首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient methods of chromosome doubling are critical for the production of microspore-derived, doubled-haploid (=DH) plants, especially if, as in maize anther culture, spontaneous chromosome doubling occurs infrequently. In the present study, colchicine (5–1000 mg/l) was added to the induction medium and maize anthers were incubated in the colchicine-containing medium for different durations (1–7 days). In order to improve overall anther culture response, the culture temperature was adjusted to 14°C during the first 7 days. Colchicine applied at low concentration, i.e. 5 mg/l (7 days), or for short duration, i.e. 1–3 days (250 mg/l), showed beneficial effects on the formation of embryolike structures (=ES) and thus led to increased plant production, but was comparatively ineffective regarding chromosome doubling. Optimal doubling effects were observed when anthers had been exposed to culture medium containing 250 and 1000 mg/l of colchicine (7 days); in these treatments the doubling index (=DI), defined as the quotient of the number of DH plants and the number of totally regenerated plants in a specific treatment, rose to 0.56 and 0.53, respectively, compared to 0.20 in the untreated control. However, colchicine administered at concentrations higher than 250 mg/l seemed to be detrimental to general plant production; thus, in spite of a high DI, the overall DH plant production was even lower than in the control treatment. Maximum DH plant production for three different genotypes was accomplished with culture medium containing 250 mg/l of colchicine (7 days). With the best-responding genotype (ETH-M 36) a DH plant production of 9.9 DH plants/100 anthers was accomplished, i.e. a 7-fold increase compared to the non-treated anthers. This is the first report on efficient chromosome doubling in anther culture by subjecting anthers to colchicinecontaining induction medium during a post-plating cold treatment. Chromosome doubling as described here becomes an integral part of the maize anther culture protocol and thus represents a rapid and economical way to produce DH plants.  相似文献   

2.
Mapping the anther culture response genes in maize (Zea mays L.).   总被引:3,自引:0,他引:3  
In order to map the genes conditioning the induction of embryos during our anther culture process, we evaluated F2 plants from three different crosses for their anther culture ability and also performed RFLP analysis on these plants. The results showed that six chromosomal regions appear to be associated with the ability to induce embryo-like structures from maize microspores. These regions are located on chromosomes 1 (two regions), 3, 5, 7, and 8. Some of these chromosomes are identical to those found in previous studies and we have localized the regions more precisely. Notably, all chromosome regions identified, except one, are near viviparous mutant loci. Since the viviparous mutations are known to involve the plant hormone abscisic acid (ABA), these results suggest that ABA or its antagonist, gibberellic acid (GA3), might somehow be related to anther culture ability. We also propose some combinations of probes to screen for anther culture ability in the three genotypes studied.  相似文献   

3.
Selection for increased anther culture response in maize   总被引:1,自引:0,他引:1  
Summary Anther culture of a three-way cross, (H99 × FR16) × Pa91, resulted in the regeneration of two anther-derived plants which were crossed to produce an F1 progeny. Fourteen S1 families derived from this cross were evaluated for their anther culturability. Dramatic increases in the level of androgenesis, expressed as the percentage of cultured anthers which produced embryo-like structures, were observed. An overall mean response frequency of 23.4% was observed for the S1 families. This was compared to a 3.5% response in the original three-way cross. These results demonstrate that genetic improvement of in vitro androgenesis in maize is possible and that anther culture per se constitutes a procedure for selecting genes which favor increased levels of response.  相似文献   

4.
Summary Response frequencies in maize (Zea mays L.) anthers cultured in vitro were examined in a diallel set of crosses among four commercial inbred lines. Significant differences among the genotypes were observed, with the crosses H99xFR16 and Pa91xFR16 displaying the highest responses. General (GCA) and specific (SCA) combining ability mean squares were calculated and determined to be highly significant. GCA effects among the parental lines were highest for FR16 and lowest for LH38. Nongenotypic, plant-toplant differences were also found to make a significant contribution to the overall variation observed. The results from this study indicate that parents which give rise to highly responsive hybrids can be identified and that genetic improvement is possible through selection.  相似文献   

5.
In stress conditions, microspores and young pollen grains can be switched from their normal pollen development toward an embryogenic pathway via a process called androgenesis. Androgenic embryos can produce completely homozygous, haploid or double-haploid plants. This study aimed to investigate changes in the abundance of protein species during cold pretreatment and subsequent cultivation of maize anthers on induction media using gel-based proteomics. Proteins upregulated on the third day of anther induction were identified and discussed here. Simultaneous microscopic observations revealed that the first division occurred in microspores within this period. Using 2-D electrophoresis combined with MALDI TOF/TOF MS/MS analysis 19 unique proteins were identified and classified into 8 functional groups. Proteins closely associated with metabolism, protein synthesis and cell structure were the most abundant ones. Importantly, ascorbate peroxidase, an enzyme decomposing hydrogen peroxide, was also upregulated. Isozyme analysis of peroxidases validated the proteomic data and showed increased peroxidase activities during androgenic induction. Further, the isozyme pattern of SOD revealed increased activity of the MnSOD, which could provide hydrogen peroxide as a substrate for in vivo peroxidase reactions (including ascorbate peroxidase). Together, these data reveal the role of enzymes controlling oxidative stress during induction of maize androgenesis.  相似文献   

6.
A new selectable marker system has been adapted for use in Agrobacterium-mediated transformation of maize. This selection system utilizes the pmi gene encoding for phosphomannose-isomerase that converts mannose-6-phosphate to fructose-6-phosphate. Only transformed cells are capable of utilizing mannose as a carbon source. Agrobacterium-mediated transformation of immature embryos followed by a pre-selection of 10–14 days prior to selection at a level of 1% mannose and 0.5% sucrose led to the recovery of trangenic lines of a frequency of as high as 30% in about 12 weeks. Molecular and genetic analysis showed that selected plants contained the pmi gene and that the gene was transmitted to the progeny in a Mendelian fashion. Received: 24 August 1999 / Revision received: 27 September 1999 / Accepted: 9 November 1999  相似文献   

7.
Effects of soil drought on growth and productivity of 16 single cross maize hybrids were investigated under field and greenhouse experiments. The Drought Susceptibility Index (DSI) was evaluated in a three year field experiment by the determination of grain loss in conditions of two soil moisture levels (drought and irrigated) and in a pot experiment by the effects of periodical soil drought on seedling dry matter. In the greenhouse experiment response to drought in maize genotypes was also evaluated by root to shoot dry mater ratio, transpiration productivity index, indexes of kernel germination and index of leaf injury by drought and heat temperature. The obtained values of DSI enabled the ranking of the tested genotypes with respect to their drought tolerance. The values of DSI obtained in the field experiment allow to divide the examined genotypes into three, and in the greenhouse experiment into two groups of drought susceptibility. The correlation coefficients between the DSI of maize hybrids in the field and the greenhouse experiments was high and statistically significant, being equal to 0.876. The ranking of hybrids drought tolerance, identified on the basis of field experiments was generally in agreement with the ranking established on the basis of the greenhouse experiment. In the greenhouse experiment statistically significant coefficients of correlation with DSI values in hybrids were obtained for the ratio of dry matter of overground parts to dry matter of roots, both for control and drought treatments, whereas in the estimation of the transpiration productivity coefficient and total dry matter the correlation coefficients were not statistically significant. In this study several laboratory tests were carried out for the drought tolerance of plants (kernel germination, leaf injury) on 4 drought resistant and 4 drought sensitive maize hybrids. Statistically significant correlation coefficients between DSI and the examined parameter of grain germination and leaf injury were obtained for the determination of promptness index (PI), seedling survival index (SS) and leaf injuries indexes (IDS, ITS) as a result of exposure to 14 days of soil drought, osmotic drought −0.9 MPa and exposure to high temperature 45 ° or 50 °C. The results of laboratory tests show that in maize the genetic variation in the degree of drought tolerance is better manifested under severe conditions of water deficit in the soil.  相似文献   

8.
Summary Anthers of two maize (Zea mays L.) inbred lines, DBTS (P1) and B73 (P2), their F1, F2 and first backcross generations — F1 x DBTS (B1), and F1 x B73 (B2) — were float cultured in YP medium to study the inheritance of corn anther culturability using generation mean analysis. Significant effects of generation were observed for the three traits measured: anther response (%), frequency of embryos (%) and anther productivity. Variation among the generations was similar for anther response and frequency of embryos: no significant differences were found among the P1, F1, F2 and B1 means, but the means of P2 and B2 were significantly lower than those of the other generations. For anther productivity, the F2 generation tended to have a slightly higher tendency for multiple embryo formation. A simple additive-dominance model was adequate in explaining the inheritance of anther response and frequency of embryos, but digenic epistasis (additive x dominance) was involved in the inheritance of anther productivity. Additive genetic variance was higher than non-additive genetic variance for all the traits; however, only environmental variance was significant. Narrow-sense heritability estimates were 65% and 75% for anther response and frequency of embryos, respectively. Significant inter-plant variation was observed within generations, even for the inbred line DBTS, but isozymic analysis involving five enzyme loci did not reveal any genotypic variability within the inbred lines DBTS and B73.  相似文献   

9.
Summary Totipotent callus cultures were established from anther-free glumes of Sweet corn, Seed corn, DHM 103 and DHM 101 on MS medium supplemented with 1–2 mg/l 2,4-D. The callusing response of the glumes was tested on six different media. Glumes at the uninucleate stage of pollen development callused with a high frequency compared to other stages. Organogenesis was observed in 40% of the cultures on media devoid of hormones. A total of 76 plantlets were regenerated on medium with 0.5–1.0 mg/l of both IAA and kinetin. Cytological observations in root tips indicated a diploid chromosome number (2n=20).  相似文献   

10.
We have successfully used the low-pressure BioWare gene gun, developed for gene transfer in animal cells, for plant tissues. The BioWare device is easy to manipulate. Just 50 psi helium pressure was sufficient to transfer foreign genes into the aleurone layer and embryo of maize without causing tissue damage in the impact area. As shown by expression signals from invasive histochemical β-glucuronidase (GUS) activity, the foreign reporter gene expressed well in bombarded tissues. This successful GUS-transient expression extends the application of this low-pressure gene gun from animal cells to plant tissues.  相似文献   

11.

Background

Plants rely on the root system for anchorage to the ground and the acquisition and absorption of nutrients critical to sustaining productivity. A genome wide association analysis enables one to analyze allelic diversity of complex traits and identify superior alleles. 384 inbred lines from the Ames panel were genotyped with 681,257 single nucleotide polymorphism markers using Genotyping-by-Sequencing technology and 22 seedling root architecture traits were phenotyped.

Results

Utilizing both a general linear model and mixed linear model, a GWAS study was conducted identifying 268 marker trait associations (p ≤ 5.3×10-7). Analysis of significant SNP markers for multiple traits showed that several were located within gene models with some SNP markers localized within regions of previously identified root quantitative trait loci. Gene model GRMZM2G153722 located on chromosome 4 contained nine significant markers. This predicted gene is expressed in roots and shoots.

Conclusion

This study identifies putatively associated SNP markers associated with root traits at the seedling stage. Some SNPs were located within or near (<1 kb) gene models. These gene models identify possible candidate genes involved in root development at the seedling stage. These and respective linked or functional markers could be targets for breeders for marker assisted selection of seedling root traits.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1226-9) contains supplementary material, which is available to authorized users.  相似文献   

12.
Summary Free proline accumulation was measured in two maize genotypes (Ganga-2 and D747) subjected to waterlogging for three weeks at the knee high stage. The initial content of free proline was same in both the genotypes (0.1 micromole per gram fresh weight of leaves). The free proline content increased in both the genotypes when the plants were subjected to waterlogging. However, Ganga-2 accumulated more free proline than D747. Ganga-2 appeared to be more waterlogging tolerant than D-747.  相似文献   

13.
Postembryonically formed shoot-borne roots make up the major backbone of the adult maize root stock. In this study the abundant soluble proteins of the first node (coleoptilar node) of wild-type and mutant rtcs seedlings, which do not initiate crown roots, were compared at two early stages of crown root formation. In Coomassie Bluestained 2-D gels, representing soluble proteins of coleoptilar nodes 5 and 10 days after germination, 146 and 203 proteins were detected, respectively. Five differentially accumulated proteins (> two-fold change; t-test: 95% significance) were identified in 5-day-old and 14 differentially accumulated proteins in 10-day-old coleoptilar nodes of wild-type versus rtcs. All 19 differentially accumulated proteins were identified via ESI MS/MS mass spectrometry. Five differentially accumulated proteins, including a regulatory G-protein and a putative auxin-binding protein, were further analyzed at the RNA expression level. These experiments confirmed differential gene expression and revealed subtle developmental regulation of these genes during early coleoptilar node development. This study represents the first proteomic analysis of shoot-borne root initiation in cereals and will contribute to a better understanding of the molecular basis of this developmental process unique to cereals.  相似文献   

14.
Kim YS  Kim TW  Kim SK 《Phytochemistry》2005,66(9):1000-1006
GC-MS analysis revealed that primary roots of maize contain 6-deoxocathasterone, 6-deoxoteasterone and 6-deoxotyphasterol. These brassinosteroids, and the previously identified campesterol, campestanol, 6-deoxocastasterone and castasterone, in the roots are members of a biosynthetic pathway to castasterone, namely the late C-6 oxidation pathway, suggesting that its biosynthetic pathway is operative in the roots. To verify this, a cell-free enzyme extract was prepared from maize roots, and enzymatic conversions from campesterol to castasterone through the aforementioned sterols and brassinosteroids were examined. The presence for the biosynthetic sequences, campesterol-->24-methylcholest-4-en-3beta-ol-->24-methylcholest-4-en-3-one-->24-methylcholest-5 alpha-cholestan-3-one-->campestanol and 6-deoxoteasterone-->6-deoxo-3-dehydroteasterone-->6-deoxotyphasterol-->6-deoxocastasterone-->castasterone were demonstrated. These results indicate that maize roots contain a complete set of enzymes involved in the late C-6 oxidation pathway, thereby demonstrating that endogenous brassinosteroids are biosynthesized in the roots.  相似文献   

15.
16.
The association of enzyme activities in developing kernels with specific storage product accumulation at maturity was analyzed in different parts of Zea mays inbred OH43 kernels. Maize kernels were harvested at 20 and 55 days post-pollination and dissected into basal region, pericarp, embryo, lower endosperm, middle endosperm and upper endosperm. Mature (55 days pos(-pollination) kernel parts were analyzed for starch, total protein, zein and oil content. Immature (20 days post-pollination) kernel parts were assayed for activities of 15 enzymes of sugar and amino acid metabolism. Statistical analyses of the data suggested that glucokinase (EC 2.7.1.2) fructokinase (EC 2.7.1.4) and phosphofructokinase (EC 2.7.1.1 11) activities were primarily associated with oil accumulation, whereas ADP'-glueose pyrophosphorylasc (EC 2.7.7.27) and sucrose synthase (EC 2.4.1.13) activities were associated with starch accumulation. The results suggest that oil biosynthesis utilizes inveitase-mediated sucrose degradation in a pathway not requiring pyrophosphatc. whereas starch biosynthesis utilizes a sucrose synthase-mediated pathway of sucrose degradation in a pathway requiring pyrophosphatc. Additional groups of enzyme activities were associated with each oilier but not with any specific storage product and appeared to be associated with general metabolic activity.  相似文献   

17.
Accumulation of the 28 KD protein of the glutelin-(G2) fraction was followed in developing maize endosperm, using sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) and peak integration of scanned gels. 28 KD glutelin-2 could already be observed from 15 days after pollination and its accumulates reached a plateau during the second half of the development period. The process of biosynthesis of 28 KD glutelin-2 and zeins occurs in a parallel way. Subcellular fractions obtained from linear sucrose gradient centrifugation of developing maize endosperms were analyzed by SDS-PAGE and immunoblotting using a serum reacting against glutelin-2 and 14 KD Z2. Glutelin-2 was found to be present in the protein bodies when subcellular fractionation was carried out without dithiothreitol (DTT). The presence of a reducing agent causes the elution of glutelin-2 from protein bodies. Immunocytochemical labelling using the protein A-colloidal gold technique in protein bodies incubated with anti-G2 IgG revealed that G2 is located mainly in the periphery of protein bodies. These results are interpreted as indicating a structural role for glutelins in protein bodies.  相似文献   

18.
Efficient and reproducible selection of transgenic cells is an essential component of a good transformation system. In this paper, we describe the development of glyphosate as a selective agent for the recovery of transgenic embryogenic corn callus and the production of plants tolerant to Roundup® herbicide. Glyphosate, the active ingredient in Roundup® herbicide inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) and thus prevents the synthesis of chorismate-derived aromatic amino acids and secondary metabolites in plants. A maize EPSPS gene has been cloned, mutated to produce a modified enzyme resistant to inhibition by glyphosate, and engineered into a monocot expression vector. In addition, a bacterial gene which degrades glyphosate (glyphosate oxidoreductase, or GOX) was also cloned into a similar expression vector. Stably transformed callus has been reproducibly recovered following introduction of mutant maize EPSPS and GOX genes into tissue culture cells by particle bombardment and selection on glyphosate-containing medium. Plants have been regenerated both on and off glyphosate selection medium, and are tolerant to normally lethal levels of Roundup®. Excellent seed set has been obtained from both self and outcross pollinations from both sprayed and unsprayed regenerated plants. Progeny tests have demonstrated normal Mendelian transmission and tolerance to the herbicide for some of the transgenic events.  相似文献   

19.
20.
Summary Mutational and recombinational analyses carried out with the R-nj allele in maize to elucidate the genetic mechanism involved in unique pattern formation and origin of occasional self-coloured kernels in this stock revealed that R-nj represents a complex with two closely linked discrete components. The self-colour (Sc) component is responsible for anthocyanin production and the navajo (Nj) component regulates the time of onset and termination of pigment synthesis restricting the pigmentation to the crown region of the kernel. The probable gene order in the R region of the R-nj:Illinois isolate is: G-Sc-Nj-K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号