首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pham HN  Gregory P 《Plant physiology》1980,65(6):1173-1175
Helminthosporium maydis Race T toxin caused the expected changes in freshly isolated mitochondria from T cytoplasm corn, namely complete uncoupling of oxidative phosphorylation, pronounced stimulation of succinate and NADH respiration, complete inhibition of malate respiration, and increased mitochondrial swelling. In contrast, identical toxin treatments of the mitochondria after 12 hours aging on ice resulted in partial uncoupling, much lower stimulation of succinate and NADH respiration, no inhibition of malate respiration, and no mitochondrial swelling. Almost all of the toxin sensitivity was lost by 6 hours aging. At this stage, the mitochondria were 208× and 66× less sensitive to toxin-induced changes in coupling of malate respiration and state 4 malate respiration rates, respectively. Loss of toxin sensitivity did not occur when the mitochondria were aged under nitrogen or in the presence of 5 millimolar dithiothreitol. This suggested that the aging effect was due to oxidation, possibly of sulfhydryl groups in one or more mitochondrial membrane proteins.  相似文献   

2.
The effects of fluoride on respiration of plant tissue and mitochondria were investigated. Fumigation of young soybean plants (Glycine max Merr. cv. Hawkeye) with 9–12 μg × m?3 HF caused a stimulation of respiration at about 2 days of treatment followed by inhibition 2 days later. Mitochondria isolated from the stimulated tissue had higher respiration rates, greater ATPase activity, and lower P/O ratios, while in mitochondria from inhibited tissue, all three were reduced. Treatment of etiolated soybean hypocotyl sections in Hoagland's solution containing KF for 3 to 10 h only resulted in inhibition of respiration. Mitochondria isolated from this tissue elicited increased respiration rates with malate as substrate and inhibited respiration with succinate. With both substrates respiratory control and ADP/O ratios were decreased. Direct treatment of mitochondria from the etiolated soybean hypocotyl tissue with fluoride resulted in inhibition of state 3 respiration and lower ADP/O ratios with the substrates succinate, malate, and NADH. Fluoride was also found to increase the amount of osmotically induced swelling and cause a more rapid leakage of protein with mitochondria isolated from etiolated corn shoots (Zea mays L. cv. Golden Cross Bantam). The results are discussed with respect to possible effects of fluoride on mitochondrial membranes.  相似文献   

3.
We have studied the effects of ATP and ADP on the oxidation of malate by coupled and uncoupled mitochondria prepared from etiolated hypocotyls of mung bean (Vigna radiata L.).

In coupled mitochondria, ATP (1 millimolar) increased pyruvate production and decreased oxaloacetate formation without altering the rate of oxygen consumption. ATP also significantly decreased oxaloacetate production and increased pyruvate production in mitochondria that were uncoupled by carbonyl cyanide p-trifluoromethoxyphenyl hydrazone plus oligomycin.

In coupled mitochondria, ADP (1 millimolar) increased the production of both pyruvate and oxaloacetate concomitantly with the acceleration of oxygen uptake to the state 3 rate. The effects of ADP were largely eliminated in uncoupled mitochondria. These results indicate that, whereas the ADP stimulation of oxaloacetate and pyruvate production in the coupled mitochondria is brought about primarily as the result of the accelerated rates of electron transport and NADH oxidation by the respiratory chain in state 3, ATP has significant regulatory effects independent of those that might be exerted by control of electron transport.

  相似文献   

4.
The cytosolic factors that influence mitochondrial oxidative phosphorylation rates are relatively unknown. In this report, we examine the effects of phosphoenolpyruvate (PEP), a glycolytic intermediate, on mitochondrial function. It is reported here that in rat heart mitochondria, PEP delays the onset of state 3 respiration in mitochondria supplied with either NADH-linked substrates or succinate. However, the maximal rate of state 3 respiration is only inhibited when oxidative phosphorylation is supported by NADH-linked substrates. The capacity of PEP to delay and/or inhibit state 3 respiration is dependent upon the presence or absence of ATP. Inhibition of state 3 is exacerbated in uncoupled mitochondria, with a 40% decrease in respiration seen with 0.1mM PEP. In contrast, ATP added exogenously or produced by oxidative phosphorylation completely prevents PEP-mediated inhibition. Mechanistically, the results support the conclusion that the main effects of PEP are to impede ADP uptake and inhibit NADH oxidation. By altering the NADH/NAD(+) status of mitochondria, it is demonstrated that PEP enhances succinate dehydrogenase activity and increase free radical production. The results of this study indicate PEP may be an important modulator of mitochondrial function under conditions of decreased ATP.  相似文献   

5.
The effect of acute hypoxia on adenine nucleotides, glutamate, aspartate, alanine and respiration of heart mitochondria was studied in rats. The losses of intramitochondrial adenine nucleotides (ATP+ADP+AMP) during hypoxia were related to depression of state 3 respiration supported by glutamate and malate, as well as decrease in uncoupled respiration. Hypoxia had less prominent effect on succinate-dependent state 3 respiration. Non-phosphorylating (state 4) respiratory rates and ADP/O ratios were slightly affected by oxygen deprivation. Glutamate fall in tissue and mitochondria of hypoxic hearts was concomitant with significant increase in tissue alanine and mitochondrial aspartate. The losses of intramitochondrial ATP and respiratory activity with NAD-dependent substrates during hypoxia were related to a decrease in mitochondrial glutamate. The results suggest that hypoxia-induced impairment of complex I of respiratory chain and a loss of glutamate from the matrix may limit energy-producing capacity of heart mitochondria.  相似文献   

6.
The effect of acute respiratory hypoxia in rats on mitochondrial respiration, adenine nucleotides and some amino acids of the heart was studied. The decrease in the total (ATP + ADP + AMP) and exchangeable (ATP + ADP) adenine nucleotide pool of the mitochondria was accompanied by a pronounced loss of state 3 respiration with glutamate plus malate and a slight decrease with succinate plus rothenone. The uncoupled respiration of mitochondria with glutamate and malate was decreased in the same degree as in the absence of 2,4-dinitrophenol. State 4 respiration with substrates of both types was unaffected by hypoxia. These data point to a hypoxia-induced impairment of complex I of the respiratory chain. The decrease of tissue and mitochondrial glutamate was accompanied by the elevation of alanine content in the heart and an increase in intramitochondrial aspartate. The ADP-stimulated respiration of mitochondria was correlated with mitochondrial glutamate and ATP as well as with exchangeable adenine nucleotide pools during hypoxia. The experimental results suggest that mitochondrial dysfunction induced by hypoxia may also be attributed to the low level of mitochondrial glutamate.  相似文献   

7.
A procedure was developed to obtain intact and purified mitochondria from mesophyll and bundle sheath tissues of Zea mays L. cv. I.N.R.A. 180, an NADP+-malic enzyme type C4 plant. There was little cross-contamination between the two mitochondrial fractions.
Both types of mitochondria oxidized NADH, succinate and malate with respiratory control. In mesophyll mitochondria malate oxidation was highly sensitive to KCN (85–90% inhibition of first state 3) and showed good respiratory control. In bundle sheath mitochondria malate oxidation was less sensitive to cyanide (75-80% inhibition) and showed poor respiratory control. Malate and NADH appeared to be the best substrates for respiratory activity. Mesophyil mitochondria could not oxidize glycine, whereas bundle sheath mitochondria could.
The results indicate that mesophyll and bundle sheath mitochondria of Zea mays are differentiated, not only with respect to the decarboxylation of malate but also with respect to the decarboxylation phase of photorespiration.  相似文献   

8.
The effects of the naturally occurring polyamines, spermine, putrescine, and spermidine were explored on mitochondrial state 3. state 4, and uncoupled respiration activities, ADP/O ratio, respiratory control ratio of pepper ( Capsicum annuum L. cv. Early Cal Wonder) and avocado ( Persea americana Mill. cv. Booth-8 or Simmonds) mitochondria oxidizing either succinate, external NADH, malate, α-ketoglutarate or tetramethyl- p -phenylenediamine. Abnormally high concentrations of spermine and spermidine such as might occur during chilling stress of these chilling-sensitive fruits were detrimental to several oxidase activities, especially to external NADH oxidase. State 3 respiration for NADH oxidase was inhibited more than 70% by 10 m M spermine. The spermine inhibition of uncoupled NADH oxidase was not reversed by the presence of divalent cations including Ca2+, Mg2+, Mn2+, and Sr2+ at concentrations up to 10 m M or by 100 m M KCl. The inhibition primarily affected the Vmax. Other possible sites of polyamine interactions are discussed.  相似文献   

9.
The effects of cadmium on isolated corn shoot mitochondria were determined. In the absence of phosphate cadmium stimulated the oxidation of exogenous NADH optimally at 0.025 mM, but was inhibitory at 0.1 mM and above. The presence of phosphate negated the cadmium stimulation of exogenous NADH oxidation and permitted inhibitions only at higher cadmium concentrations. Succinate or malate + pyruvate oxidation in the absence of phosphate was inhibited to a greater extent by cadmium than when phosphate was present. ADP/O and respiratory control ratios were reduced by cadmium but generally were less sensitive to cadmium than state 4 or minus phosphate respiration. The data suggest that the site of cadmium effect is likely to be early in electron transport. Cadmium had a pronounced effect on mitochondrial swelling under either passive or active conditions. When succinate or exogenous NADH were being oxidized swelling occurred at 0.05 mM cadmium, but with malate + pyruvate the cadmium concentration had to exceed 1.0 mM. Phosphate (2 mM) prevented the swelling. Dithiothreitol, a SH group protector, prevented any effect of cadmium on swelling or respiration which suggests that sulfhydryl groups are likely involved in the cadmium-membrane interaction.  相似文献   

10.
11.
The rates of both forward and reverse electron transfer in phosphorylating submitochondrial particles from bovine heart can be controlled by the thermodynamic phosphorylation potential (deltaGp) of the adenine nucleotide system. deltaGp is the Gibbs free energy of ATP synthesis and is defined by the relationship deltaGp = -deltaG'o + RTln([ATP]/[ADP][Pi]) where deltaG'o is the standard free energy of ATP hydrolysis. Studies of the effects of deltaGp on NADH respiration and the reduction of NAD+ by succinate show that increasing values of deltaGp cause an inhibition of forward electron transfer and a stimulation of reverse electron transfer. Between deltaGp values of 7.6 and 13.0 kcal/mol the rate of NADH respiration decreased 3-fold and the rate of NAD+ reduction by succinate increased 3-fold. Indirect phosphorylation potential titration experiments as well as direct chemical measurements indicate that steady state levels of ATP, ADP, and Pi are established during NADH respiration which correspond to a deltaGp equal to 10.7 to 11.4 kcal/mol.  相似文献   

12.
The phosphate metabolites, adenosine diphosphate (ADP), inorganic phosphate (Pi), and adenosine triphosphate (ATP), are potentially important regulators of mitochondrial respiration in vivo. However, previous studies on the heart in vivo and in vitro have not consistently demonstrated an appropriate correlation between the concentration of these phosphate metabolites and moderate changes in work and respiration. Recently, mitochondrial NAD(P)H levels have been proposed as a potential regulator of cardiac respiration during alterations in work output. In order to understand better the mechanism of respiratory control under these conditions, we investigated the relationship between the phosphate metabolites, the NAD(P)H levels, and oxygen consumption (Q02) in the isovolumic perfused rat heart during alterations in work output with pacing. ATP, creatine phosphate (CrP), Pi and intracellular pH were measured using 31P NMR. Mitochondrial NAD(P)H levels were monitored using spectrofluorometric techniques. Utilizing glucose as the sole substrate, an increase in paced heart rate led to an increase in Q02 from 1.73 +/- 0.09 to 2.29 +/- 0.12 mmol Q2/h per g dry wt. No significant changes in the levels of Pi, PCr, ATP, or the calculated ADP levels were detected. Under identical conditions, an increase in heart rate was associated with a 23 + 3% increase in NAD(P)H fluorescence. Thus, under the conditions of these studies, an increase in Q02 was not associated with an increase in ADP or Pi. In contrast, increases in Q02 were associated with an increase in NAD(P)H. These data are consistent with the notion that increases in the mitochondrial NADH redox state regulate steady-state levels of respiration when myocardial work is increased.  相似文献   

13.
The NAD-dependent glycerol-3-phosphate dehydrogenase (glycerol-3-phosphate:NAD+ oxidoreductase; EC 1.1.1.8; G3P DHG) was purified 178-fold to homogeneity from Saccharomyces cerevisiae strain H44-3D by affinity- and ion-exchange chromatography. SDS-PAGE indicated that the enzyme had a molecular mass of approximately 42,000 (+/- 1,000) whereas a molecular mass of 68,000 was observed using gel filtration, implying that the enzyme may exist as a dimer. The pH optimum for the reduction of dihydroxyacetone phosphate (DHAP) was 7.6 and the enzyme had a pI of 7.4. NADPH will not substitute for NADH as coenzyme in the reduction of DHAP. The oxidation of glycerol-3-phosphate (G3P) occurs at 3% of the rate of DHAP reduction at pH 7.0. Apparent Km values obtained were 0.023 and 0.54 mM for NADH and DHAP, respectively. NAD, fructose-1,6-bisphosphate (FBP), ATP and ADP inhibited G3P DHG activity. Ki values obtained for NAD with NADH as variable substrate and FBP with DHAP as variable substrate were 0.93 and 4.8 mM, respectively.  相似文献   

14.
Usuda H 《Plant physiology》1988,88(4):1461-1468
Recently, a nonaqueous fractionation method of obtaining highly purified mesophyll chloroplasts from maize leaves was established. This method is now used to determine adenine nucleotide levels, the redox states of the NADP system, Pi levels and dihydroxyacetone phosphate/3-phosphoglycerate ratios in mesophyll chloroplasts of Zea mays L. leaves under different light intensities. The sum of the ATP, ADP, and AMP levels was estimated to be 1.4 millimolar and the ATP/ADP ratio was 1 in the dark and 2.5 to 4 in the light. The adenine nucleotides were equilibrated by adenylate kinase. The total concentration of NADP(H) in the chloroplasts was 0.3 millimolar in the dark and 0.48 millimolar in the light. The ratio of NADPH/NADP was 0.1 to 0.18 in the dark and 0.23 to 0.48 in the light. The Pi level was estimated to be 20 millimolar in the dark and 10 to 17 millimolar in the light. The 3-phosphoglycerate reducing system was under thermodynamic equilibrium in the light. The calculated assimilatory forces were 8 per molar and 40 to 170 per molar in the dark and the light, respectively. There was no relationship between the degree of activation of pyruvate, Pi dikinase, and adenylate energy charge, or ATP/ADP ratio or ADP level under various light intensities. Only a weak relationship was found between the degree of activation of NADP-malate dehydrogenase and the NADPH/NADP ratio or NADP(H) level with increasing light intensity. A possible regulatory mechanism which is responsible for the regulation of activation of pyruvate,Pi dikinase and NADP-malate dehydrogenase is discussed.  相似文献   

15.
Activities of Calvin-Benson cycle enzymes were found in protoplasts of guard cells from Vicia faba L. The activities of NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPD) and ribulose-1,5-bisphosphate carboxylase (RuBPC) were 2670 and 52 micromoles per milligrams chlorophyll per hour, respectively. Activities of NADP-GAPD and RuBPC in guard cells were increased by red light illumination, and the light activations were inhibited completely by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II. Enzymes related to the Calvin-Benson cycle such as 3-phosphoglycerate kinase (PGAK), triose phosphate (TP) isomerase, and fructose-1,6-bisphosphatase (FBPase) were shown to be present in guard-cell chloroplasts. From these results, we conclude that the photosynthetic carbon reduction pathway is present in guard-cell chloroplasts of Vicia faba. We compared these enzyme activities in guard cells with those in mesophyll cells. The activities of NADP-GAPD and PGAK were more than several-fold higher and that of TP isomerase was much higher in guard-cell chloroplasts than in mesophyll chloroplasts. In contrast, activities of RuBPC and FBPase were estimated to be roughly half of those in mesophyll chloroplasts. High activities of PGAK, NAD-GAPD, and TP isomerase were found in fractions enriched in cytosol of guard cells. Illumination of guard-cell protoplasts with red light increased the cellular ATP/ADP ratio from 5 to 14. These results support the interpretation that guard cells utilize a shuttle system (e.g. phosphoglycerate [PGA]/dihydroxyacetone phosphate [DHAP] shuttle) for an indirect transfer of ATP and reducing equivalents from chloroplasts to the cytosol.  相似文献   

16.
《BBA》2022,1863(3):148532
The mitochondrial respiratory chain (RC) enables many metabolic processes by regenerating both mitochondrial and cytosolic NAD+ and ATP. The oxidation by the RC of the NADH metabolically produced in the cytosol involves redox shuttles as the malate-aspartate shuttle (MAS) and is of paramount importance for cell fate. However, the specific metabolic regulations allowing mitochondrial respiration to prioritize NADH oxidation in response to high NADH/NAD+ redox stress have not been elucidated. The recent discovery that complex I (NADH dehydrogenase), and not complex II (Succinate dehydrogenase), can assemble with other respiratory chain complexes to form functional entities called respirasomes, led to the assumption that this supramolecular organization would favour NADH oxidation. Unexpectedly, characterization of heart and liver mitochondria demonstrates that the RC systematically favours electrons provided by the ‘respirasome free’ complex II. Our results demonstrate that the preferential succinate driven respiration is tightly controlled by OAA levels, and that OAA feedback inhibition of complex II rewires RC fuelling increasing NADH oxidation capacity. This new regulatory mechanism synergistically increases RC's NADH oxidative capacity and rewires MDH2 driven anaplerosis of the TCA, preventing malate production from succinate to favour oxidation of cytosolic malate. This regulatory mechanism synergistically adjusts RC and TCA fuelling in response to extramitochondrial malate produced by the MAS.  相似文献   

17.
Moreau F  Romani R 《Plant physiology》1982,70(5):1385-1390
After preparation on self-generated Percoll gradients, avocado (Persea americana Mill, var. Fuerte and Hass) mitochondria retain a high proportion of cyanide-insensitive respiration, especially with α-ketoglutarate and malate as substrates. Whereas α-ketoglutarate oxidation remains unchanged, the rate of malate oxidation increases as ripening advances through the climacteric. An enhancement of mitochondrial malic enzyme activity, measured by the accumulation of pyruvate, closely parallels the increase of malate oxidation. The capacity for cyanide-insensitive respiration is also considerably enhanced while respiratory control decreases (from 3.3 to 1.7), leading to high state 4 rates.

Both malate dehydrogenase and malic enzyme are functional in state 3, but malic enzyme appears to predominate before the addition of ADP and after its depletion. In the presence of cyanide, a membrane potential is generated when the alterntive pathway is operating. Cyanide-insensitive malate oxidation can be either coupled to the first phosphorylation site, sensitive to rotenone, or by-pass this site. In the absence of phosphate acceptor, malate oxidation is mainly carried out via malic enzyme and the alternative pathway. Experimental modification of the external mitochondrial environment in vitro (pH, NAD+, glutamade) results in changes in malate dehydrogenase and malic enzyme activities, which also modify cyanide resistance. It appears that a functional connection exists between malic enzyme and the alternative pathway via a rotenone-insensitive NADH dehydrogenase and that this pathway is responsible, in part, for nonphosphorylating respiratory activity during the climacteric.

  相似文献   

18.
17β-estradiol (E2) is considered to modulate the ATP synthase activity through direct binding to the oligomycin sensitive-conferring protein. We have previously demonstrated that E2 increases the amplitude of depolarization associated with the addition of ADP to energized mitochondria (i.e., to initiate a phosphorylative cycle) suggesting a direct action on the phosphorylative system of mitochondria. The purpose of the present study was to investigate the underlying mechanisms responsible for this effect. We show here that E2 modulates the activity of mitochondrial ATP synthase by promoting the intrinsic uncoupling (“slipping”) of the ATP synthase. E2 depressed RCR, ADP/O ratio and state 3 respiration, whereas state 4 respiration was increased and VFCCP (uncoupled respiration) remained unaltered. In contrast to the stimulatory effect on state 4 respiration, state 2 respiration and Volig were not affected by E2. The effect of E2 appeared to be directed towards ATP synthase, since glutamate/malate respiration, uncoupled from the electron transport chain, was unaffected by E2. Apparently, E2 allows a proton back-leak through the Fo component of ATP synthase. This action of E2 is dependent on the presence of ATP, is more pronounced at high membrane potentials, and it is reversed by oligomycin (a Fo-ATP synthase inhibitor) but not by resveratrol (a F1-ATP synthase inhibitor). Altogether, our data provide a mechanistic explanation for the effect of E2 at the level of mitochondrial ATP synthase.  相似文献   

19.
The fungicide zinc dimethyldithiocarbamate (ziram) is a sulfhydryl reagent which inhibits specifically the growth of the yeast Saccharomyces cerevisiae on nonfermentable substrates. In isolated mitochondria, the uncoupled as well as the state 3 oxidations of succinate, α-ketoglutarate, ethanol, and malate plus pyruvate are sensitive to ziram concentrations of 10 to 30 μm. The oxidations of isocitrate, of external NADH, of α-glycerophosphate, and of ascorbate plus tetramethylphenylenediamine exhibit a lower sensitivity to ziram. Succinate, α-ketoglutarate, and pyruvate dehydrogenases activities are 50% inhibited by concentration of ziram lower than 10 μm. At the same concentrations, neither the mitochondrial transports of succinate, ADP, or phosphate nor oxidative phosphorylation and adenosine triphosphatase activities are modified. The kinetic study of the inhibition by ziram of succinate dehydrogenase activity shows that ziram is noncompetitive with succinate and produces sigmoidal inhibitions of state 3 and of uncoupled oxidation of succinate by intact mitochondria. Inhibition of succinate:phenazine methosulfate oxidoreductase activity yields exponential kinetics. However sigmoidal-type inhibition is observed when succinate dehydrogenase activity is stimulated by ATP.  相似文献   

20.
A dihydroxyacetone phosphate (DHAP) reductase has been isolated in 50% yield from Dunaliella tertiolecta by rapid chromatography on diethylaminoethyl cellulose. The activity was located in the chloroplasts. The enzyme was cold labile, but if stored with 2 molar glycerol, most of the activity was restored at 30°C after 20 minutes. The spinach (Spinacia oleracea L.) reductase isoforms were not activated by heat treatment. Whereas the spinach chloroplast DHAP reductase isoform was stimulated by leaf thioredoxin, the enzyme from Dunaliella was stimulated by reduced Escherichia coli thioredoxin. The reductase from Dunaliella was insensitive to surfactants, whereas the higher plant reductases were completely inhibited by traces of detergents. The partially purified, cold-inactivated reductase from Dunaliella was reactivated and stimulated by 25 millimolar Mg2+ or by 250 millimolar salts, such as NaCl or KCl, which inhibited the spinach chloroplast enzyme. Phosphate at 3 to 10 millimolar severely inhibited the algal enzyme, whereas phosphate stimulated the isoform in spinach chloroplasts. Phosphate inhibition of the algal reductase was partially reversed by the addition of NaCl or MgCl2 and totally by both. In the presence of 10 millimolar phosphate, 25 millimolar MgCl2, and 100 millimolar NaCl, reduced thioredoxin causes a further twofold stimulation of the algal enzyme. The Dunaliella reductase utilized either NADH or NADPH with the same pH maximum at about 7.0. The apparent Km (NADH) was 74 micromolar and Km (NADPH) was 81 micromolar. Apparent Vmax was 1100 μmoles DHAP reduced per hour per milligram chlorophyll for NADH, but due to NADH inhibition highest measured values were 350 to 400. The DHAP reductase from spinach chloroplasts exhibited little activity with NADPH above pH 7.0. Thus, the spinach chloroplast enzyme appears to use NADH in vivo, whereas the chloroplast enzyme from Dunaliella or the cytosolic isozyme from spinach may utilize either nucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号