首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The HOP1 gene encodes a meiosis-specific component of yeast chromosomes   总被引:37,自引:0,他引:37  
  相似文献   

2.
Deletion of Hop2 in mice eliminates homologous chromosome synapsis and disrupts double-strand break (DSB) repair through homologous recombination. HOP2 in vitro shows two distinctive activities: when it is incorporated into a HOP2–MND1 complex it stimulates DMC1 and RAD51 recombination activities and the purified HOP2 alone is proficient in promoting strand invasion. We observed that a fraction of Mnd1−/− spermatocytes, which express HOP2 but apparently have inactive DMC1 and RAD51 due to lack of the HOP2–MND1 complex, exhibits a high level of chromosome synapsis and that most DSBs in these spermatocytes are repaired. This suggests that DSB repair catalyzed solely by HOP2 supports homologous chromosome pairing and synapsis. In addition, we show that in vitro HOP2 promotes the co-aggregation of ssDNA with duplex DNA, binds to ssDNA leading to unstacking of the bases, and promotes the formation of a three-strand synaptic intermediate. However, HOP2 shows distinctive mechanistic signatures as a recombinase. Namely, HOP2-mediated strand exchange does not require ATP and, in contrast to DMC1, joint molecules formed by HOP2 are more sensitive to mismatches and are efficiently dissociated by RAD54. We propose that HOP2 may act as a recombinase with specific functions in meiosis.  相似文献   

3.
In most eukaryotes, genetic exchange between paired homologs occurs in the context of a tripartite proteinaceous structure called the synaptonemal complex (SC). Genetic analyses have revealed that the genes encoding SC proteins are vital for meiotic chromosome pairing and recombination. However, the number, nature and/or the mechanism used by SC proteins to align chromosomes are yet to be clearly defined. Here, we show that Saccharomyces cerevisiae Hop1, a component of SC, was able to promote pairing of double-stranded DNA helices containing arrays of mismatched G/G sequences. Significantly, pairing was rapid and robust, independent of homology in the arms flanking the central G/G region, and required four contiguous guanine residues. Furthermore, data from truncated DNA double helices showed that 20 bp on either side of the 8 bp mismatched G/G region was essential for efficient synapsis. Methylation interference indicated that pairing between the two DNA double helices involves G quartets. These results suggest that Hop1 is likely to play a direct role in meiotic chromosome pairing and recombination by its ability to promote synapsis between double-stranded DNA helices containing arrays of G residues. To our knowledge, Hop1 is the first protein shown to promote synapsis of DNA double helices from yeast or any other organism.  相似文献   

4.
DNA molecules containing stretches of contiguous guanine residues can assume a stable configuration in which planar quartets of guanine residues joined by Hoogsteen pairing appear in a stacked array. This conformation, called G4 DNA, has been implicated in several aspects of chromosome behavior including immunoglobulin gene rearrangements, promoter activation, and telomere maintenance. Moreover, the ability of the yeast SEP1 gene product to cleave DNA in a G4-DNA-dependent fashion, as well as that of the SGS1 gene product to unwind G4 DNA, has suggested a crucial role for this structure in meiotic synapsis and recombination. Here, we demonstrate that the HOP1 gene product, which plays a crucial role in the formation of synaptonemal complex in Saccharomyces cerevisiae, binds robustly to G4 DNA. The apparent dissociation constant for interaction with G4 DNA is 2 x 10(-10), indicative of binding that is about 1,000-fold stronger than to normal duplex DNA. Oligonucleotides of appropriate sequence bound Hop1 protein maximally if the DNA was first subjected to conditions favoring the formation of G4 DNA. Furthermore, incubation of unfolded oligonucleotides with Hop1 led to their transformation into G4 DNA. Methylation interference experiments confirmed that modifications blocking G4 DNA formation inhibit Hop1 binding. In contrast, neither bacterial RecA proteins that preferentially interact with GT-rich DNA nor histone H1 bound strongly to G4 DNA or induced its formation. These findings implicate specific interactions of Hop1 protein with G4 DNA in the pathway to chromosomal synapsis and recombination in meiosis.  相似文献   

5.
Saccharomyces cerevisiae meiosis-specific HOP1, which encodes a core component of synaptonemal complex, plays a key role in proper pairing of homologous chromosomes and processing of meiotic DNA double strand breaks. Isolation and analysis of hop1 mutants indicated that these functions require Cys(371) of Hop1 embedded in a region (residues 343-378) sharing homology to a zinc finger motif (ZnF). However, the precise biochemical function of Hop1, or its putative ZnF, in these processes is poorly understood. Our previous studies revealed that Hop1 is a DNA-binding protein, showed substantially higher binding affinity for G4 DNA, and enhances its formation. We report herein that ZnF appears to be sufficient for both zinc as well as DNA-binding activities. Molecular modeling studies suggested that Hop1 ZnF differs from the previously characterized natural ZnFs. The zinc-binding assay showed that the affinity for zinc is weaker for C371S ZnF mutant compared with the wild type (WT) ZnF. Analysis of CD spectra indicated that zinc and DNA induce substantial conformational changes in WT ZnF, but not in C371S ZnF mutant. The results from a number of different experimental approaches suggested that the DNA-binding properties of ZnF are similar to those of full-length Hop1 and that interaction with DNA rich in G residues is particularly robust. Significantly, WT ZnF by itself, but not C371S mutant, was able to bind duplex DNA and promote interstitial pairing of DNA double helices via the formation of guanine quartets. Together, these results implicate a direct role for Hop1 in pairing of homologous chromosomes during meiosis.  相似文献   

6.
Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex (SC), plays an important role in both gene conversion and crossing over between homologs, as well as enforces meiotic recombination checkpoint control over the progression of recombination intermediates. In hop1Delta mutants, meiosis-specific double-strand breaks (DSBs) are reduced to 10% of the wild-type level, and at aberrantly late times, these DSBs are processed into inter-sister recombination intermediates. However, the underlying mechanism by which Hop1 protein regulates these nuclear events remains obscure. Here we show that Hop1 protein interacts selectively with the Holliday junction, changes its global conformation and blocks the dissolution of the junction by a RecQ helicase. The Holliday junction-Hop1 protein complexes are significantly more stable at higher ionic strengths and molar excess of unlabeled competitor DNA than complexes containing other recombination intermediates. Structural analysis of the Holliday junction using 2-aminopurine fluorescence emission, DNase I footprinting and KMnO4 probing provide compelling evidence that Hop1 protein binding induces significant distortion at the center of the Holliday junction. We propose that Hop1 protein might coordinate the physical monitoring of meiotic recombination intermediates with the process of branch migration of Holliday junction.  相似文献   

7.
During meiosis, homologous recombination (HR) is essential to repair programmed DNA double-strand breaks (DSBs), and a dedicated protein machinery ensures that the homologous chromosome is favored over the nearby sister chromatid as a repair template. The HOMOLOGOUS-PAIRING PROTEIN2/MEIOTIC NUCLEAR DIVISION PROTEIN1 (HOP2/MND1) protein complex has been identified as a crucial factor of meiotic HR in Arabidopsis thaliana, since loss of either MND1 or HOP2 results in failure of DNA repair. We isolated two mutant alleles of HOP2 (hop2-2 and hop2-3) that retained the capacity to repair meiotic DSBs via the sister chromatid but failed to use the homologous chromosome. We show that in these alleles, the recombinases RADIATION SENSITIVE51 (RAD51) and DISRUPTED MEIOTIC cDNA1 (DMC1) are loaded, but only the intersister DNA repair pathway is activated. The hop2-2 phenotype is correlated with a decrease in HOP2/MND1 complex abundance. In hop2-3, a truncated HOP2 protein is produced that retains its ability to bind to DMC1 and DNA but forms less stable complexes with MND1 and fails to efficiently stimulate DMC1-driven D-loop formation. Genetic analyses demonstrated that in the absence of DMC1, HOP2/MND1 is dispensable for RAD51-mediated intersister DNA repair, while in the presence of DMC1, a minimal amount of functional HOP2/MND1 is essential to drive intersister DNA repair.  相似文献   

8.
The hop2 mutant of Saccharomyces cerevisiae arrests in meiosis with extensive synaptonemal complex (SC) formation between nonhomologous chromosomes. A screen for multicopy suppressors of a hop2-ts allele identified the MND1 gene. The mnd1-null mutant arrests in meiotic prophase, with most double-strand breaks (DSBs) unrepaired. A low level of mature recombinants is produced, and the Rad51 protein accumulates at numerous foci along chromosomes. SC formation is incomplete, and homolog pairing is severely reduced. The Mnd1 protein localizes to chromatin throughout meiotic prophase, and this localization requires Hop2. Unlike recombination enzymes such as Rad51, Mnd1 localizes to chromosomes even in mutants that fail to initiate meiotic recombination. The Hop2 and Mnd1 proteins coimmunoprecipitate from meiotic cell extracts. These results suggest that Hop2 and Mnd1 work as a complex to promote meiotic chromosome pairing and DSB repair. The identification of Hop2 and Mnd1 homologs in other organisms suggests that the function of this complex is conserved among eukaryotes.  相似文献   

9.
In yeast, HOP1 and RED1 are required during meiosis for proper chromosome segregation and the consequent formation of viable spores. Mutations in either HOP1 or RED1 create unique as well as overlapping phenotypes, indicating that the two proteins act alone as well as in concert with each other. To understand which meiotic processes specifically require Red1p-Hop1p hetero-oligomers, a novel genetic screen was used to identify a single-point mutation of RED1, red1-K348E, that separates Hop1p binding from Red1p homo-oligomerization. The Red1-K348E protein is stable, phosphorylated in a manner equivalent to Red1p, and undergoes efficient homo-oligomerization; however, its ability to interact with Hop1p both by two-hybrid and coimmunoprecipitation assays is greatly reduced. Overexpression of HOP1 specifically suppresses red1-K348E, supporting the idea that the only defect in the protein is a reduced affinity for Hop1p. red1-K348E mutants exhibit reduced levels of crossing over and spore viability and fail to undergo chromosome synapsis, thereby implicating a role for Red1p-Hop1p hetero-oligomers in these processes. Furthermore, red1-K348E suppresses the sae2/com1 defects in meiotic progression and sporulation, indicating a previously unknown role for HOP1 in the meiotic recombination checkpoint.  相似文献   

10.
The HOP2 protein is required for efficient double-strand break repair which ensures the proper synapsis of homologous chromosomes and normal meiotic progression. We previously showed that in vitro HOP2 shows two distinctive activities: when it is incorporated into a HOP2-MND1 heterodimer, it stimulates DMC1 and RAD51 recombination activities, and the purified HOP2 alone is proficient in promoting strand invasion. The structural and biochemical basis of HOP2 action in recombination are poorly understood; therefore, they are the focus of this work. Herein, we present the solution structure of the amino-terminal portion of mouse HOP2, which contains a typical winged helix DNA-binding domain. Together with NMR spectral changes in the presence of double-stranded DNA, protein docking on DNA, and mutation analysis to identify the amino acids involved in DNA coordination, our results on the three-dimensional structure of HOP2 provide key information on the fundamental structural and biochemical requirements directing the interaction of HOP2 with DNA. These results, in combination with mutational experiments showing the role of a coiled-coil structural feature involved in HOP2 self-association, allow us to explain important aspects of the function of HOP2 in recombination.  相似文献   

11.
Recombination and synapsis of homologous chromosomes are hallmarks of meiosis in many organisms. Meiotic recombination is initiated by Spo11-induced DNA double-strand breaks (DSBs), whereas chromosome synapsis is mediated by a tripartite structure named the synaptonemal complex (SC). Previously, we proposed that budding yeast SC is assembled via noncovalent interactions between the axial SC protein Red1, SUMO chains or conjugates, and the central SC protein Zip1. Incomplete synapsis and unrepaired DNA are monitored by Mec1/Tel1-dependent checkpoint responses that prevent exit from the pachytene stage. Here, our results distinguished three distinct modes of Mec1/Tec1 activation during early meiosis that led to phosphorylation of three targets, histone H2A at S129 (γH2A), Hop1, and Zip1, which are involved, respectively, in DNA replication, the interhomolog recombination and chromosome synapsis checkpoint, and destabilization of homology-independent centromere pairing. γH2A phosphorylation is Red1 independent and occurs prior to Spo11-induced DSBs. DSB- and Red1-dependent Hop1 phosphorylation is activated via interaction of the Red1-SUMO chain/conjugate ensemble with the Ddc1-Rad17-Mec3 (9-1-1) checkpoint complex and the Mre11-Rad50-Xrs2 complex. During SC assembly, Zip1 outcompetes 9-1-1 from the Red1-SUMO chain ensemble to attenuate Hop1 phosphorylation. In contrast, chromosome synapsis cannot attenuate DSB-dependent and Red1-independent Zip1 phosphorylation. These results reveal how DNA replication, DSB repair, and chromosome synapsis are differentially monitored by the meiotic checkpoint network.  相似文献   

12.
The synaptonemal complex (SC) is a tripartite protein structure consisting of two parallel axial elements (AEs) and a central region. During meiosis, the SC connects paired homologous chromosomes, promoting interhomologue (IH) recombination. Here, we report that, like the CE component Zip1, Saccharomyces cerevisiae axial-element structural protein, Red1, can bind small ubiquitin-like modifier (SUMO) polymeric chains. The Red1–SUMO chain interaction is dispensable for the initiation of meiotic DNA recombination, but it is essential for Tel1- and Mec1-dependent Hop1 phosphorylation, which ensures IH recombination by preventing the inter-sister chromatid DNA repair pathway. Our results also indicate that Red1 and Zip1 may directly sandwich the SUMO chains to mediate SC assembly. We suggest that Red1 and SUMO chains function together to couple homologous recombination and Mec1–Tel1 kinase activation with chromosome synapsis during yeast meiosis.  相似文献   

13.
Tripathi P  Pal D  Muniyappa K 《Biochemistry》2007,46(44):12530-12542
Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex, plays an important role in crossing over between homologues. Hop1p contains a zinc finger motif, and substitution of a conserved Cys371 by Ser rendered the hop1 mutant allele defective in sporulation and meiosis. However, the molecular mechanism underlying the function of Hop1 zinc finger motif (ZnF) remains obscure. Here we show that wild-type Hop1 ZnF binds significantly better to the Holliday junction compared with other recombination intermediates. Consequently, the salt titration midpoint for dissociation of the Holliday junction-ZnF complex was higher than the complexes containing flush-ended linear or tailed duplex DNA. Although DNase I footprinting showed that Hop1 ZnF binds to each of the four arms of the junction, KMnO4 probing and 2-aminopurine fluorescence emission data disclosed that it distorts the DNA structure along a pair of symmetrical arms. Molecular modeling studies show that Hop1 ZnF forms a unique zinc-binding fold, reminiscent of the basic helix-loop-helix motif. In the presence of Zn2+, docking studies show that alpha helix 1, which is replete with basic amino acid residues, makes stabilizing contacts with the sugar-phosphate backbone. Structural comparison revealed a striking similarity between RecG wedge domain and Hop1 ZnF motif. We propose that Hop1 ZnF motif plays a key role in the physical monitoring of recombination intermediates and branch migration of the Holliday junction.  相似文献   

14.
15.
16.
The Yeast Red1 Protein Localizes to the Cores of Meiotic Chromosomes   总被引:26,自引:2,他引:24       下载免费PDF全文
Mutants in the meiosis-specific RED1 gene of S. cerevisiae fail to make any synaptonemal complex (SC) or any obvious precursors to the SC. Using antibodies that specifically recognize the Red1 protein, Red1 has been localized along meiotic pachytene chromosomes. Red1 also localizes to the unsynapsed axial elements present in a zip1 mutant, suggesting that Red1 is a component of the lateral elements of mature SCs. Anti-Red1 staining is confined to the cores of meiotic chromosomes and is not associated with the loops of chromatin that lie outside the SC. Analysis of the spo11 mutant demonstrates that Red1 localization does not depend upon meiotic recombination. The localization of Red1 has been compared with two other meiosisspecific components of chromosomes, Hop1 and Zip1; Zip1 serves as a marker for synapsed chromosomes. Double labeling of wild-type meiotic chromosomes with anti-Zip1 and anti-Red1 antibodies demonstrates that Red1 localizes to chromosomes both before and during pachytene. Double labeling with anti-Hop1and anti-Red1 antibodies reveals that Hop1 protein localizes only in areas that also contain Red1, and studies of Hop1 localization in a red1 null mutant demonstrate that Hop1 localization depends on Red1 function. These observations are consistent with previous genetic studies suggesting that Red1 and Hop1 directly interact. There is little or no Hop1 protein on pachytene chromosomes or in synapsed chromosomal regions.  相似文献   

17.
During meiosis, accurate chromosome segregation relies on the proper interaction between homologous chromosomes, including synapsis and recombination. The meiotic recombination checkpoint is a quality control mechanism that monitors those crucial events. In response to defects in synapsis and/or recombination, this checkpoint blocks or delays progression of meiosis, preventing the formation of aberrant gametes. Meiotic recombination occurs in the context of chromatin and histone modifications, which play crucial roles in the maintenance of genomic integrity. Here, we unveil the role of Dot1-dependent histone H3 methylation at lysine 79 (H3K79me) in this meiotic surveillance mechanism. We demonstrate that the meiotic checkpoint function of Dot1 relies on H3K79me because, like the dot1 deletion, H3-K79A or H3-K79R mutations suppress the checkpoint-imposed meiotic delay of a synapsis-defective zip1 mutant. Moreover, by genetically manipulating Dot1 catalytic activity, we find that the status of H3K79me modulates the meiotic checkpoint response. We also define the phosphorylation events involving activation of the meiotic checkpoint effector Mek1 kinase. Dot1 is required for Mek1 autophosphorylation, but not for its Mec1/Tel1-dependent phosphorylation. Dot1-dependent H3K79me also promotes Hop1 activation and its proper distribution along zip1 meiotic chromosomes, at least in part, by regulating Pch2 localization. Furthermore, HOP1 overexpression bypasses the Dot1 requirement for checkpoint activation. We propose that chromatin remodeling resulting from unrepaired meiotic DSBs and/or faulty interhomolog interactions allows Dot1-mediated H3K79-me to exclude Pch2 from the chromosomes, thus driving localization of Hop1 along chromosome axes and enabling Mek1 full activation to trigger downstream responses, such as meiotic arrest.  相似文献   

18.
In budding yeast, absence of the Hop2 protein leads to extensive synaptonemal complex (SC) formation between nonhomologous chromosomes, suggesting a crucial role for Hop2 in the proper alignment of homologous chromosomes during meiotic prophase. Genetic analysis indicates that Hop2 acts in the same pathway as the Rad51 and Dmc1 proteins, two homologs of E. coli RecA. Thus, the hop2 mutant phenotype demonstrates the importance of the recombination machinery in promoting accurate chromosome pairing. We propose that the Dmc1/Rad51 recombinases require Hop2 to distinguish homologous from nonhomologous sequences during the homology search process. Thus, when Hop2 is absent, interactions between nonhomologous sequences become inappropriately stabilized and can initiate SC formation. Overexpression of RAD51 largely suppresses the meiotic defects of the dmc1 and hop2 mutants. We conclude that Rad51 is capable of carrying out a homology search independently, whereas Dmc1 requires additional factors such as Hop2.  相似文献   

19.
Hop2-Mnd1 is a meiotic recombination mediator that stimulates DNA strand invasion by both Dmc1 and Rad51. To understand the biochemical mechanism of this stimulation, we directly visualized the heterodimer acting on single molecules of duplex DNA using optical tweezers and video fluorescence microscopy. The results show that the Hop2-Mnd1 heterodimer efficiently condenses double-stranded DNA via formation of a bright spot or DNA condensate. The condensation of DNA is Hop2-Mnd1 concentration-dependent, reversible, and specific to the heterodimer, as neither Hop2 nor Mnd1 acting alone can facilitate this reaction. The results also show that the rate-limiting nucleation step of DNA condensation is overcome in the presence of divalent metal ions, with the following order of preference: Mn2+>Mg2+>Ca2+. Hop2-Mnd1/Dmc1/single-stranded DNA nucleoprotein filaments also condense double-stranded DNA in a heterodimer concentration-dependent manner. Of importance, the concentration dependence parallels that seen in DNA strand exchange. We propose that rapid DNA condensation is a key factor in stimulating synapsis, whereas decondensation may facilitate the invasion step and/or the ensuing branch migration process.  相似文献   

20.
The synaptonemal complex (SC) is a meiosis-specific tripartite structure that forms between two homologous chromosomes; it consists of a central region and two parallel lateral elements. Lateral elements also are called axial elements prior to synapsis. In Saccharomyces cerevisiae, Red1, Hop1, and Mek1 are structural components of axial/lateral elements. The red1/mek1/hop1 mutants all exhibit reduced levels of interhomolog recombination and produce no viable spores. Red1 is a phosphoprotein. Several earlier reports proposed that phosphorylated Red1 plays important roles in meiosis, including in signaling meiotic DNA damage or in preventing exit from the pachytene chromosomes. We report here that the phosphorylation of Red1 is carried out in CDC28-dependent and CDC28-independent manners. In contrast to previous results, we found Red1 phosphorylation to be independent of meiotic DNA recombination, the Mec1/Tel1 DNA damage checkpoint kinases, and the Mek1 kinase. To functionally validate the phosphorylation of Red1, we mapped the phosphorylation sites on this protein. A red1(14A) mutant showing no detectable Red1 phosphorylation did not exhibit decreased sporulation efficiency, defects in viable spore production, or defects in meiotic DNA damage checkpoints. Thus, our results suggest that the phosphorylation of Red1 is not essential for its functions in meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号