首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cell-based tumor vaccines, consisting of MHC class I+ tumor cells engineered to express MHC class II molecules, stimulate tumor-specific CD4+ T cells to mediate rejection of established, poorly immunogenic tumors. Previous experiments have demonstrated that these vaccines induce immunity by functioning as APCs for endogenously synthesized, tumor-encoded Ags. However, coexpression of the MHC class II accessory molecule invariant chain (Ii), or deletion of the MHC class II cytoplasmic domain abrogates vaccine immunogenicity. Recent reports have highlighted the role of lipid microdomains in Ag presentation. To determine whether Ii expression and/or truncation of MHC class II molecules impact vaccine efficacy by altering MHC class II localization to lipid microdomains, we examined the lipid raft affinity of MHC class II molecules in mouse M12.C3 B cell lymphomas and SaI/A(k) sarcoma vaccine cells. Functional MHC class II heterodimers were detected in lipid rafts of both cell types. Interestingly, expression of Ii in M12.C3 cells or SaI/A(k) cells blocked the MHC class II interactions with cell surface lipid rafts. In both cell types, truncation of either the alpha- or beta-chain decreased the affinity of class II molecules for lipid rafts. Simultaneous deletion of both cytoplasmic domains further reduced localization of class II molecules to lipid rafts. Collectively, these data suggest that coexpression of Ii or deletion of the cytoplasmic domains of MHC class II molecules may reduce vaccine efficacy by blocking the constitutive association of MHC class II molecules with plasma membrane lipid rafts.  相似文献   

2.
We have developed cell-based cancer vaccines that activate anti-tumor immunity by directly presenting endogenously synthesized tumor antigens to CD4+ T helper lymphocytes via MHC class II molecules. The vaccines are non-conventional antigen-presenting cells because they express MHC class II, do not express invariant chain or H-2M, and preferentially present endogenous antigen. To further improve therapeutic efficacy we have studied the intracellular trafficking pathway of MHC class II molecules in the vaccines using endoplasmic reticulum-localized lysozyme as a model antigen. Experiments using endocytic and cytosolic pathway inhibitors (chloroquine, primaquine, and brefeldin A) and protease inhibitors (lactacystin, LLnL, E64, and leupeptin) indicate antigen presentation depends on the endocytic pathway, although antigen degradation is not mediated by endosomal or proteasomal proteases. Because H2-M facilitates presentation of exogenous antigen via the endocytic pathway, we investigated whether transfection of vaccine cells with H-2M could potentiate endogenous antigen presentation. In contrast to its role in conventional antigen presentation, H-2M had no effect on endogenous antigen presentation by vaccine cells or on vaccine efficacy. These results suggest that antigen/MHC class II complexes in the vaccines may follow a novel route for processing and presentation and may produce a repertoire of class II-restricted peptides different from those presented by professional APC. The therapeutic efficacy of the vaccines, therefore, may reside in their ability to present novel tumor peptides, consequently activating tumor-specific CD4+ T cells that would not otherwise be activated.  相似文献   

3.
It is unclear whether peptide-MHC class II (pMHC) complexes on distinct types of APCs differ in their capacity to trigger TCRs. In this study, we show that individual cognate pMHC complexes displayed by dendritic cells (DCs), as compared with nonprofessional APCs, are far better in productively triggering Ag-specific TCRs independently of conventional costimulation. As we further show, this is accomplished by the unique ability of DCs to robustly activate the Src family kinases (SFKs) Lck and Fyn in T cells even in the absence of cognate peptide. Instead, this form of SFK activation depends on interactions of DC-displayed MHC with TCRs of appropriate restriction, suggesting a central role of self-pMHC recognition. DC-mediated SFK activation leads to "TCR licensing," a process that dramatically increases sensitivity and magnitude of the TCR response to cognate pMHC. Thus, TCR licensing, besides costimulation, is a main mechanism of DCs to present Ag effectively.  相似文献   

4.
We are exploring cell-based vaccines as a treatment for the 50% of patients with large primary uveal melanomas who develop lethal metastatic disease. MHC II uveal melanoma vaccines are MHC class I+ uveal melanoma cells transduced with CD80 genes and MHC II genes syngeneic to the recipient. Previous studies demonstrated that the vaccines activate tumor-specific CD4+ T cells from patients with metastatic uveal melanoma. We have hypothesized that vaccine potency is due to the absence of the MHC II-associated invariant chain (Ii). In the absence of Ii, newly synthesized MHC II molecules traffic intracellularly via a non-traditional pathway where they encounter and bind novel tumor peptides. Using confocal microscopy, we now confirm this hypothesis and demonstrate that MHC II molecules are present in both the endosomal and secretory pathways in vaccine cells. We also demonstrate that uveal melanoma MHC II vaccines activate uveal melanoma-specific, cytolytic CD8+ T cells that do not lyse normal fibroblasts or other tumor cells. Surprisingly, the CD8+ T cells are cytolytic for HLA-A syngeneic and MHC I-mismatched uveal melanomas. Collectively, these studies demonstrate that MHC II uveal melanoma vaccines are potent activators of tumor-specific CD4+ and CD8+ T cells and suggest that the non-conventional intracellular trafficking pattern of MHC II may contribute to their enhanced immunogenicity. Since MHC I compatibility is unnecessary for the activation of cytolytic CD8+ T cells, the vaccines could be used in uveal melanoma patients without regard to MHC I genotype.  相似文献   

5.
Neoantigens resulting from the inherent genomic instability of tumor cells generally do not trigger immune recognition. Similarly, transfection of tumors with model Ags often fails to elicit CD8+ T cell responses or alter a tumor's growth rate or lethality. We report here that the adoptive transfer of activated Th1-type CD4+ T cells specific for a model tumor Ag results in the de novo generation of CD8+ T cells with specificity to that Ag and concomitant tumor destruction. The anti-tumor effects of the CD4+ T cells required the presence of both MHC class I and class II on host cells, as evidenced by experiments in knockout mice, suggesting that CD4+ T cells enhanced the ability of host APC to activate endogenous CD8+ T cells. These results indicate that the apparent inability of tumor cells expressing highly immunogenic epitopes to activate tumor-specific CD8+ T cells can be altered by activated CD4+ T cells.  相似文献   

6.
The most effective immunological adjuvants contain microbial products, such as TLR agonists, which bind to conserved pathogen recognition receptors. These activate dendritic cells (DCs) to become highly effective APCs. We assessed whether TLR ligand-treated DCs can enhance the otherwise defective response of aged naive CD4 T cells. In vivo administration of CpG, polyinosinic-polycytidylic acid, and Pam(3)CSK(4) in combination with Ag resulted in the increased expression of costimulatory molecules and MHC class II by DCs, increased serum levels of the inflammatory cytokines IL-6 and RANTES, and increased cognate CD4 T cell responses in young and aged mice. We show that, in vitro, preactivation of DCs by TLR ligands makes them more efficient APCs for aged naive CD4 T cells. After T-DC interaction, there are enhanced production of inflammatory cytokines, particularly IL-6, and greater expansion of the aged T cells, resulting from increased proliferation and greater effector survival with increased levels of Bcl-2. TLR preactivation of both bone marrow-derived and ex vivo DCs improved responses. IL-6 produced by the activated DCs during cognate T cell interaction was necessary for enhanced aged CD4 T cell expansion and survival. These studies suggest that some age-associated immune defects may be overcome by targeted activation of APCs by TLR ligands.  相似文献   

7.
Optimal Ag targeting and activation of APCs, especially dendritic cells (DCs), are important in vaccine development. In this study, we report the effects of different Toll-like receptor (TLR)-binding compounds to enhance immune responses induced by human APCs, including CD123(+) plasmacytoid DCs (PDCs), CD11c(+) myeloid DCs (MDCs), monocytes, and B cells. PDCs, which express TLR7 and TLR9, responded to imidazoquinolines (imiquimod and R-848) and to CpG oligodeoxynucleotides stimulation, resulting in enhancement in expression of costimulatory molecules and induction of IFN-alpha and IL-12p70. In contrast, MDCs, which express TLR3, TLR4, and TLR7, responded to poly(I:C), LPS, and imidazoquinolines with phenotypic maturation and high production of IL-12 p70 without producing detectable IFN-alpha. Optimally TLR ligand-stimulated PDCs or MDCs exposed to CMV or HIV-1 Ags enhanced autologous CMV- and HIV-1-specific memory T cell responses as measured by effector cytokine production compared with TLR ligand-activated monocytes and B cells or unstimulated PDCs and MDCs. Together, these data show that targeting specific DC subsets using TLR ligands can enhance their ability to activate virus-specific T cells, providing information for the rational design of TLR ligands as adjuvants for vaccines or immune modulating therapy.  相似文献   

8.
We investigated interactions between CD4+ T cells and dendritic cells (DC) necessary for presentation of exogenous Ag by DC to CD8+ T cells. CD4+ T cells responding to their cognate Ag presented by MHC class II molecules of DC were necessary for induction of CD8+ T cell responses to MHC class I-associated Ag, but their ability to do so depended on the manner in which class II-peptide complexes were formed. DC derived from short-term mouse bone marrow culture efficiently took up Ag encapsulated in IgG FcR-targeted liposomes and stimulated CD4+ T cell responses to Ag-derived peptides associated with class II molecules. This CD4+ T cell-DC interaction resulted in expression by the DC of complexes of class I molecules and peptides from the Ag delivered in liposomes and permitted expression of the activation marker CD69 and cytotoxic responses by naive CD8+ T cells. However, while free peptides in solution loaded onto DC class II molecules could stimulate IL-2 production by CD4+ T cells as efficiently as peptides derived from endocytosed Ag, they could not stimulate induction of cytotoxic responses by CD8+ T cells to Ag delivered in liposomes into the same DC. Signals requiring class II molecules loaded with endocytosed Ag, but not free peptide, were inhibited by methyl-beta-cyclodextrin, which depletes cell membrane cholesterol. CD4+ T cell signals thus require class II molecules in cholesterol-rich domains of DC for induction of CD8+ T cell responses to exogenous Ag by inducing DC to process this Ag for class I presentation.  相似文献   

9.
Exosomes are nanovesicles released by different cell types including dendritic cells (DCs). The fact that exosomes express surface MHC-peptide complexes suggests that they could function as Ag-presenting vesicles or as vehicles to spread allogeneic Ags for priming of anti-donor T cells during elicitation of graft rejection or induction/maintenance of transplant tolerance. We demonstrate that circulating exosomes transporting alloantigens are captured by splenic DCs of different lineages. Internalization of host-derived exosomes transporting allopeptides by splenic DCs leads to activation of anti-donor CD4 T cells by the indirect pathway of allorecognition, a phenomenon that requires DC-derived, instead of exosome-derived, MHC class II molecules. By contrast, allogeneic exosomes are unable to stimulate direct-pathway T cells in vivo. We demonstrate in mice that although graft-infiltrating leukocytes release exosomes ex vivo, they do not secrete enough concentrations of exosomes into circulation to stimulate donor-reactive T cells in secondary lymphoid organs. Instead, our findings indicate that migrating DCs (generated in vitro or isolated from allografts), once they home in the spleen, they transfer exosomes expressing the reporter marker GFP to spleen-resident DCs. Our results suggest that exchange of exosomes between DCs in lymphoid organs might constitute a potential mechanism by which passenger leukocytes transfer alloantigens to recipient's APCs and amplify generation of donor-reactive T cells following transplantation.  相似文献   

10.
Liposomal vaccines--targeting the delivery of antigen   总被引:2,自引:0,他引:2  
Vaccines that can prime the adaptive immune system for a quick and effective response against a pathogen or tumor cells, require the generation of antigen (Ag)-specific memory T and B cells. The unique ability of dendritic cells (DCs) to activate na?ve T cells, implies a key role for DCs in this process. The generation of tumor-specific CD8(+) cytotoxic T cells (CTLs) is dependent on both T cell stimulation with Ag (peptide-MHC-complexes) and costimulation. Interestingly, tumor cells that lack expression of T cell costimulatory molecules become highly immunogenic when transfected to express such molecules on their surface. Adoptive immunotherapy with Ag-pulsed DCs also is a strategy showing promise as a treatment for cancer. The use of such cell-based vaccines, however, is cumbersome and expensive to use clinically, and/or may carry risks due to genetic manipulations. Liposomes are particulate vesicular lipid structures that can incorporate Ag, immunomodulatory factors and targeting molecules, and hence can serve as potent vaccines. Similarly, Ag-containing plasma membrane vesicles (PMV) derived from tumor cells can be modified to incorporate a T cell costimulatory molecule to provide both TCR stimulation, and costimulation. PMVs also can be modified to contain IFN-gamma and molecules for targeting DCs, permitting delivery of both Ag and a DC maturation signal for initiating an effective immune response. Our results show that use of such agents as vaccines can induce potent anti-tumor immune responses and immunotherapeutic effects in tumor models, and provide a strategy for the development of effective vaccines and immunotherapies for cancer and infectious diseases.  相似文献   

11.
12.
Dendritic cells (DCs) are potent APCs and attractive vectors for cancer immunotherapy. Using the B16 melanoma, a poorly immunogenic experimental tumor that expresses low levels of MHC class I products, we investigated whether DCs loaded ex vivo with apoptotic tumor cells could elicit combined CD4(+) and CD8(+) T cell dependent, long term immunity following injection into mice. The bone marrow-derived DCs underwent maturation during overnight coculture with apoptotic melanoma cells. Following injection, DCs migrated to the draining lymph nodes comparably to control DCs at a level corresponding to approximately 0.5% of the injected inoculum. Mice vaccinated with tumor-loaded DCs were protected against an intracutaneous challenge with B16, with 80% of the mice remaining tumor-free 12 wk after challenge. CD4(+) and CD8(+) T cells were efficiently primed in vaccinated animals, as evidenced by IFN-gamma secretion after in vitro stimulation with DCs loaded with apoptotic B16 or DCs pulsed with the naturally expressed melanoma Ag, tyrosinase-related protein 2. In addition, B16 melanoma cells were recognized by immune CD8(+) T cells in vitro, and cytolytic activity against tyrosinase-related protein 2(180-188)-pulsed target cells was observed in vivo. When either CD4(+) or CD8(+) T cells were depleted at the time of challenge, the protection was completely abrogated. Mice receiving a tumor challenge 10 wk after vaccination were also protected, consistent with the induction of tumor-specific memory. Therefore, DCs loaded with cells undergoing apoptotic death can prime melanoma-specific helper and CTLs and provide long term protection against a poorly immunogenic tumor in mice.  相似文献   

13.
Adoptive transfer of autologous dendritic cells (DCs) loaded with tumor-associated CD4 and CD8 T cell epitopes represents a promising avenue for the immunotherapy of cancer. In an effort to increase the loading of therapeutic synthetic peptides on MHC II molecules, we used a mutant of HLA-DM (DMY) devoid of its lysosomal sorting motif and that accumulates at the cell surface. Transfection of DMY into HLA-DR(+) cells resulted in increased loading of the exogenously supplied HA(307-318) peptide, as well as increased stimulation of HA-specific T cells. Also, on transduction in mouse and human DCs, DMY increased loading of HEL(48-61) and of the tumor Ag-derived gp100(174-190) peptides, respectively. Interestingly, expression of DMY at the surface of APCs favored Th1 differentiation over Th2. Finally, we found that DMY(-) and DMY(+) mouse APCs differentially stimulated T cell hybridomas sensitive to the fine conformation of peptide-MHC II complexes. Taken together, our results suggest that the overexpression of HLA-DMY at the plasma membrane of DCs may improve quantitatively, but also qualitatively, the presentation of CD4 T cell epitopes in cellular vaccine therapies for cancer.  相似文献   

14.
Intercellular exchange of MHC molecules has been reported between many cells, including professional and nonprofessional APCs. This phenomenon may contribute to T cell immunity to pathogens. In this study, we addressed whether the transfer of MHC class I:peptide complexes between cells plays a role in T cell responses and compare this to conventional cross-presentation. We observed that dsRNA-matured bone marrow-derived dendritic cells (BMDCs) acquired peptide:MHC complexes from other BMDCs either pulsed with OVA(257-264) peptide, soluble OVA, or infected with a recombinant adenovirus expressing OVA. In addition, BMDCs were capable of acquiring MHC:peptide complexes from epithelial cells. Spleen-derived CD8alpha(+) and CD8alpha(-) dendritic cells (DCs) also acquired MHC:peptide complexes from BMDCs pulsed with OVA(257-264) peptide. However, the efficiency of acquisition by these ex vivo derived DCs is much lower than acquisition by BMDC. In all cases, the acquired MHC:peptide complexes were functional in that they induced Ag-specific CD8(+) T cell proliferation. The efficiency of MHC transfer was compared with cross-presentation for splenic CD8alpha(+) and CD8alpha(-) as well as BMDCs. CD8alpha(+) DCs were more efficient at inducing T cell proliferation when they acquired Ag via cross-presentation, the opposite was observed for BMDCs and splenic CD8alpha(-) DCs. We conclude from these observations that the relative efficiency of MHC transfer vs cross-presentation differs markedly between different DC subsets.  相似文献   

15.
Dendritic cells (DCs) are one of the most potent antigen-presenting cells (APCs) capable of activating immune responses. Different forms of tumor antigens have been used to load DCs to initiate tumor-specific immune responses. Heat shock proteins (HSPs) are considered natural adjuvants which have the ability to chaperone peptides associated with them presented efficiently by interaction with professional APCs through specific receptors. In the present study, we used HSP, gp96-peptide complexes, derived from human hepatocellular carcinoma (HCC) cells as antigens for pulsing DCs. We found that gp96-peptide complexes derived from HCC cells induced the maturation of DCs by enhancing expression of human leukocyte antigen class II, CD80, CD86, CD40, and CD83. The matured DCs stimulated a high level of autologous T cell proliferation and induced HCC specific cytotoxic T lymphocytes, which specifically killed HCC cells by a major histocompatability complex (MHC) class I restricted mechanism. These findings demonstrate that DCs pulsed with gp96-peptide complexes derived from HCC cells are effective in activating specific T cell responses against HCC cells.  相似文献   

16.
Upon exposure to Ag and inflammatory stimuli, dendritic cells (DCs) undergo a series of dynamic cellular events, referred to as DC maturation, that involve facilitated peptide Ag loading onto MHC class II molecules and their subsequent transport to the cell surface. Besides MHC molecules, human DCs prominently express molecules of the CD1 family (CD1a, -b, -c, and -d) and mediate CD1-dependent presentation of lipid and glycolipid Ags to T cells, but the impact of DC maturation upon CD1 trafficking and Ag presentation is unknown. Using monocyte-derived immature DCs and those stimulated with TNF-alpha for maturation, we observed that none of the CD1 isoforms underwent changes in intracellular trafficking that mimicked MHC class II molecules during DC maturation. In contrast to the striking increase in surface expression of MHC class II on mature DCs, the surface expression of CD1 molecules was either increased only slightly (for CD1b and CD1c) or decreased (for CD1a). In addition, unlike MHC class II, DC maturation-associated transport from lysosomes to the plasma membrane was not readily detected for CD1b despite the fact that both molecules were prominently expressed in the same MIIC lysosomal compartments before maturation. Consistent with this, DCs efficiently presented CD1b-restricted lipid Ags to specific T cells similarly in immature and mature DCs. Thus, DC maturation-independent pathways for lipid Ag presentation by CD1 may play a crucial role in host defense, even before DCs are able to induce maximum activation of peptide Ag-specific T cells.  相似文献   

17.
Activation of tumor-reactive T lymphocytes is a promising approach for the prevention and treatment of patients with metastatic cancers. Strategies that activate CD8+ T cells are particularly promising because of the cytotoxicity and specificity of CD8+ T cells for tumor cells. Optimal CD8+ T cell activity requires the co-activation of CD4+ T cells, which are critical for immune memory and protection against latent metastatic disease. Therefore, we are developing “MHC II” vaccines that activate tumor-reactive CD4+ T cells. MHC II vaccines are MHC class I+ tumor cells that are transduced with costimulatory molecules and MHC II alleles syngeneic to the prospective recipient. Because the vaccine cells do not express the MHC II-associated invariant chain (Ii), we hypothesized that they will present endogenously synthesized tumor peptides that are not presented by professional Ii+ antigen presenting cells (APC) and will therefore overcome tolerance to activate CD4+ T cells. We now report that MHC II vaccines prepared from human MCF10 mammary carcinoma cells are more efficient than Ii+ APC for priming and boosting Type 1 CD4+ T cells. MHC II vaccines consistently induce greater expansion of CD4+ T cells which secrete more IFNγ and they activate an overlapping, but distinct repertoire of CD4+ T cells as measured by T cell receptor Vβ usage, compared to Ii+ APC. Therefore, the absence of Ii facilitates a robust CD4+ T cell response that includes the presentation of peptides that are presented by traditional APC, as well as peptides that are uniquely presented by the Ii vaccine cells.  相似文献   

18.
Dendritic cells (DCs) progress through distinct maturational phases; immature DCs capture Ag while mature DCs are optimized for Ag presentation. Proper control of immunity requires regulated compartmentalization of MHC class II molecules. We report that DCs also regulate MHC class I trafficking throughout maturation. Although mature human DCs express high levels of surface MHC class I, immature DCs exhibit lower surface levels while retaining MHC class I-peptide complexes in the Golgi. A cell line, KG-1, behaves similarly. We confirm the similarity of KG-1 to DCs by demonstrating its capacity to present exogenous Ags in an MHC class I-restricted fashion to CD8(+) T cell hybridomas, a phenomenon called cross-presentation. Biochemical characterization of MHC class I trafficking throughout maturation showed that, in early KG-1 dendritic-like cells, surface arrival of MHC class I-peptide complexes is delayed by their retention in the Golgi. In mature dendritic-like cells, these complexes relocate to the surface and their stability increases, concomitant with up-regulation of costimulatory molecules. Maturation induces qualitative changes in the MHC class I-associated peptide repertoire demonstrated by increased thermostability. The differential processing of MHC class I throughout maturation may prevent premature immune activation while promoting T cell responses in lymph nodes to Ags acquired at sites of inflammation.  相似文献   

19.
The human gastrointestinal mucosa is exposed to a diverse normal microflora and dietary Ags and is a common site of entry for pathogens. The mucosal immune system must respond to these diverse signals with either the initiation of immunity or tolerance. APCs are important accessory cells that modulate T cell responses which initiate and maintain adaptive immunity. The ability of APCs to communicate with CD4+ T cells is largely dependent on the expression of class II MHC molecules by the APCs. Using immunohistochemistry, confocal microscopy, and flow cytometry, we demonstrate that alpha-smooth muscle actin(+), CD90+ subepithelial myofibroblasts (stromal cells) constitutively express class II MHC molecules in normal colonic mucosa and that they are distinct from professional APCs such as macrophages and dendritic cells. Primary isolates of human colonic myofibroblasts (CMFs) cultured in vitro were able to stimulate allogeneic CD4+ T cell proliferation. This process was dependent on class II MHC and CD80/86 costimulatory molecule expression by the myofibroblasts. We also demonstrate that CMFs, engineered to express a specific DR4 allele, can process and present human serum albumin to a human serum albumin-specific and DR4 allele-restricted T cell hybridoma. These studies characterize a novel cell phenotype which, due to its strategic location and class II MHC expression, may be involved in capture of Ags that cross the epithelial barrier and present them to lamina propria CD4+ T cells. Thus, human CMFs may be important in regulating local immunity in the colon.  相似文献   

20.
Genetic modification of vaccines by linking the Ag to lysosomal or endosomal targeting signals has been used to route Ags into MHC class II processing compartments for improvement of CD4+ T cell responses. We report in this study that combining an N-terminal leader peptide with an MHC class I trafficking signal (MITD) attached to the C terminus of the Ag strongly improves the presentation of MHC class I and class II epitopes in human and murine dendritic cells (DCs). Such chimeric fusion proteins display a maturation state-dependent subcellular distribution pattern in immature and mature DCs, mimicking the dynamic trafficking properties of MHC molecules. T cell response analysis in vitro and in mice immunized with DCs transfected with Ag-encoding RNA showed that MITD fusion proteins have a profoundly higher stimulatory capacity than wild-type controls. This results in efficient expansion of Ag-specific CD8+ and CD4+ T cells and improved effector functions. We used CMVpp65 and NY-ESO-1 Ags to study preformed immune responses in CMV-seropositive individuals and cancer patients. We show that linking these Ags to the MITD trafficking signal allows simultaneous, polyepitopic expansion of CD8+ and CD4+ T cells, resulting in distinct CD8+ T cell specificities and a surprisingly broad and variable Ag-specific CD4+ repertoire in different individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号