首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Docking of the nitrogenase component proteins, the iron protein (FeP) and the molybdenum-iron protein (MoFeP), is required for MgATP hydrolysis, electron transfer between the component proteins, and substrate reductions catalyzed by nitrogenase. The present work examines the function of 3 charged amino acids, Arg 140, Glu 141, and Lys 143, of the Azotobacter vinelandii FeP in nitrogenase component protein docking. The function of these amino acids was probed by changing each to the neutral amino acid glutamine using site-directed mutagenesis. The altered FePs were expressed in A. vinelandii in place of the wild-type FeP. Changing Glu 141 to Gln (E141Q) had no adverse effects on the function of nitrogenase in whole cells, indicating that this charged residue is not essential to nitrogenase function. In contrast, changing Arg 140 or Lys 143 to Gln (R140Q and K143Q) resulted in a significant decrease in nitrogenase activity, suggesting that these charged amino acid residues play an important role in some function of the FeP. The function of each amino acid was deduced by analysis of the properties of the purified R140Q and K143Q FePs. Both altered proteins were found to support reduced substrate reduction rates when coupled to wild-type MoFeP. Detailed analysis revealed that changing these residues to Gln resulted in a dramatic reduction in the affinity of the altered FeP for binding to the MoFeP. This was deduced in FeP titration, NaCl inhibition, and MoFeP protection from Fe2+ chelation experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Nitrogenase binds and hydrolyzes 2MgATP yielding 2MgADP and 2Pi for each electron that is transferred from the iron protein to the MoFe protein. The iron protein alone binds but does not hydrolyze 2MgATP or 2MgADP and the binding of these nucleotides is competitive. Iron protein amino acid sequences all contain a putatitive mononucleotide-binding region similar to a region found in other mononucleotide-binding proteins. To examine the role of this region in MgATP interaction, we have substituted glutamine and proline for conserved lysine 15. The amino acid substitutions, K15Q and K15P, both yielded a non-N2-fixing phenotype when the genes coding for them were substituted into the Azotobacter vinelandii chromosome in place of the wild-type gene. The iron protein from the K15Q mutant was purified to homogeneity, whereas the protein from the K15P mutant could not be purified in its native form. Unlike wild-type iron protein, the purified K15Q iron protein showed no acetylene reduction, H2 evolution, or ATP hydrolysis activities when complemented with wild-type MoFe protein. The K15Q iron protein and the normal iron protein had a similar total iron content and both proteins showed the characteristic rhombic EPR signal resulting from the reduced state of the single 4Fe-4S cluster bridging the two subunits. Unlike the wild-type iron protein, addition of MgATP to the K15Q iron protein did not result in the perturbation necessary to change the EPR signal of its 4Fe-4S center from a rhombic to an axial line shape. Also unlike the wild-type iron protein, addition of MgATP to K15Q iron protein in the presence of the iron chelator, alpha,alpha'-dipyridyl, did not result in a time-dependent transfer of iron to the chelator. Thus, even though the K15Q iron protein contains a normal 4Fe-4S center, it does not respond to MgATP like the wild-type protein. Examination of the ability of the K15Q iron protein to bind MgADP showed no change from the wild-type iron protein, but its ability to bind MgATP decreased to 35% of the wild-type protein. Thus, in A. vinelandii iron protein, lysine 15 is not needed for interaction with MgADP but is involved in the binding of ATP, presumably through charge-charge interaction with the gamma-phosphate. Based on the above data, this lysine appears to be essential for the MgATP induced conformational change of wild-type iron protein that is required for activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
R G Lowery  P W Ludden 《Biochemistry》1989,28(12):4956-4961
The mechanism by which MgADP stimulates the activity of dinitrogenase reductase ADP-ribosyltransferase (DRAT) has been examined by using dinitrogenase reductases from Rhodospirillum rubrum, Klebsiella pneumoniae, and Azotobacter vinelandii as acceptor substrates. In the presence of 0.2 mM NAD, maximal rates of ADP-ribosylation of all three acceptors were observed at an ADP concentration of 150 microM; in the absence of added ADP, DRAT activity with the dinitrogenase reductases from R. rubrum and K. pneumoniae was less than 5% of the maximal rate, but the A. vinelandii protein was ADP-ribosylated at 40% of the maximal rate. Of eight dinucleotides tested, only ADP, 2'-deoxy-ADP, and ADP-beta S served as activators of the DRAT reaction; ADP, 2'-deoxy-ADP, and ADP-beta S were also the only dinucleotides found which inhibited acetylene reduction activity by dinitrogenase reductase. The dinucleotide specificities for both DRAT activation and acetylene reduction inhibition were the same for all three dinitrogenase reductases. In the DRAT reaction with the dinitrogenase reductases from K. pneumoniae and A. vinelandii, the Km for NAD was 30-fold higher in the absence of ADP than in its presence; the Km for NAD with the R. rubrum acceptor was not measurable. In the presence of saturating ADP, ADP-ribosylation of dinitrogenase reductase from R. rubrum was inhibited 63% by 1.5 mM ATP. It is concluded that MgADP stimulates DRAT activity by lowering the Km for NAD and that MgADP exerts its effect by binding to dinitrogenase reductase. MgATP inhibits DRAT activity by competing with MgADP for binding to dinitrogenase reductase.  相似文献   

4.
P-glycoprotein mutants S430A/T and S1073A/T, affecting conserved Walker A Ser residues, were characterized to elucidate molecular roles of the Ser and functioning of the two P-glycoprotein catalytic sites. Results showed the Ser-OH is critical for MgATPase activity and formation of the normal transition state, although not for initial MgATP binding. Mutation to Ala in either catalytic site abolished MgATPase and transition state formation in both sites, whereas Thr mutants had similar MgATPase to wild-type. Trapping of 1 mol of MgADP/mol of P-glycoprotein by vanadate, shown here with pure protein, yielded full inhibition of ATPase. Thus, congruent with previous work, both sites must be intact and must interact for catalysis. Equivalent mutations (Ala or Thr) in the two catalytic sites had identical effects on a wide range of activities, emphasizing that the two catalytic sites function symmetrically. The role of the Ser-OH is to coordinate Mg(2+) in MgATP, but only at the stage of the transition state are its effects tangible. Initial substrate binding is apparently to an "open" catalytic site conformation, where the Ser-OH is dispensable. This changes to a "closed" conformation required to attain the transition state, in which the Ser-OH is a critical ligand. Formation of the latter conformation requires both sites; both sites may provide direct ligands to the transition state.  相似文献   

5.
Ren H  Bandyopadhyay S  Allison WS 《Biochemistry》2006,45(19):6222-6230
The alpha(3)(betaM(222)S/Y(345)W)(3)gamma double-mutant subcomplex of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)), free of endogenous nucleotides, does not entrap inhibitory MgADP in a catalytic site during turnover. It hydrolyzes 100 nM-2 mM ATP with a K(m) of 31 microM and a k(cat) of 220 s(-)(1). Fluorescence titrations of the introduced tryptophans with MgADP or MgATP revealed that both Mg-nucleotide complexes bind to the catalytic site of the highest affinity with K(d)()1 values of less than 1 nM and bind to the site of intermediate affinity with a common K(d)2 value of about 12 nM. The K(d)3 values obtained for the catalytic site of the lowest affinity from titrations with MgADP and MgATP are 25 and 37 microM, respectively. The double mutant hydrolyzes 200 nM ATP with a first-order rate of 1.5 s(-)(1), which is 0.7% of k(cat). Hence, it does not hydrolyze ATP at a significant rate when the catalytic site of intermediate affinity is saturated and the catalytic site of the lowest affinity is minimally occupied. After the addition of stoichiometric MgATP to the alpha(3)(betaM(222)S/Y(345)W)(3)gamma subcomplex, one-third of the tryptophan fluorescence remains quenched after 10 min. The product [(3)H]ADP remains bound when the wild-type and double-mutant subcomplexes hydrolyze substoichiometric [(3)H]ATP. In contrast, (32)P(i) is not retained when the wild-type subcomplex hydrolyzes substoichiometric [gamma-(32)P]ATP. This precludes assessment of the equilibrium at the high-affinity catalytic site when the wild-type TF(1) subcomplex hydrolyzes substoichiometric ATP.  相似文献   

6.
The influence of the epsilon-subunit on the nucleotide binding affinities of the three catalytic sites of Escherichia coli F1-ATPase was investigated, using a genetically engineered Trp probe in the adenine-binding subdomain (beta-Trp-331). The interaction between epsilon and F1 was not affected by the mutation. Kd for binding of epsilon to betaY331W mutant F1 was approximately 1 nM, and epsilon inhibited ATPase activity by 90%. The only nucleotide binding affinities that showed significant differences in the epsilon-depleted and epsilon-replete forms of the enzyme were those for MgATP and MgADP at the high-affinity catalytic site 1. Kd1(MgATP) and Kd1(MgADP) were an order of magnitude higher in the absence of epsilon than in its presence. In contrast, the binding affinities for MgATP and MgADP at sites 2 and 3 were similar in the epsilon-depleted and epsilon-replete enzymes, as were the affinities at all three sites for free ATP and ADP. Comparison of MgATP binding and hydrolysis parameters showed that in the presence as well as the absence of epsilon, Km equals Kd3. Thus, in both cases, all three catalytic binding sites have to be occupied to obtain rapid (Vmax) MgATP hydrolysis rates.  相似文献   

7.
The nitrogenase catalytic cycle involves binding of the iron (Fe) protein to the molybdenum-iron (MoFe) protein, transfer of a single electron from the Fe protein to the MoFe protein concomitant with the hydrolysis of at least two MgATP molecules, followed by dissociation of the two proteins. Earlier studies found that combining the Fe protein isolated from the bacterium Clostridium pasteurianum with the MoFe protein isolated from the bacterium Azotobacter vinelandii resulted in an inactive, nondissociating Fe protein-MoFe protein complex. In the present work, it is demonstrated that primary electron transfer occurs within this nitrogenase tight complex in the absence of MgATP (apparent first-order rate constant k = 0.007 s-1) and that MgATP accelerates this electron transfer reaction by more than 10,000-fold to rates comparable to those observed within homologous nitrogenase complexes (k = 100 s-1). Electron transfer reactions were confirmed by EPR spectroscopy. Finally, the midpoint potentials (Em) for the Fe protein [4Fe-4S]2+/+ cluster and the MoFe protein P2+/N cluster were determined for both the uncomplexed and complexed proteins and with or without MgADP. Calculations from electron transfer theory indicate that the measured changes in Em are not likely to be sufficient to account for the observed nucleotide-dependent rate accelerations for electron transfer.  相似文献   

8.
MgADP binding to the allosteric site enhances the affinity of Escherichia coli phosphofructokinase (PFK) for fructose 6-phosphate (Fru-6-P). X-ray crystallographic data indicate that MgADP interacts with the conserved glutamate at position 187 within the allosteric site through an octahedrally coordinated Mg(2+) ion [Shirakihara, Y., and Evans, P. R. (1988) J. Mol. Biol. 204, 973-994]. Lau and Fersht reported that substituting an alanine for this glutamate within the allosteric site of PFK (i.e., mutant E187A) causes MgADP to lose its allosteric effect upon Fru-6-P binding [Lau, F. T.-K., and Fersht, A. R. (1987) Nature 326, 811-812]. However, these authors later reported that MgADP inhibits Fru-6-P binding in the E187A mutant. The inhibition presumably occurs by preferential binding to the inactive (T) state complex of the Monod-Wyman-Changeux two-state model [Lau, F. T.-K., and Fersht, A. R. (1989) Biochemistry 28, 6841-6847]. The present study provides an alternative explanation of the role of MgADP in the E187A mutant. Using enzyme kinetics, steady-state fluorescence emission, and anisotropy, we performed a systematic linkage analysis of the three-ligand interaction between MgADP, Fru-6-P, and MgATP. We found that MgADP at low concentrations did not enhance or inhibit substrate binding. Anisotropy shows that MgADP binding at the allosteric site occurred even when MgADP produced no allosteric effect. However, as in the wild-type enzyme, the binding of MgADP to the active site in the mutant competitively inhibited MgATP binding and noncompetitively inhibited Fru-6-P binding. These results clarified the mechanism of a three-ligand interaction and offered a nontraditional perspective on allosteric mechanism.  相似文献   

9.
Flow dialysis was used to study the binding of MgATP and MgADP to the nitrogenase proteins of Azotobacter vinelandii. Both reduced and oxidized Av2 bind two molecules of MgADP, with the following dissociation constants: reduced Av2, K1 = 0.091 +/- 0.021 mM and K2 = 0.044 +/- 0.009 mM; oxidized Av2, K1 = 0.024 +/- 0.015 mM and K2 = 0.039 +/- 0.022 mM. Binding of MgADP to reduced Av2 shows positive co-operativity. Oxidized Av2 binds two molecules of MgATP with dissociation constants K1 = 0.049 +/- 0.016 mM and K2 = 0.18 +/- 0.05 mM. Binding data of MgATP to reduced Av2 can be fitted by assuming one binding site, but a better fit was obtained by assuming two binding sites on the protein with negative co-operativity and with dissociation constants K1 = 0.22 +/- 0.03 mM and K2 = 1.71 +/- 0.50 mM. It was found that results concerning the number of binding sites and the dissociation constants of MgATP-Av2 and MgADP-Av2 complexes depend to a great extent on the specific activity of the Av2 preparation used, and that it is difficult to correct binding data for inactive protein. No binding of MgADP to Av1 could be demonstrated. Binding studies of MgADP to a mixture of Av1 and Av2 showed that Av1 did not affect the binding of MgADP to either oxidized or reduced Av2. Inhibition studies were performed to investigate the interaction of MgATP and MgADP binding to oxidized and reduced Av2. All the experimental data can be explained by the minimum hypothesis, i.e. the presence of two adenine nucleotide binding sites on Av2. MgATP and MgADP compete for these two binding sites on the Fe protein.  相似文献   

10.
The kinetics of electron-transfer reactions involving flavodoxins from Klebsiella pneumoniae (KpFld), Azotobacter chroococcum (AcFld), Anacystis nidulans (AnFld) and Megasphaera elsdenii (MeFld), the free, MgADP-bound and MgATP-bound forms of the Fe protein component of nitrogenase from K. pneumoniae [Kp2, Kp2(MgADP)2 and Kp2(MgATP)2] and Na2S2O4 were studied by stopped-flow spectrophotometry. Kinetic evidence was obtained for the formation of binary protein complexes involving KpFldSQ (semiquinone) with either Kp2(MgADP)2 (KD = 49 microM) or Kp2(MgATP)2 (KD = 13 microM) but not with Kp2 (KD greater than 730 microM). The binding of 2MgATP or 2MgADP to Kp2 therefore not only shifts the midpoint potential (Em) of the [4Fe-4S] centre from -200 mV to -320 mV or -350 mV respectively but also changes the affinity of Kp2 for KpFldSQ. Thermodynamically unfavourable electron from Kp2(MgADP)2 and Kp2(MgATP)2 to KpFldSQ occurs within the protein complexes with k = 1.2 s-1 (delta E = -72 mV) and 0.5 s-1 (delta E = -120 mV) respectively. Although AcFldSQ is reduced by Kp2, Kp2(MgADP)2 and Kp2(MgATP)2 (k = 8 x 10(3), 2.4 x 10(3) and 9 x 10(2) M-1.s-1 respectively), protein-complex formation is weak in each case (KD greater than 700 microM). Electron transfer in the physiologically important and thermodynamically favourable direction from Kp2FldHQ (hydroquinone) and AcFldHQ to Kp2ox.(MgADP)2 (the state of Kp2 that accepts electrons from FldHQ in the catalytic cycle of nitrogenase) is rapid (k greater than 10(6) M-1.s-1). The second-order rate constants for the reduction of KpFldSQ, AcFldSQ, AnFldSQ and MeFldSQ by SO2.- (active reductant formed by the predissociation of S2O4(2-) ion) exhibited the linear free-energy relationship predicted by the Marcus theory of electron transfer.  相似文献   

11.
Chandramouli K  Johnson MK 《Biochemistry》2006,45(37):11087-11095
The role of the Azotobacter vinelandii HscA/HscB cochaperone system in ISC-mediated iron-sulfur cluster biogenesis has been investigated in vitro by using CD and EPR spectrometry to monitor the effect of HscA, HscB, MgATP, and MgADP on the time course of cluster transfer from [2Fe-2S]IscU to apo-Isc ferredoxin. CD spectra indicate that both HscB and HscA interact with [2Fe-2S]IscU and the rate of cluster transfer was stimulated more than 20-fold in the presence stoichiometric HscA and HscB and excess MgATP. No stimulation was observed in the absence of either HscB or MgATP, and cluster transfer was found to be an ATP-dependent reaction based on concomitant phosphate production and the enhanced rates of cluster transfer in the presence of KCl which is known to stimulate HscA ATPase activity. The results demonstrate a role of the ISC HscA/HscB cochaperone system in facilitating efficient [2Fe-2S] cluster transfer from the IscU scaffold protein to acceptor proteins and that [2Fe-2S] cluster transfer from IscU is an ATP-dependent process. The data are consistent with the proposed regulation of the HscA ATPase cycle by HscB and IscU [Silberg, J. J., Tapley, T. L., Hoff, K. G., and Vickery, L. E. (2004) J. Biol. Chem. 279, 53924-53931], and mechanistic proposals for coupling of the HscA ATPase cycle with cluster transfer from [2Fe-2S]IscU to apo-IscFdx are discussed.  相似文献   

12.
Binding of ADP and orthophosphate during the ATPase reaction of nitrogenase   总被引:1,自引:0,他引:1  
The pre-steady-state ATPase activity of nitrogenase from Azotobacter vinelandii was investigated. By using a rapid-quench technique, it has been demonstrated that with the oxidized nitrogenase complex the same burst reaction of MgATP hydrolysis occurs as observed with the reduced complex, namely 6-8 mol orthophosphate released/mol MoFe protein. It is concluded that the pre-steady-state ATPase activity is independent of electron transfer from Fe protein to MoFe protein. Results obtained from gel centrifugation experiments showed that during the steady state of reductant-independent ATP hydrolysis there is a slow dissociation of one molecule of MgADP from the nitrogenase proteins (koff less than or equal to 0.2 s-1); the second MgADP molecule dissociates much faster (koff greater than or equal to 0.6 s-1). Under the same conditions orthophosphate was found to be associated with the nitrogenase proteins. The rate of dissociation of orthophosphate from the nitrogenase complex, as estimated from the gel centrifugation experiments, is in the same order of magnitude as the steady-state turnover rate of the reductant-independent ATPase activity (0.6 mol Pi formed X s-1 X mol Av2(-1) at 22 degrees C). These data are consistent with dissociation of orthophosphate or MgADP being rate-limiting during nitrogenase-catalyzed reductant-independent ATP hydrolysis.  相似文献   

13.
The molybdenum nitrogenase enzyme system, comprised of the MoFe protein and the Fe protein, catalyzes the reduction of atmospheric N(2) to NH(3). Interactions between these two proteins and between Fe protein and nucleotides (MgADP and MgATP) are crucial to catalysis. It is well established that salts are inhibitors of nitrogenase catalysis that target these interactions. However, the implications of salt effects are often overlooked. We have reexamined salt effects in light of a comprehensive framework for nitrogenase interactions to offer an in-depth analysis of the sources of salt inhibition and underlying apparent cooperativity. More importantly, we have identified patterns of salt activation of nitrogenase that correspond to at least two mechanisms. One of these mechanisms is that charge screening of MoFe protein-Fe protein interactions in the nitrogenase complex accelerates the rate of nitrogenase complex dissociation, which is the rate-limiting step of catalysis. This kind of salt activation operates under conditions of high catalytic activity and low salt concentrations that may resemble those found in vivo. While simple kinetic arguments are strong evidence for this kind of salt activation, further confirmation was sought by demonstrating that tight complexes that have previously displayed little or no activity due to the inability of Fe protein to dissociate from the complex are activated by the presence of salt. This occurs for the combination Azotobacter vinelandii MoFe protein with: (a) the L127Delta Fe protein; and (b) Clostridium pasteurianum Fe protein. The curvature of activation vs. salt implies a synergistic salt-protein interaction.  相似文献   

14.
In addition to their g = 1.94 EPR signal, nitrogenase Fe-proteins from Azotobacter vinelandii, Azotobacter chroococcum and Klebsiella pneumoniae exhibit a weak EPR signal with g approximately equal to 5. Temperature dependence of the signal was consistent with an S = 3/2 system with negative zero-field splitting, D = -5 +/- 0.7 cm-1. The ms = +/- 3/2 ground state doublet gives rise to a transition with geff = 5.90 and the transition within the excited ms = +/- 1/2 doublet has a split geff = 4.8, 3.4. Quantitation gave 0.6 to 0.8 spin . mol-1 which summed with the spin intensity of the S = 1/2 g = 1.94 line to roughly 1 spin/mol. MgATP and MgADP decreased the intensity of the S = 3/2 signal with no concomitant changes in intensity of the S = 1/2 signal.  相似文献   

15.
The hydrolysis of ATP to ADP and P(i) is an integral part of all substrate reduction reactions catalyzed by nitrogenase. In this work, evidence is presented that nitrogenases isolated from Azotobacter vinelandii and Clostridium pasteurianum can hydrolyze MgGTP, MgITP, and MgUTP to their respective nucleoside diphosphates at rates comparable to those measured for MgATP hydrolysis. The reactions were dependent on the presence of both the iron (Fe) protein and the molybdenum-iron (MoFe) protein. The oxidation state of nitrogenase was found to greatly influence the nucleotide hydrolysis rates. MgATP hydrolysis rates were 20 times higher under dithionite reducing conditions (approximately 4,000 nmol of MgADP formed per min/mg of Fe protein) as compared with indigo disulfonate oxidizing conditions (200 nmol of MgADP formed per min/mg of Fe protein). In contrast, MgGTP, MgITP, and MgUTP hydrolysis rates were significantly higher under oxidizing conditions (1,400-2,000 nmol of MgNDP formed per min/mg of Fe protein) as compared with reducing conditions (80-230 nmol of MgNDP formed per min/mg of Fe protein). The K(m) values for MgATP, MgGTP, MgUTP, and MgITP hydrolysis were found to be similar (330-540 microM) for both the reduced and oxidized states of nitrogenase. Incubation of Fe and MoFe proteins with each of the MgNTP molecules and AlF(4)(-) resulted in the formation of non-dissociating protein-protein complexes, presumably with trapped AlF(4)(-) x MgNDP. The implications of these results in understanding how nucleotide hydrolysis is coupled to substrate reduction in nitrogenase are discussed.  相似文献   

16.
Mao HZ  Gray WD  Weber J 《FEBS letters》2006,580(17):4131-4135
During ATP synthesis, ATP synthase has to bind MgADP in the presence of an excess of MgATP. Thus, for efficient ATP synthesis it would be desirable if incoming substrate could be bound to a catalytic site with a preference for MgADP over MgATP. We tested three hypotheses predicting the existence of such a site. However, our results showed that, at least in absence of an electrochemical proton gradient, none of the three catalytic sites has a higher affinity for MgADP than for MgATP.  相似文献   

17.
The pre-steady-state ATPase activity of nitrogenase has been reinvestigated. The exceptionally high burst in the hydrolysis of MgATP by the nitrogenase from Azotobacter vinelandii communicated by Cordewener et al. (1987) [Cordewener J., ten Asbroek A., Wassink H., Eady R. R., Haaker H. & Veeger C. (1987) Eur. J. Biochem. 162, 265-270] was found to be caused by an apparatus artefact. A second possible artefact in the determination of the stoichiometry of the pre-steady-state ATPase activity of nitrogenase was observed. Acid-quenched mixtures of dithionite-reduced MoFe or Fe protein of Azotobacter vinelandii nitrogenase and MgATP contained phosphate above the background level. It is proposed that due to this reaction, quenched reaction mixtures of nitrogenase and MgATP may contain phosphate in addition to the phosphate released by the ATPase activity of the nitrogenase complex. It was feasible to monitor MgATP-dependent pre-steady-state proton production by the absorbance change at 572 nm of the pH indicator o-cresolsulfonaphthalein in a weakly buffered solution. At 5.6 degrees C, a pre-steady-state phase of H+ production was observed, with a first-order rate constant of 2.2 s-1, whereas electron transfer occurred with a first-order rate constant of 4.9 s-1. At 20.0 degrees C, MgATP-dependent H+ production and electron transfer in the pre-steady-state phase were characterized by observed rate constants of 9.4 s-1 and 104 s-1, respectively. The stopped-flow technique failed to detect a burst in the release of protons by the dye-oxidized nitrogenase complex. It is concluded that the hydrolysis rate of MgATP, as judged by proton release, is lower than the rate of electron transfer from the Fe protein to the MoFe protein.  相似文献   

18.
Nitrogenase(nitrogen:(acceptor) oxidoreduction, EC 1.7.99.2) of Clostridium pasteuranium is very sensitive to the ratio of MgADP/MgATP in dithionite oxidation assays. Variation of concentration of creatine kinase, an ATP-regenerating enzyme, can be used to control the ratio of ADP/ATP and thereby the dithionite oxidation activity of nitrogenase. The in vitro properties of nitrogenase support the suggestion of Haaker (Haaker, H., deKok, A. and Veeger, C. (1974) Biochim. Biophys. Acta 357, 344-357) that in vivo the nucleotide ratio and not the electron supply normally regulates nitrogenase activity. In EPR experiments it has been shown that the "steady state" varies as a function of the concentration of creatine kinase. The spectral differences are interpreted as being a function of the ratio of MgADP/MgATP obtained in the pseudo steady-state condition, which occurs as a result of variation in relative rates of ATP-utilizing and ATP-generating reactions, that is, the relative nitrogenase and creatine kinase activities. Implications of these finding for interpretation of previously reported kinetic and EPR studies are discussed.  相似文献   

19.
Combined mutation of "catalytic carboxylates" in both nucleotide binding domains (NBDs) of P-glycoprotein generates a conformation capable of tight binding of 8-azido-ADP (Sauna, Z. E., Müller, M., Peng, X. H., and Ambudkar, S. V. (2002) Biochemistry 41, 13989-14000). Here we characterized this conformation using pure mouse MDR3 P-glycoprotein and natural MgATP and MgADP. Mutants E552A/E1197A, E552Q/E1197Q, E552D/E1197D, and E552K/E1197K had low but real ATPase activity in the order Ala > Gln > Asp > Lys, emphasizing the requirement for Glu stereochemistry. Mutant E552A/E1197A bound MgATP and MgADP (1 mol/mol) with K(d) 9.2 and 92 microm, showed strong temperature sensitivity of MgATP binding and equal dissociation rates for MgATP and MgADP. With MgATP as the added ligand, 80% of bound nucleotide was in the form of ATP. None of these parameters was vanadate-sensitive. The other mutants showed lower stoichiometry of MgATP and MgADP binding, in the order Ala > Gln > Asp > Lys. We conclude that the E552A/E1197A mutation arrests the enzyme in a conformation, likely a stabilized NBD dimer, which occludes nucleotide, shows preferential binding of ATP, does not progress to a normal vanadate-sensitive transition state, but hydrolyzes ATP and releases ADP slowly. Impairment of turnover is primarily due to inability to form the normal transition state rather than to slow ADP release. The Gln, Asp, and Lys mutants are less effective at stabilizing the occluded nucleotide, putative dimeric NBD, conformation. We envisage that in wild-type the occluded nucleotide conformation occurs transiently after MgATP binds to both NBDs with associated dimerization, and before progression to the transition state.  相似文献   

20.
Site-specific mutagenesis has been used to probe amino acid residues proposed to be critical in catalysis by Escherichia coli asparaginase II. Thr12 is conserved in all known asparaginases. The catalytic constant of a T12A mutant towards L-aspartic acid beta-hydroxamate was reduced to 0.04% of wild type activity, while its Km and stability against urea denaturation were unchanged. The mutant enzyme T12S exhibited almost normal activity but altered substrate specificity. Replacement of Thr119 with Ala led to a 90% decrease of activity without markedly affecting substrate binding. The mutant enzyme S122A showed normal catalytic function but impaired stability in urea solutions. These data indicate that the hydroxyl group of Thr12 is directly involved in catalysis, probably by favorably interacting with a transition state or intermediate. By contrast, Thr119 and Ser122, both putative target sites of the inactivator DONV, are functionally less important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号