首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sensitive, rapid, and quantitative methods have been devised for the assay of cellulases and dextranases through the synthesis of two chemically modified carboxymethyl cellulose substrates. One contains a trinitrophenyl group as chromophore. The other contains a fluorescent fluorescamine group. The soluble hydrolytic products in the filtrate released from the substrates by cellulase are thus monitored either spectrophotometrically (for trinitrophenyl group) or spectrofluorometrically (for fluorescamine). The same principle has been applied to the determination of dextranases by utilizing chemically modified Sephadex G-200 containing either group as deseribed above for carboxymethyl cellulose. The methods are sensitive to about 5 μg of enzyme for trinitrophenyl-containing substrates, while the use of fluorescamine-containing substrates is about tenfold more sensitive.  相似文献   

2.
3.
4.
A simple synthesis of adenylyl-(2'----5')-adenylyl (2'----5')-adenosine (2-5A core) has been achieved on the basis of selective 3'-O-silylation of 5'-O-p-monomethoxytrityladenosine and chemo-selective formation of the 2'-5' internucleotide linkage using N-unprotected nucleosides.  相似文献   

5.
6.
Bisulfite is known to catalyze transamination between cytidine derivatives and amines. Using 1,6-diaminohexane we describe the synthesis and recovery of the 5'-triphosphates of N4-(6-aminohexyl)cytidine and -deoxycytidine (dahCTP). Both may be incorporated into DNA by nick translation with DNA polymerase I of Escherichia coli to provide reactive sites for the attachment of immunological or other labels. Biotinyl dahCTP is actively incorporated into DNA by the same system and can be detected by the binding of streptavidin complexed to an indicator enzyme such as acid phosphatase. Such labeled DNA is a suitable nonradioactive probe for detection of related sequences by hydridization.  相似文献   

7.
The nucleotide 8-(6-aminohexyl)-amino adenosine 5′-monophosphate (8-AHA-AMP) has been investigated by 220-MHz proton magnetic resonance spectroscopy. The conformation and ionization state of the nucleotide have been determined. The anti-conformation about the glycosyl bond is the preferred form. The interaction between the hexyldiamino chain and the ribose moiety in this conformation gives rise to unusual ribosyl conformation results. The distribution of conformations about the glycosyl bond has little influence on the effectiveness of this nucleotide analog in the purification of dehydrogenases by affinity chromatography. The chemical shift dependence on pH has been carried out on 8-methylaminoadenosine 5′-monophosphate. The 8-aminoadenine ring is protonated at N1 (pKα 5.0) and at N7 (pKα 1.5) in acidic solutions. The protonation at N7 is apparently stabilized by a delocalization of charge onto the 8-amino group. The neutrality of the 8-aminoadenine ring at physiological pH is consistent with the effcient binding of the nucleotide by dehydrogenases. An improved method for the preparation of the 8-AHA-AMP is described.  相似文献   

8.
9.
10.
11.
Adenosine 2',5'-bisphosphate (pAp) is present in liver from 2-day-fasted rats, at a concentration of around 1 microM. pAp was obtained through perchloric acid extraction of the liver followed by two successive DEAE-cellulose chromatographies and an ion-pair high-pressure liquid chromatography. Both pAp extracted from liver and that obtained from a commercial source showed the same pattern of hydrolysis by alkaline phosphatase, i.e., more 5'-AMP than 2'-AMP was obtained as an intermediate of the reaction.  相似文献   

12.
(E)-3',5'-diamino-5-(2-bromovinyl)-2',3',5'-trideoxyuridine (5), the diamino analogue of BVDU (1), was synthesized from BVDU. In contrast with BVDU, compound 5 did not show activity against herpes simplex virus or varicella-zoster virus.  相似文献   

13.
The contribution of steric and negative charge factors to the resistance of uridylyl(3' - 5')N6-(N-threonylcarbonyl)adenosine to venom phosphodiesterase was investigated. The hydrolysis rates of uridylyl(3'-5')N6-(N-threonylcarbonyl)-adenosine, its model derivatives, methyl ester and O-benzyl ester, together with unmodified uridyly (3'-5')adenosine, were studied. It was found that the contribution of both factors is of the same order. The steric inhibition of digestion is distinctly higher than that confirmed by N6-(delta2-isopentenyl)adenosine [1], which is ascribed to the rigid conformation of the threonylcarbonyladenosine side chain.  相似文献   

14.
15.
Cyclic adenosine 5'-monophosphate (cAMP) is an ancient signaling molecule, and in vertebrates, a primary target for cAMP is cAMP-dependent protein kinase (PKA). (R(p))-adenosine 3',5'-cyclic monophosphothioate ((R(p))-cAMPS) and its analogues are the only known competitive inhibitors and antagonists for cAMP activation of PKA, while (S(p))-adenosine 3',5'-cyclic monophosphothioate ((S(p))-cAMPS) functions as an agonist. The crystal structures of a Delta(1-91) deletion mutant of the RIalpha regulatory subunit of PKA bound to (R(p))-cAMPS and (S(p))-cAMPS were determined at 2.4 and 2.3 A resolution, respectively. While the structures are similar to each other and to the crystal structure of RIalpha bound to cAMP, differences in the dynamical properties of the protein when (R(p))-cAMPS is bound are apparent. The structures highlight the critical importance of the exocyclic oxygen's interaction with the invariant arginine in the phosphate binding cassette (PBC) and the importance of this interaction for the dynamical properties of the interactions that radiate out from the PBC. The conformations of the phosphate binding cassettes containing two invariant arginine residues (Arg209 on domain A, and Arg333 on domain B) are somewhat different due to the sulfur interacting with this arginine. Furthermore, the B-site ligand together with the entire domain B show significant differences in their overall dynamic properties in the crystal structure of Delta(1-91) RIalpha complexed with (R(p))-cAMPS phosphothioate analogue ((R(p))-RIalpha) compared to the cAMP- and (S(p))-cAMPS-bound type I and II regulatory subunits, based on the temperature factors. In all structures, two structural solvent molecules exist within the A-site ligand binding pocket; both mediate water-bridged interactions between the ligand and the protein. No structured waters are in the B-site pocket. Owing to the higher resolution data, the N-terminal segment (109-117) of the RIalpha subunit can also be traced. This strand forms an intermolecular antiparallel beta-sheet with the same strand in an adjacent molecule and implies that the RIalpha subunit can form a weak homodimer even in the absence of its dimerization domain.  相似文献   

16.
Microbial hydroxylation of (+/-)-(2Z,4E)-5-(1',2'-epoxy-2',6',6'-trimethylcyclohexyl)-3-methyl-2,4-pentadienoic acid (3a) with Cercospora cruenta, a fungus producing (+)-abscisic acid, gave a four-stereoisomeric mixture consisting of (+)- and (-)-xanthoxin acid (4a), and (+)- and (-)-epi-xanthoxin acid (5a) by an HPLC analysis with a chiral column. Screening of the microorganisms capable of oxidizing (+/-)-3a showed that Cunninghamella echinulata stereoselectively oxidized (+/-)-3a to xanthoxin acid (4a) with the some degree of enantioselectivity as (-)-3a to (-)-4a.  相似文献   

17.
3′(2′),5′-Bisphosphate nucleotidase, (EC 3.1.3.7) (BPntase) is a ubiquitous enzyme. Recently, these enzymes have drawn considerable attention as in vivo targets of salt toxicity as well as therapeutic targets of lithium that is used for the treatment of manic-depressive disorders. They belong to the Mg2+-dependent Li+-sensitive phosphomonoesterase super-family and are highly sensitive to lithium and sodium ions. However, the molecular mechanism of inhibition of this group of enzymes by monovalent cations has not been completely understood. Previously we have identified a BPntase (Dhal2p) from a highly halotolerant yeast Debaryomyces hansenii. Molecular characterization revealed a number of unique features in Dhal2p, indicating this is an extraordinary member of the family. In this study, we have carried out the structure-function analysis of Dhal2p through the combination of molecular modeling and in vitro mutagenesis approach. We have not only provided the explanation for the role played by the functionally important elements that are conserved among the members of this family but also identified important, novel structural elements in this enzyme. Our study for the first time unraveled the role of a flap as well as a loop region in the functioning of this enzyme. Most importantly, mutations in the loop region resulted in the creation of a BPntase that was insensitive to salt.  相似文献   

18.
19.
The genomic sequence of Rickettsia prowazekii, the obligate intracellular bacterium responsible for epidemic typhus, reveals an uncharacterized invasion gene homolog (invA). The deduced protein of 18,752 Da contains a Nudix signature, the specific motif found in the Nudix hydrolase family. To characterize the function of InvA, the gene was cloned and overexpressed in Escherichia coli. The expressed protein was purified to near homogeneity and subsequently tested for its enzymatic activity against a series of nucleoside diphosphate derivatives. The purified InvA exhibits hydrolytic activity toward dinucleoside oligophosphates (Np(n)N; n > or = 5), a group of cellular signaling molecules. At optimal pH 8.5, the enzyme actively degrades adenosine (5')-pentaphospho-(5')-adenosine into ATP and ADP with a K(m) of 0.1 mM and k(cat) of 1.9 s(-1). Guanosine (5')-pentaphospho-(5')-guanosine and adenosine-(5')-hexaphospho (5')-adenosine are also substrates. Similar to other Nudix hydrolases, InvA requires a divalent metal cation, Mg(2+) or Zn(2+), for optimal activity. These data suggest that the rickettsial invasion protein likely plays a role in controlling the concentration of stress-induced dinucleoside oligophosphates following bacterial invasion.  相似文献   

20.
Summary This report describes the enzyme-catalyzed synthesis, characterization, and chromatographic separation of N6-(carboxymethyl)-L-lysine and N5-(carboxymethyl)-L-ornithine. The two N -(carboxyalkyl)amino acids are formed via a reductive condensation between glyoxylate and the- or-amino groups of lysine and ornithine, respectively. Both reactions are catalyzed by the NADPH-dependent enzyme, N5-(carboxyethyl)ornithine synthase [EC 1.5.1.24], found in some strains of the lactic acid bacteriumLactococcus lactis subsp.lactis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号