首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Variant surface glycoprotein (VSG) genes of African trypanosomes are expressed when they are inserted into one of several telomere-linked expression sites. We cloned and characterized an 11-kilobase (kb) DNA fragment located upstream of an expressed VSG gene. A DNA sequence of 1.8 kb that is located immediately upstream of the inserted VSG gene contains sequences homologous to the 76-base-pair repeats described as being upstream of VSG genes in Trypanosoma brucei (D. A. Campbell, M. P. Van Bree, and J. C. Boothroyd, Nucleic Acids Res. 12:2759-2774). There are no such sequences elsewhere in the 11-kb cloned region. Southern blot analysis using probes from the cloned region revealed multiple unlinked copies of the same or very similar regions. At least three of these are located near telomeres, and two have been shown to be used for the expression of known Trypanosoma equiperdum VSG genes. Like VSG genes, the upstream sequences themselves can be duplicated and deleted. The choice of expression site to be used by a duplicated VSG gene is nonrandom; the site used for expression of the parental VSG gene is strongly favored for use in the daughter variant. Furthermore, even when the parental expression site is not used, the VSG gene occupying it is replaced. Thus, an active expression site is a preferential target for gene conversion in the next variation event.  相似文献   

3.
D F Cully  H S Ip  G A Cross 《Cell》1985,42(1):173-182
Trypanosoma brucei variant surface glycoprotein (VSG) genes are activated either by duplicative (DA) transposition of the gene to a pre-activated expression site or by nonduplicative (NDA) activation of a previously silent telomeric gene. We have obtained a recombinant clone spanning the 5' barren region of the expression linked copy of the duplicated VSG gene 117a. By DNA sequence and hybridization analyses we have identified a pleomorphic family of 14-25 non-VSG genes that lie upstream of both DA and NDA VSG expression sites. These expression site associated genes (ESAGs) encode 1.2 kb poly(A)+ mRNAs that are specifically transcribed from the active VSG expression telomere in mammalian bloodstream stages of T. brucei but, in common with VSG genes, are not transcribed in procyclic culture forms. cDNA and genomic sequences predict open reading frames that are conserved in the two ESAGs examined.  相似文献   

4.
5.
Pulsed field gradient gel electrophoresis fractionates chromosome-sized DNA molecules from T. brucei. About 60% of the DNA remains in or close to the gel slot (large DNA). There are about three chromosomes of approximately 2 Mb, at least six chromosomes of 200-700 kb, and roughly a hundred mini-chromosomes of 50-150 kb. The basic copy genes for VSGs 118 and 221 reside in large DNA. Their activation by duplicative transposition leads to the appearance of an additional copy in the 2 Mb DNA, showing that activation involves an interchromosomal gene transposition. When gene 221 is activated without duplication, it remains in large DNA, proving that at least two sites for expression of VSG genes exist. In support of this, the mini-exons encoding the 5' 35 nucleotides of VSG messenger RNAs are in large and 2 Mb DNA. The mini-chromosomes hybridize strongly to VSG gene probes and are absent in C. fasciculata. We suggest that their main function is to provide a large pool of telomeric VSG genes.  相似文献   

6.
7.
8.
VSG gene 118 is transcribed from a cotransposed pol I-like promoter   总被引:31,自引:0,他引:31  
C Shea  M G Lee  L H Van der Ploeg 《Cell》1987,50(4):603-612
  相似文献   

9.
10.
11.
Trypanosome variant surface glycoprotein genes expressed early in infection   总被引:11,自引:0,他引:11  
We have studied further the genes for trypanosomal variant surface glycoproteins expressed during a chronic infection of rabbits with Trypanosoma brucei, strain 427. We show that there are three closely related chromosomal-internal isogenes for VSG 121; expression of one of these genes is accompanied by the duplicate transposition of the gene to a telomeric expression site, also used by other chromosome-internal VSG genes. The 3' end of the 121 gene is replaced during transposition with another sequence, also found in the VSG mRNAs of two other variants. We infer that an incoming VSG gene duplicate recombines with the resident gene in the expression site and may exchange ends in this process. The extra expression-linked copy of the 121 gene is lost when another gene enters the expression site. However, when the telomeric VSG gene 221 is activated without duplication the extra 121 gene copy is inactivated without detectable alterations in or around the gene. We have also analysed the VSG genes expressed very early when trypanosomes are introduced into rats or tissue culture. The five genes identified in 24 independent switching events were all found to be telomeric genes and we calculate that the telomeric 1.8 gene has a 50% chance of being activated in this trypanosome strain when the trypanosome switches the VSG that is synthesized. We argue that the preferential expression of telomeric VSG genes is due to two factors: first, some telomeric genes reside in an inactive expression site, that can be reactivated; second, telomeric genes can enter an active expression site by a duplicative telomere conversion and this process occurs more frequently than the duplicative transposition of chromosome-internal genes to an expression site.  相似文献   

12.
13.
I Florent  T Baltz  A Raibaud  H Eisen 《Gene》1987,53(1):55-62
In African trypanosomes, the DNA region situated upstream from all active and some silent variant surface glycoprotein genes (VSG genes) has a repetitive structure. This region is composed of a variable number of tandem repeats of an A + T-rich sequence which lacks the recognition sites for most commonly used restriction endonucleases, and is thus called 'barren region'. The length of the barren regions varies in different trypanosome variants from 0.2 to many kb. We have characterized the barren region upstream from the active VSG gene in two independent Trypanosoma equiperdum variants expressing the same VSG gene in the same expression site. To analyse the junction point between the expression site and the inserted gene, these two barren regions were cloned and sequenced. The longer barren region contains 14 repeats and the other contains two repeats. In both cases the junction point has been shown to lie within a repeat but different repeats were used in each case. These results argue that the repeats are important for the insertion of the duplicated-transposed gene into the expression site and that any repeat can be used.  相似文献   

14.
African trypanosomes undergo antigenic variation of their variant surface glycoprotein (VSG) coat to avoid immune system-mediated killing by their mammalian host. An important mechanism for switching the expressed VSG gene is the duplicative transposition of a silent VSG gene into one of the telomeric VSG expression sites of the trypanosome, resulting in the replacement of the previously expressed VSG gene. This process appears to be a gene conversion reaction, and it has been postulated that sequences within the expression site may act to initiate and direct the reaction. All bloodstream form expression sites contain huge arrays (many kilobase pairs) of 70-bp repeat sequences that act as the 5' boundary of gene conversion reactions involving most silent VSG genes. For this reason, the 70-bp repeats seemed a likely candidate to be involved in the initiation of switching. Here, we show that deletion of the 70-bp repeats from the active expression site does not affect duplicative transposition of VSG genes from silent expression sites. We conclude that the 70-bp repeats do not appear to function as indispensable initiation sites for duplicative transposition and are unlikely to be the recognition sequence for a sequence-specific enzyme which initiates recombination-based VSG switching.  相似文献   

15.
16.
Trypanosomes with a coat of variant surface glycoprotein (VSG) 118, consistently appear around day 20 when a rabbit is infected with Trypanosoma brucei strain 427. There is a single chromosome-internal gene for VSG 118 and this is activated by duplicative transposition to a telomeric expression site. We show here that the expression-linked extra copy of VSG gene 118 in a day 18 population of a chronic infection is heterogeneous, and we infer that the population is not monoclonal but is the result of multiple independent activations of the 118 gene. We show that the heterogeneity of expression-linked extra copies is also present in other trypanosome populations expressing chromosome-internal VSG genes. We present a model for the timing of VSG gene activation during chronic infection that emphasizes two features: the relative activation and inactivation frequencies of different expression sites, and the degree of homology of the sequences flanking VSG genes with expression sites.  相似文献   

17.
J.C. Boothroyd  G.A.M. Cross 《Gene》1982,20(2):281-289
The nucleotide sequence of the 5′ end of the mRNA for variant surface glycoprotein (VSG) 117 has been determined and compared with the sequence of the unexpressed basic copy (BC) of the VSG 117 gene. This shows the existence of an exon 35 nucleotides long at the 5′ end of the mRNA. The evidence suggests that this ‘mini-exon’ is derived from the expression site into which the VSG 117 BC is transposed during activation. The nucleotide sequence of this mini-exon is indistinguishable from that recently found for a different VSG, 118 (Van der Ploeg et al., Nucl. Acids Res. 10 (1982) 3591–3604). Analysis of the 5′ end of the mRNA for another VSG (221) whose gene is thought to be activated by a different mechanism to that of VSGs 117 and 118 indicates that the 5′- most 35 nucleotides of the VSG 221 mRNA are identical to the 117/118 mini-exon sequence. The implications of these results for the mechanism of VSG gene expression are discussed.  相似文献   

18.
The expression of several surface antigen genes in Trypanosoma brucei is mediated by the duplicative transposition of a basic-copy variant surface glycoprotein (VSG) gene into an expression site. We determined that the appearance of variant 118, in a parasitemia, resulted from at least four independent duplicative transpositions of the same VSG 118 gene. Variants 117 and 118 both appeared at specific periods but resulted from multiple independent activations. Antigenic variants thus occur in an ordered manner. We show that in the duplicative transpositions of VSG genes, the ends of the transposed segments were homologous between the basic copy and the expression site. Sequences other than the previously reported 70-base-pair (bp) repeats could be involved. In one variant, 118 clone 1, the homology was between a sequence previously transposed into the expression site and a sequence located 6 kilobases upstream of the VSG 118 gene. In variant 118b the homology was presumably in 70-bp repeat arrays, while in a third 118 variant yet another sequence was involved. The possibility that the 70-bp repeats are important in the initial steps of the recombinational events was illustrated by a rearrangement involving a 70-bp repeat array. The data provide strong evidence for the notion that gene conversion mediates the duplicative transposition of VSG genes. We discuss a model that explains how the process of duplicative transposition can occur at random and still produce an ordered appearance of variants.  相似文献   

19.
Telomere conversion in trypanosomes.   总被引:18,自引:7,他引:11       下载免费PDF全文
Activation of the gene coding for variant surface glycoprotein (VSG) 118 in Trypanosoma brucei proceeds via a duplicative transposition to a telomeric expression site. The resulting active expression-linked extra copy (ELC) is usually flanked by DNA that lacks sites for most restriction enzymes and that is thought to interfere with the cloning of the ELC as recombinant DNA in Escherichia coli. We have circumvented this problem by cloning an aberrant 118 ELC gene, flanked at the 3'-side by at least 1 kb DNA, that contains restriction enzyme sites. Our analysis shows that this DNA and the 3'-end of the 118 ELC gene are derived from another VSG gene (1.1006) that is permanently located at a telomeric position. We propose that the 3'-end of the 1.1006 gene and (all of) its 3' flanking sequence moved to the expression site by a telomere conversion. Such a telomere conversion can also account for the appearance of an extra copy of the 1.1006 gene detected in a sub-population of our trypanosome strain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号