首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translational regulation of the stationary phase sigma factor RpoS is mediated by the formation of a double-stranded RNA stem-loop structure in the upstream region of the rpoS messenger RNA, occluding the translation initiation site. The interaction of the rpoS mRNA with a small RNA, DsrA, disrupts the double-strand pairing and allows high levels of translation initiation. We screened a multicopy library of Escherichia coli DNA fragments for novel activators of RpoS translation when DsrA is absent. Clones carrying rprA (RpoS regulator RNA) increased the translation of RpoS. The rprA gene encodes a 106 nucleotide regulatory RNA. As with DsrA, RprA is predicted to form three stem-loops and is highly conserved in Salmonella and Klebsiella species. Thus, at least two small RNAs, DsrA and RprA, participate in the positive regulation of RpoS translation. Unlike DsrA, RprA does not have an extensive region of complementarity to the RpoS leader, leaving its mechanism of action unclear. RprA is non-essential. Mutations in the gene interfere with the induction of RpoS after osmotic shock when DsrA is absent, demonstrating a physiological role for RprA. The existence of two very different small RNA regulators of RpoS translation suggests that such additional regulatory RNAs are likely to exist, both for regulation of RpoS and for regulation of other important cellular components.  相似文献   

2.
3.
Translation of the stationary phase sigma factor RpoS is stimulated by at least two small RNAs, DsrA and RprA. DsrA disrupts an inhibitory secondary structure in the rpoS leader mRNA by pairing with the upstream RNA. Mutations in rprA and compensating mutations in the rpoS leader demonstrate that RprA interacts with the same region of the RpoS leader as DsrA. This is the first example of two different small RNAs regulating a common target. Regulation of these RNAs differs. DsrA synthesis is increased at low temperature. We find that RprA synthesis is regulated by the RcsC/RcsB phosphorelay system, previously found to regulate capsule synthesis and promoters of ftsZ and osmC. An rcsB null mutation abolishes the basal level, whereas mutations in rcsC that activate capsule synthesis also activate expression of the rprA promoter. An essential site with similarity to other RcsB-regulated promoters was defined in the rprA promoter. Activation of the RcsC/RcsB system leads to increased RpoS synthesis, in an RprA-dependent fashion. This work suggests a new signal for RpoS translation and extends the global regulation effected by the RcsC/RcsB system to coregulation of RpoS with capsule and FtsZ.  相似文献   

4.
5.
6.
7.
8.
Small RNAs (sRNAs) regulate bacterial genes involved in environmental adaptation. This RNA regulation requires Hfq, a bacterial Sm-like protein that stabilizes sRNAs and enhances RNA-RNA interactions. To understand the mechanism of target recognition by sRNAs, we investigated the interactions between Hfq, the sRNA DsrA, and its regulatory target rpoS mRNA, which encodes the stress response sigma factor. Nuclease footprinting revealed that Hfq recognized multiple sites in rpoS mRNA without significantly perturbing secondary structure in the 5' leader that inhibits translation initiation. Base-pairing with DsrA, however, made the rpoS ribosome binding site fully accessible, as predicted by genetic data. Hfq bound DsrA four times more tightly than the DsrA.rpoS RNA complex in gel mobility-shift assays. Consequently, Hfq is displaced rapidly from its high-affinity binding site on DsrA by conformational changes in DsrA, when DsrA base-pairs with rpoS mRNA. Hfq accelerated DsrA.rpoS RNA association and stabilized the RNA complex up to twofold. Hybridization of DsrA and rpoS mRNA was optimal when Hfq occupied its primary binding site on free DsrA, but was inhibited when Hfq associated with the DsrA.rpoS RNA complex. We conclude that recognition of rpoS mRNA is stimulated by binding of Hfq to free DsrA sRNA, followed by release of Hfq from the sRNA.mRNA complex.  相似文献   

9.
Translation of the sigma factor RpoS is activated by DsrA, RprA and ArcA, three small non-coding sRNAs (sRNA) that expose the ribosome-binding site (RBS) by opening up an inhibitory loop. In the RpoS network, no sRNAs have been found to pair with the RBS, a most common sRNA target site in bacteria. Here, we generate Ribo-0, an artificial sRNA, which represses rpoS translation by pairing with the RBS. Ribo-0 bypasses the RNA chaperon Hfq but requires the RBS to be loosely blocked. Ribo-0 interacts with DsrA and reshapes the RpoS network. Specifically, in the intact RpoS network, DsrA activates rpoS translation by freeing up the RBS. In the modified RpoS network where Ribo-0 is introduced, the DsrA-caused RBS exposure facilitates Ribo-0 binding, thereby strengthening Ribo-0 inhibition. In other words, Ribo-0 changes DsrA from an activator to an accomplice for repressing rpoS translation. This work presents an artificial mechanism of rpoS regulation, reveals mutual effects of native and synthetic players and demonstrates genetic context-dependency of their functions.  相似文献   

10.
The translation of rpoS , which encodes the general stress sigma factor, σS, in Escherichia coli , is stimulated by various stress conditions. Regulatory factors involved in this control are the RNA-binding Hfq (HF-I) protein, the histone-like protein H-NS and the small regulatory DsrA-RNA (with the last being specifically required for increased rpoS translation at low temperature). Here, we report the characterization of a transposon insertion mutant (Tn 10 -8) with reduced σS levels that led to the identification of an additional factor involved in the regulation of rpoS translation, the LysR-like regulator LeuO. Tn 10 -8 decreases rpoS translation predominantly at low growth temperature. The mutation results in similarly strongly reduced DsrA-RNA expression and does not affect rpoS expression in a dsrA null mutant background, indicating that it affects rpoS translation via DsrA-RNA. Tn 10 -8 is inserted 26 bp upstream of the leuO open reading frame, which encodes a putative LysR-like regulator of unknown function. Instead of being a leuO null mutation, Tn 10 -8 activates leuO expression as a result of the pout promoter on IS 10 L reading into leuO , indicating that LeuO represses dsrA and thereby reduces rpoS translation at low temperature. LeuO does not contribute to temperature regulation of dsrA since its own expression is rather low and not temperature dependent. In a mutant deficient for H-NS, however, leuO is strongly derepressed. We conclude that rpoS translation is controlled by a regulatory network that includes Hfq, H-NS, LeuO and DsrA-RNA. In this network, H-NS plays a dual role by interfering with rpoS translation in general and, via LeuO, influencing the synthesis of its own low-temperature antagonist, DsrA-RNA.  相似文献   

11.
Bacterial small RNAs (sRNAs) modulate gene expression by base-pairing with target mRNAs. Many sRNAs require the Sm-like RNA binding protein Hfq as a cofactor. Well-characterized interactions between DsrA sRNA and the rpoS mRNA leader were used to understand how Hfq stimulates sRNA pairing with target mRNAs. DsrA annealing stimulates expression of rpoS by disrupting a secondary structure in the rpoS leader, which otherwise prevents translation. Both RNAs bind Hfq with similar affinity but interact with opposite faces of the Hfq hexamer. Using mutations that block interactions between two of the three components, we demonstrate that Hfq binding to a functionally critical (AAN)(4) motif in rpoS mRNA rescues DsrA binding to a hyperstable rpoS mutant. We also show that Hfq cannot stably bridge the RNAs. Persistent ternary complexes only form when the two RNAs are complementary. Thus, Hfq mainly acts by binding and restructuring the rpoS mRNA. However, Hfq binding to DsrA is needed for maximum annealing in vitro, indicating that transient interactions with both RNAs contribute to the regulatory mechanism.  相似文献   

12.
13.
14.
15.
16.
17.
A major class of small bacterial RNAs (sRNAs) regulate translation and mRNA stability by pairing with target mRNAs, dependent upon the RNA chaperone Hfq. Hfq, related to the Lsm/Sm families of splicing proteins, binds the sRNAs and stabilizes them in vivo and stimulates pairing with mRNAs in vitro. Although Hfq is abundant, the sRNAs, when induced, are similarly abundant. Therefore, Hfq may be limiting for sRNA function. We find that, when overexpressed, a number of sRNAs competed with endogenous sRNAs for binding to Hfq. This correlated with lower accumulation of the sRNAs (presumably a reflection of the loss of Hfq binding), and lower activity of the sRNAs in regulating gene expression. Hfq was limiting for both positive and negative regulation by the sRNAs. In addition, deletion of the gene for an expressed and particularly effective competitor sRNA improved the regulation of genes by other sRNAs, suggesting that Hfq is limiting during normal growth conditions. These results support the existence of a hierarchy of sRNA competition for Hfq, modulating the function of some sRNAs.  相似文献   

18.
19.
Small non-coding RNAs (sRNAs) are an emerging class of regulators of bacterial gene expression. Most of the regulatory Escherichia coli sRNAs known to date modulate translation of trans-encoded target mRNAs. We studied the specificity of sRNA target interactions using gene fusions to green fluorescent protein (GFP) as a novel reporter of translational control by bacterial sRNAs in vivo. Target sequences were selected from both monocistronic and polycistronic mRNAs. Upon expression of the cognate sRNA (DsrA, GcvB, MicA, MicC, MicF, RprA, RyhB, SgrS and Spot42), we observed highly specific translation repression/activation of target fusions under various growth conditions. Target regulation was also tested in mutants that lacked Hfq or RNase III, or which expressed a truncated RNase E (rne701). We found that translational regulation by these sRNAs was largely independent of full-length RNase E, e.g. despite the fact that ompA fusion mRNA decay could no longer be promoted by MicA. This is the first study in which multiple well-defined E.coli sRNA target pairs have been studied in a uniform manner in vivo. We expect our GFP fusion approach to be applicable to sRNA targets of other bacteria, and also demonstrate that Vibrio RyhB sRNA represses a Vibrio sodB fusion when co-expressed in E.coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号