cell death that occurs in diverse animals. Autophagosomes are abundant during autophagic cell death, yet the functional role of autophagy in cell death has been enigmatic. We find that autophagy and the Atg genes are required for autophagic cell death of Drosophila salivary glands. Although caspases are present in dying salivary glands, autophagy is required for complete cell degradation. Further, induction of high levels of autophagy results in caspase-independent autophagic cell death. Our results provide the first in vivo evidence that autophagy and the Atg genes are required for autophagic cell death and confirm that autophagic cell death is a physiological death program that occurs during development.

Addendum to: Berry DL, Baehrecke EH. Growth arrest and autophagy are required for programmed salivary gland cell degradation in Drosophila. Cell 2007; 131:1137-48.  相似文献   

10.
We identified a form of cell death called “liponecrosis.” It can be elicited by an exposure of the yeast Saccharomyces cerevisiae to exogenous palmitoleic acid (POA). Our data imply that liponecrosis is: (1) a programmed, regulated form of cell death rather than an accidental, unregulated cellular process and (2) an age-related form of cell death. Cells committed to liponecrotic death: (1) do not exhibit features characteristic of apoptotic cell death; (2) do not display plasma membrane rupture, a hallmark of programmed necrotic cell death; (3) akin to cells committed to necrotic cell death, exhibit an increased permeability of the plasma membrane for propidium iodide; (4) do not display excessive cytoplasmic vacuolization, a hallmark of autophagic cell death; (5) akin to cells committed to autophagic death, exhibit a non-selective en masse degradation of cellular organelles and require the cytosolic serine/threonine protein kinase Atg1p for executing the death program; and (6) display a hallmark feature that has not been reported for any of the currently known cell death modalities—namely, an excessive accumulation of lipid droplets where non-esterified fatty acids (including POA) are deposited in the form of neutral lipids. We therefore concluded that liponecrotic cell death subroutine differs from the currently known subroutines of programmed cell death. Our data suggest a hypothesis that liponecrosis is a cell death module dynamically integrated into a so-called programmed cell death network, which also includes the apoptotic, necrotic, and autophagic modules of programmed cell death. Based on our findings, we propose a mechanism underlying liponecrosis.  相似文献   

11.
Autophagy functions in programmed cell death   总被引:1,自引:0,他引:1  
Berry DL  Baehrecke EH 《Autophagy》2008,4(3):359-360
Autophagic cell death is a prominent morphological form of cell death that occurs in diverse animals. Autophagosomes are abundant during autophagic cell death, yet the functional role of autophagy in cell death has been enigmatic. We find that autophagy and the Atg genes are required for autophagic cell death of Drosophila salivary glands. Although caspases are present in dying salivary glands, autophagy is required for complete cell degradation. Further, induction of high levels of autophagy results in caspase-independent autophagic cell death. Our results provide the first in vivo evidence that autophagy and the Atg genes are required for autophagic cell death and confirm that autophagic cell death is a physiological death program that occurs during development.  相似文献   

12.
Research on programmed cell death in plants is providing insight into the primordial mechanism of programmed cell death in all eukaryotes. Much of the attention in studies on animal programmed cell death has focused on determining the importance of signal proteases termed caspases. However, it has recently been shown that cell death can still occur even when the caspase cascade is blocked, revealing that there is an underlying oncotic default pathway. Many programmed plant cell deaths also appear to be oncotic. Shared features of plant and animal programmed cell death can be used to deduce the primordial components of eukaryotic programmed cell death. From this perspective, we must ask whether the mitochondrion is a common factor that can serve in plant and animal cell death as a stress sensor and as a dispatcher of programmed cell death.  相似文献   

13.
14.
In C. elegans, cell death can be readily studied at the cellular, genetic, and molecular levels. Two types of death have been characterized in this nematode: (1) programmed cell death, which occurs as a normal component in development; and (2) pathological cell death, which occurs aberrantly as a consequence of mutation. Analysis of mutations that disrupt programmed cell death in various ways has defined a genetic pathway for programmed cell death which includes genes that perform such functions as the determination of which cells die, the execution of cell death, the engulfment of cell corpses, and the digestion of DNA from dead cells. Molecular analysis is providing insight into the nature of the molecules that function in these aspects of programmed cell death. Characterization of some genes that mutate to induce abnormal cell death has defined a novel gene family called degenerins that encode putative membrane proteins. Dominant alleles of at least two degenerin genes, mec-4 and deg-1, can cause cellular swelling and late onset neurodegeneration of specific groups of cells.  相似文献   

15.
Infections elicit diverse responses in the host that include activation of the innate immune system, inflammation and cell death. Pathogen-triggered cell death is manifested by various morphologies indicative of apoptosis, pyroptosis, oncosis or autophagic cell death. The question of whether cell death performs a physiologic function during infection is key to understanding host-pathogen interactions and pathogenesis, and devising targeted therapeutic strategies for infectious diseases. In this review, we examine the different modes of cell death employed by the host during infection, the strategies used by pathogens to manipulate the cell death process and the outcome of cell death, that is, whether it is protective for the host or on the contrary favorable for pathogen dissemination. The pathways leading to cell death by infection are discussed with a focus on the role of pattern recognition receptors in the activation of survival and death effectors.  相似文献   

16.
17.
Shigella-induced macrophage cell death is an important step in the induction of acute inflammatory responses that ultimately lead to bacillary dysentery. Cell death was previously reported to be dependent upon the activation of caspase-1 via interaction with IpaB secreted by intracellular Shigella, but in this study, we show that Shigella infection of macrophages can also induce cell death independent of caspase-1 or IpaB activity. Time-lapse imaging and electron microscopic analyses indicated that caspase-1-dependent and -independent cell death is morphologically indistinguishable and that both resemble necrosis. Analyses of Shigella mutants or Escherichia coli using co-infection with Listeria suggested that a component common to Gram-negative bacteria is involved in inducing caspase-1-independent cell death. Further studies revealed that translocation of bacterial lipid A into the cytosol of macrophages potentially mediates cell death. Notably, cell death induced by cytosolic bacteria was TLR4-independent. These results identify a novel cell death pathway induced by intracellular Gram-negative bacteria that may play a role in microbial-host interactions and inflammatory responses.  相似文献   

18.
19.
Degeneration of intervertebral disc (IVD) is mainly a chronic process of excessive destruction of the extracellular matrix (ECM), and also is thought to be the primary cause of low back pain. Presently, however, the underlying mechanism of IVD degeneration is still not elucidated. Cellular loss from cell death has been believed to contribute to the degradation of ECM and plays an important role in the process of IVD degeneration, but the mechanisms of cell death in degenerated IVD remain unclear. Apoptosis, a very important type of IVD cell death, has been considered to play a crucial role in the process of degeneration. Autophagy, a non-apoptosis death type of programmed cell death, has been considered extensively involved in many pathological and physiological processes, including the degenerative diseases. Thus, the research on cell death in IVD degeneration has become a new focus recently. In this review, by analyzing the available literature pertaining to cell death in IVD and discussing the inducing factors of IVD degeneration, NP cells and ECM in IVD degeneration, apoptotic signal transduction pathways involved in IVD cell death, the relationship of cell death with IVD degeneration and potential therapeutic strategy for IVD degeneration by regulating cell death, we conclude that different stimuli induce cell death in IVD via various signal transduction pathways, and that cell death may play a key role in the degenerative process of IVD. Regulation of cell death could be a potential and attractive therapeutic strategy for IVD degeneration.  相似文献   

20.
Formerly, the mechanisms responsible for the killing of cells by ionizing radiation were regarded as being divided into two distinct forms, interphase death and reproductive death. Since they were defined based on the classical radiobiological concepts using a clonogenic cell survival assay, biochemical and molecular biological mechanisms involved in the induction of radiation-induced cell death were not fully understood in relation to the modes of cell death. Recent multidisciplinary approaches to cell death mechanism have revealed that radiation-induced cell death is divided into several distinct pathways by the time course and cell-cycle position, and that apoptotic cell death plays a key role in almost every mode of cell death. This review discusses the mechanisms of radiation-induced apoptosis in relation to cellcycle progression and highlights a new concept of the mode of cell death: 'premitotic apoptosis' and 'postmitotic apoptosis'. The former is a rapid apoptotic cell death associated with a prompt activation of caspase-3, a key enzyme of intracellular signaling of apoptosis. Arapid execution of cell killing in premitotic apoptosis is presumably due to the prompt activation of a set of pre-existed molecules following DNA damages. In contrast, the latter is a delayed apoptotic cell death after cell division, and unlike premitotic apoptosis, it neither requires a rapid activation of caspase-3 nor is inhibited by a specific inhibitor, Ac-DEVD-CHO. A downregulation of anti-apoptotic genes such as MAPK and Bcl-2 may play a key role in this mode of cell death. Characterization of these two types of apoptotic cell death regarding the cell cycle regulation and intrcellular signaling will greatly help to understand the mechanisms of radiation-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号