首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both.  相似文献   

2.
Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both.  相似文献   

3.
The study of Acinetobacter bacteria in sea water and in aquatic molluscs of the southern climatic zone has revealed ecological differences in the species A. calcoaceticus and A. lwoffi and the appearance of the ecological niche for Acinetobacter in molluscs.  相似文献   

4.
Although polycyclic aromatic hydrocarbons (PAHs) have usually been found to persist under strict anaerobic conditions, in a previous study an unusual site was found in San Diego Bay in which two PAHs, naphthalene and phenanthrene, were oxidized to carbon dioxide under sulfate-reducing conditions. Further investigations with these sediments revealed that methylnaphthalene, fluorene, and fluoranthene were also anaerobically oxidized to carbon dioxide in these sediments, while pyrene and benzo[a]pyrene were not. Studies with naphthalene indicated that PAH oxidation was sulfate dependent. Incubating the sediments with additional naphthalene for 1 month resulted in a significant increase in the oxidation of [14C]naphthalene. In sediments from a less heavily contaminated site in San diego Bay where PAHs were not readily degraded, naphthalene degradation could be stimulated through inoculation with active PAH-degrading sediments from the most heavily contaminated site. Sediments from the less heavily contaminated site that had been adapted for rapid anaerobic degradation of high concentrations of benzene did not oxidize naphthalene, suggesting that the benzene- and naphthalene-degrading populations were different. When fuels containing complex mixtures of alkanes were added to sediments from the two sites, there was significant degradation in the alkanes. [14C]hexadecane was also anaerobically oxidized to 14CO2 in these sediments. Molybdate, a specific inhibitor of sulfate reduction, inhibited hexadecane oxidation. These results demonstrate that a wide variety of hydrocarbon contaminants can be degraded under sulfate-reducing conditions in hydrocarbon-contaminated sediments, and they suggest that it may be possible to use sulfate reduction rather than aerobic respiration as a treatment strategy for hydrocarbon-contaminated dredged sediments.  相似文献   

5.
Microbial degradation of hydrocarbons in the environment.   总被引:67,自引:2,他引:67       下载免费PDF全文
The ecology of hydrocarbon degradation by microbial populations in the natural environment is reviewed, emphasizing the physical, chemical, and biological factors that contribute to the biodegradation of petroleum and individual hydrocarbons. Rates of biodegradation depend greatly on the composition, state, and concentration of the oil or hydrocarbons, with dispersion and emulsification enhancing rates in aquatic systems and absorption by soil particulates being the key feature of terrestrial ecosystems. Temperature and oxygen and nutrient concentrations are important variables in both types of environments. Salinity and pressure may also affect biodegradation rates in some aquatic environments, and moisture and pH may limit biodegradation in soils. Hydrocarbons are degraded primarily by bacteria and fungi. Adaptation by prior exposure of microbial communities to hydrocarbons increases hydrocarbon degradation rates. Adaptation is brought about by selective enrichment of hydrocarbon-utilizing microorganisms and amplification of the pool of hydrocarbon-catabolizing genes. The latter phenomenon can now be monitored through the use of DNA probes. Increases in plasmid frequency may also be associated with genetic adaptation. Seeding to accelerate rates of biodegradation has been shown to be effective in some cases, particularly when used under controlled conditions, such as in fermentors or chemostats.  相似文献   

6.
Summary Colonies of a polycyclic aromatic hydrocarbon (PAH) degrading and biosurfactant producing strain of Pseudomonas marginalis PD-14B, pre-incubated on nutrient agar plates, formed zones of clearing when the agar surface was coated with phenanthrene. Application of a drop of the cell-free biosurfactant solution to the agar surface, followed by coating with phenanthrene film also produced a clear zone against the opaque background of the PAH coating. The results indicate that bacterial colonies generate transparent haloes not only as a result of PAH degradation, as is generally concluded from such tests, but also by solubilization of these hydrophobic compounds, mediated by biosurfactants released by the cells into the agar zone surrounding the colony.  相似文献   

7.
A Beijerinckia species, capable of oxidizing phenanthrene, biphenyl and other polycyclic aromatic hydrocarbons, was shown to contain two plasmids that were designated pKGl and pKG2. The molecular masses of plasmids pKG1 and pKG2, as determined by electron microscopy, were approximately 147 X 10(6) and 20.8 X 10(6) daltons, respectively. Growth of the organism on benzoate led to the isolation of strains that had lost the ability to grow with phenanthrene and biphenyl. All of the Phn-, Bph- strains had also lost the smaller plasmid, pKG2. The results presented suggest that plasmid pKG2 is responsible for the synthesis of enzymes involved in the degradation of phenanthrene and biphenyl.  相似文献   

8.
High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) are pollutants that persist in the environment due to their low solubility in water and their sequestration by soil and sediments. The addition of a water-immiscible, nonbiodegradable, and biocompatible liquid, silicone oil, to a soil slurry was studied to promote the desorption of PAHs from soil and to increase their bioavailability. First, the transfer into silicone oil of phenanthrene, pyrene, chrysene, and benzo[a]pyrene added to a sterilized soil (sandy soil with 0.65% total volatile solids) was measured for 4 days in three two-liquid-phase (TLP) slurry systems each containing 30% (w/v) soil but different volumes of silicone oil (2.5%, 7.5%, and 15% [v/v]). Except for chrysene, a high percentage of these PAHs was transferred from soil to silicone oil in the TLP slurry system containing 15% silicone oil. Rapid PAH transfer occurred during the first 8 h, probably resulting from the extraction of nonsolubilized and of poorly sorbed PAHs. This was followed by a period in which a slower but constant transfer occurred, suggesting extraction of more tightly bound PAHs. Second, a HMW PAH-degrading consortium was enriched in a TLP slurry system with a microbial population isolated from a creosote-contaminated soil. This consortium was then added to three other TLP slurry systems each containing 30% (w/v) sterilized soil that had been artificially contaminated with pyrene, chrysene, and benzo[a]pyrene, but different volumes of silicone oil (10%, 20%, and 30% [v/v]). The resulting TLP slurry bioreactors were much more efficient than the control slurry bioreactor containing the same contaminated soil but no oil phase. In the TLP slurry bioreactor containing 30% silicone oil, the rate of pyrene degradation was 19 mg L(-)(1) day(-)(1) and no pyrene was detected after 4 days. The degradation rates of chrysene and benzo[a]pyrene in the 30% TLP slurry bioreactor were, respectively, 3.5 and 0.94 mg L(-)(1) day(-)(1). Low degradation of pyrene and no significant degradation of chrysene and benzo[a]pyrene occurred in the slurry bioreactor. This is the first report in which a TLP system was combined with a slurry system to improve the biodegradation of PAHs in soil.  相似文献   

9.
10.
11.
12.
Phytotoxicity of six polycyclic aromatic hydrocarbons (PAHs) and their 16 oxidized derivatives that may be microbial metabolites arising in the course of PAH degradation was determined using an express test with the seedlings of sorghum (Sorghum bicolor L. Moench) and alfalfa (Medicago sativa L.). It was shown that germinating capacity is the least informative characteristic and the most useful parameter is development of seedlings during 3 days in the presence of compounds under investigation. Among unsubstituted compounds, toxicity in respect to seedlings decreased in the series fluorene > phenanthrene > anthracene. Chrysene, fluoranthene, and pyrene stimulated shoot development. It was found that some of the metabolites produced as a result of microbial degradation of phenanthrene (9,10-phenanthrenequinone, 1-hydroxy-2-naphthoic and benzoic acids) are more toxic for plants than starting PAH molecules. The obtained results are important for understanding rhizosphere processes associated with phytoremediation technique.  相似文献   

13.
Lee J  Roh SW  Whon TW  Shin NR  Kim YO  Bae JW 《Journal of bacteriology》2011,193(13):3401-3402
Ruegeria sp. TW15, which belongs to the family Rhodobacteraceae, was isolated from an ark clam in the South Sea of Korea. Here is presented the draft genome sequence of Ruegeria sp. TW15 (4,490,771 bp with a G+C content of 55.7%), a member of the marine Roseobacter clade, which comprises up to 20% of the bacterioplankton in the coastal and oceanic mixed layer.  相似文献   

14.
Two fungi and the phenanthrene-degrading bacterial strainRhodococcus sp. IC10 were used as inocula for the bioremediation of petroleum hydrocarbon-contaminated soil from a manufactured gas plant area. The two fungi, which were previously isolated from different hydrocarbon-contaminated soil samples, were identified asAspergillus terreus andPenicillium sp. In addition, two types of co-cultures which consist of fungal species includingA. terreus orPenicilium sp. withRhodococcus sp. IC10 were applied. After a 10-week incubation period, the concentrations of anthracene, phenanthrene, and pyrene were totally biodegraded by days 68, 54, and 64, for the 16 polycyclic aromatic hydrocarbons (PAH's) tested. The ecotoxicity of the soil after bioremediation did not show any effect on the survival ofDaphnia magna (24 h-old-daphnids). However, the toxicity on seed germination ofBrassica alba and the oxidoreductase activity ofBacillus cereus declined after 5- and 10-weeks of incubation, respectively. Co-cultures ofPenicillium sp. andRhodococcus sp. IC 10 revealed the best efficiency at reducing ecotoxicity.  相似文献   

15.
微生物降解多环芳烃(PAHs)的研究进展   总被引:13,自引:0,他引:13  
从多环芳烃(PAHs)的降解菌株的筛选、降解机制以及PAHs污染的生物修复等方面介绍了微生物降解PAHs的最新研究进展。  相似文献   

16.
In the present study we assessed the identification by sequence analysis of the 15 species belonging to the genus Debaryomyces. We found that the following species can be identified both quickly and correctly by direct sequence comparison of the ribosomal 5.8S-ITS region: D. carsonii, D. etchelsii, D. maramus, D. melissophilus, D. occidentalis and D. yamadae. In contrast, the species D. castellii, D. coudertii, D. hansenii, D. nepalensis, D. polymorphus, D. pseudopolymorphus, D. robertsiae, D. udenii and D. vanrijiae showed high sequence similarity in ribosomal regions with one or several species. In these cases, sequence comparison of the ACT1 gene is proposed to ensure unequivocal strain designation.  相似文献   

17.
18.
Autecological properties that are thought to be important for polycyclic aromatic hydrocarbon (PAH)-degradation by bacteria in contaminated soils include the ability to utilize a broad range of carbon sources, efficient biofilm formation, cell-surface hydrophobicity, surfactant production, motility, and chemotaxis. Sphingomonas species are common PAH-degraders, and a selection of PAH-degrading sphingomonad strains isolated from contaminated soils was therefore characterized in terms of these properties. All the sphingomonads tested were relatively hydrophilic and were able to grow as biofilms on a phenanthrene-coated surface, though biofilm formation under other conditions was variable. Sphingobium yanoikuyae B1 was able to utilize the greatest range of carbon sources, though it was not chemotaxic towards any of the substrates tested. Other sphingomonad strains were considerably less flexible in their catabolic range. None of the strains produced detectable surfactant and swimming motility varied between the strains. Examination of the total Sphingomonas community in the soils tested showed that one of the isolates studied was present at significant levels, suggesting that it can thrive under PAH-contaminated conditions despite the lack of many of the tested characteristics. We conclude that these properties are not essential for survival and persistence of Sphingomonas in PAH-contaminated soils.  相似文献   

19.
Coral-algal symbiosis has been a subject of great attention during the last two decades in response to global coral reef decline. However, the occurrence and dispersion of free-living dinoflagellates belonging to the genus Symbiodinium are less documented. Here ecological and molecular evidence is presented demonstrating the existence of demersal free-living Symbiodinium populations in Caribbean reefs and the possible role of the stoplight parrotfish (Sparisoma viride) as Symbiodinium spp. dispersers. Communities of free-living Symbiodinium were found within macroalgal beds consisting of Halimeda spp., Lobophora variegata, Amphiroa spp., Caulerpa spp. and Dictyota spp. Viable Symbiodinium spp. cells were isolated and cultured from macroalgal beds and S. viride feces. Further identification of Symbiodinium spp. type was determined by length variation in the Internal Transcribed Spacer 2 (ITS2, nuclear rDNA) and length variation in domain V of the chloroplast large subunit ribosomal DNA (cp23S-rDNA). Determination of free-living Symbiodinium and mechanisms of dispersal is important in understanding the life cycle of Symbiodinium spp.  相似文献   

20.
Bacteria of genus Aeromonas are constant components of microbiota of fresh reservoirs where they, together with other microorganisms, play the part of natural biofilter and promote water self-purification. They are necessarily present in normal microflora of hydrobionts inhabiting fresh reservoirs. The greatest attention is paid by the researchers to Aeromonas and biotrophs in connection with epizootics in aquaculture which have become more frequent, in particular, under fish breeding. That is why the review is, to more extent, concerned in the works of this trend made by the foreign and home researchers for the last decade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号