首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the binding of bovine pancreatic trypsin inhibitor (BPTI) to bovine trypsinogen by combining ultrasonic velocimetry, high precision densimetry, and fluorescence spectroscopy. We report the changes in volume, adiabatic compressibility, van't Hoff enthalpy, entropy, and free energy that accompany the association of the two proteins at 25 degrees C and pH 8.0. We have used the measured changes in volume and compressibility in conjunction with available structural data to characterize the binding-induced changes in the hydration properties and intrinsic packing of the two proteins. Our estimate reveals that 110 +/- 40 water molecules become released to the bulk from the hydration shells of BPTI and trypsinogen. Furthermore, we find that the intrinsic coefficient of adiabatic compressibility of the two proteins decreases by 14 +/- 2%, which is suggestive of the binding-induced rigidification of the proteins' interior. BPTI-trypsinogen association is an entropy-driven event which proceeds with an unfavorable change in enthalpy. The favorable change in entropy results from partial compensation between two predominant terms. Namely, a large favorable change in hydrational entropy slightly prevails over a close in magnitude but opposite in sign change in configurational entropy. The reduction in configurational entropy and, consequently, protein dynamics is consistent with the observed decrease in intrinsic compressibility. In general, results of this work emphasize the vital role that water plays in modulating protein recognition events.  相似文献   

2.
The ultrasound velocimetry, densitometry, and differential scanning calorimetry have been used to study the formation of the complexes between human serum albumin (HSA) and polyanions heparin (HEP) and/or dextran sulfate (DS). The values of the ultrasound velocity and specific volume allowed us to determine the specific adiabatic compressibility, phi(K)/beta(0), which reflects the degree of volume compressibility of the complexes. We showed that in the presence of HEP and DS the adiabatic compressibility of HSA decreases with increasing concentration of polyanions. HEP more strongly interacts with HSA than DS. pH of electrolyte in the range 4.7-8.5 weakly affects the adiabatic compressibility. Changes of compressibility of HSA can be caused by increase of the hydration due to the formation of the HSA-polyanion complexes and due to partial unfolding of HSA. The HSA-polyanion interaction resulted in decrease of phase transition temperature of the protein. This evidences about protein destabilization in the presence of polyanions.  相似文献   

3.
Compressibility-structure relationship of globular proteins   总被引:16,自引:0,他引:16  
K Gekko  Y Hasegawa 《Biochemistry》1986,25(21):6563-6571
The adiabatic compressibility, -beta s, of 11 globular proteins in water was determined by means of sound velocity measurements at 25 degrees C. All the proteins studied except for subtilisin showed positive -beta s values, indicating the large internal compressibility of the protein molecules. The intrinsic compressibility of proteins free from the hydration effect appeared to be comparable to that of normal ice. The compressibility data for 25 proteins, including 14 reported previously [Gekko, K., & Noguchi, H. (1979) J. Phys. Chem. 83, 2706-2714], were statistically analyzed to examine the correlation of the compressibility with some structural parameters and the amino acid compositions of proteins. It was found that -beta s increases with increasing partial specific volume and hydrophobicity of proteins. The helix element also seemed to be a dynamic domain to increase -beta s. Four amino acid residues (Leu, Glu, Phe, and His) greatly increased -beta s, and another four (Asn, Gly, Ser, and Thr) decreased it. Some empirical equations were derived for the estimation of the -beta s values of unknown proteins on the basis of their amino acid compositions. The volume fluctuations of proteins revealed by the compressibility data were in the range of 30-200 mL/mol, which corresponded to about 0.3% of the total protein volume. The conformational fluctuation seemed to enhance the thermal stability of proteins.  相似文献   

4.
We measured the densities as well as the sound velocities in solutions of G-actin, F-actin and the reconstituted thin filament. Using the data obtained, we determined their partial specific volumes and partial specific adiabatic compressibilities. The objectives were to investigate the volume change of actin upon polymerization and to detect the conformational change associated with the Ca2+-binding to the reconstituted thin filament. The partial specific volume and the partial specific adiabatic compressibility of G-actin were 0.749 cm3/g and 9.3 · 10−12 cm2/dyne, respectively. The results suggest that G-actin is a rather soft protein compared with other globular proteins. The partial specific volumes of F-actin were in a range of 0.63–0.66 cm3/g depending on the solvent conditions. The partial specific adiabatic compressibilities of F-actin were negative (−(7–13) · 10−12 cm3/dyne). These data indicate that the amount of hydration may increase by several times upon polymerization assuming that the size of the cavity remains constant. We detected little difference between the partial specific adiabatic compressibility of the reconstituted thin filament in a Ca2+-bound state and that in a Ca2+-unbound state. This suggests that the Ca2+ binding affected not the subunit itself but the inter-subunit junction.  相似文献   

5.
We determined the partial molar volumes, V degrees , and adiabatic compressibilities, K degrees (S), of N-acetyl amino acids with neutralized carboxyl termini, N-acetyl amino acid amides, and N-acetyl amino acid methylamides between 18 and 55 degrees C. The individual compounds in the three classes have been selected so as to collectively cover the 20 naturally occurring amino acid side chains. We interpret our experimental results in terms of the volumetric contributions and hydration properties of individual amino acid side chains and their constituent atomic groups. We also conducted pH-dependent densimetric and acoustic measurements to determine changes in volume and compressibility accompanying protonation of the aspartic acid, glutamic acid, histidine, lysine, and arginine side chains. We use our resulting data to develop an additive scheme for calculating the partial molar (specific) volume and adiabatic compressibility of fully extended polypeptide chains as a function of pH and temperature. We discuss the differences and similarities between our proposed scheme and the reported additive approaches. We compare our calculated volumetric characteristics of the fully extended conformations of apocytochrome c and apomyoglobin with the experimental values measured in water (for apocytochrome c) or acidic pH (for apomyoglobin). At these respective experimental conditions, the two proteins are unfolded. However, the comparison between the calculated and experimental volumetric characteristics suggests that neither apocytochrome c nor apomyoglobin are fully unfolded and retain a sizeable core of solvent-inaccessible groups.  相似文献   

6.
The partial molal volume and adiabatic compressibility were measured, as well as their counterion activity, for sodium and potassium salts of three types of carrageenan (κ-, ι- and λ-components) in aqueous solutions at 25°C. Furthermore, the amount of related unfreezable water was estimated by the differential scanning calorimetry. On the basis of these results, the hydration states of carrageenans in the random form were comparatively discussed in relation to their chemical structure, counterion binding and polymer concentration. The sodium salt of each component showed a larger amount of hydration when compared with the corresponding potassium salt. The amount of hydration estimated from molal volume and compressibility data (in dilute solution) increased in the order of κ < ι < λ, while the amount of unfreezable water (in concentrated solution) decreased in the same order. These characteristics hydration behaviours of carrageenans seemed to be reasonably explained in terms of the effects of the charge density and counterion dissociation of these polyions.  相似文献   

7.
We have determined the partial molar volumes, expansibilities, and adiabatic compressibilities of glycine, diglycine, triglycine, tetraglycine, and pentaglycine over the temperature range 18–55°C. These data were analyzed and interpreted in terms of the hydration of these short oligoglycines and their constituent groups. From our results, we have estimated the contributions of the peptide group to the partial molar volume and the partial molar adiabatic compressibility of these oligoglycines. Based on these data, we propose that each of the polar atomic groups of the peptide bond forms approximately two hydrogen bonds with adjacent water molecules. Furthermore, the temperature dependence of the partial molar volume suggests that water that solvates the polar groups of a peptide linkage behaves more like a “normal” liquid than does bulk water, which exhibits its well-known anomalous liquid properties. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
Gekko K  Kimoto A  Kamiyama T 《Biochemistry》2003,42(46):13746-13753
To elucidate the effects of disulfide bonds on the compactness of protein molecules, the partial specific volume (v(o)) and coefficients of adiabatic compressibility (beta(s)(o)) and thermal expansibility (alpha) of five globular proteins (ovalbumin, beta-lactoglobulin, lysozyme, ribonuclease A, and bovine serum albumin) were measured in aqueous solutions with pH values of 7 and 2 at 25 degrees C when their disulfide bonds were totally reduced by carboxamidomethylation. Circular dichroism and fluorescence spectra show that the secondary and tertiary structures are partly disrupted by reduction, depending on the number of disulfide bonds in the proteins and the pH of the medium. The conformational changes are accompanied by decreases in v(o) and beta(s)(o) and by an increase in alpha, indicating that reduction decreases the internal cavity and increases surface hydration. The beta(s)(o) values of native or oxidized proteins decrease, and the effects of reduction on the volumetric parameters become more significant as the number of disulfide bonds increases and as they are formed over a larger distance in the primary structure. These results demonstrate that disulfide bonds play an important role, mainly via entropic forces, in the three-dimensional structure and compactness of protein molecules.  相似文献   

9.
We measured the density, expansivity, specific heat at constant pressure, and sound velocity of suspensions of purple membrane from Halobacterium halobium and their constituent buffers. From these quantities we calculated the apparent values for the density, expansivity, adiabatic compressibility, isothermal compressibility, specific heat at constant pressure, and specific heat at constant volume for the purple membrane. These results are discussed with respect to previously reported measurements on globular proteins and lipids. Our data suggest a simple additive model in which the protein and lipid molecules expand and compress independently of each other. However, this simple model seems to fail to describe the specific heat data. Our compressibility data suggest that bacteriorhodopsin in native purple membrane binds less water than many globular proteins in neutral aqueous solution, a finding consistent with the lipid surround of bacteriorhodopsin in purple membrane.  相似文献   

10.
The partial specific volume and adiabatic compressibility were determined at several temperatures for oxidized and reduced Escherichia coli thioredoxin. Oxidized thioredoxin had a partial specific volume of 0.785-0.809 mL/g at the observed upper limit for all proteins whereas the partial specific volume of reduced thioredoxin was 0.745-0.755 mL/g, a value in the range found for a majority of proteins. The adiabatic compressibility of oxidized thioredoxin was also much larger (9.8-18 x 10(-12) cm2 dyne-1) than that of the reduced protein (3.8-7.3 x 10(-12)). Apart from the region immediately around the small disulfide loop, the structures of the oxidized (X-ray, crystal) and reduced protein (nuclear magnetic resonance, solution) are reported to be very similar. It would appear that alterations in the solvent layer in contact with the protein surface must play a major role in producing these large changes in the apparent specific volumes and compressibilities in this system. Some activities of thioredoxin require the reduced structure but are not electron transfer reactions. The large changes in physical parameters reported here suggest the possibility of a reversible metabolic control function for the SS bond.  相似文献   

11.
High hydrostatic pressures have been used to dissociate non-native protein aggregates and foster refolding to the native conformation. In this study, partial specific volume and adiabatic compressibility measurements were used to examine the volumetric contributions to pressure-modulated refolding. The thermodynamics of pressure-modulated refolding from non-native aggregates of recombinant human interleukin-1 receptor antagonist (IL-1ra) were determined by partial specific volume and adiabatic compressibility measurements. Aggregates of IL-1ra formed at elevated temperatures (55 degrees C) were found to be less dense than native IL-1ra and refolded at 31 degrees C under 1,500 bar pressure with a yield of 57%. Partial specific adiabatic compressibility measurements suggest that the formation of solvent-free cavities within the interior of IL-1ra aggregates cause the apparent increase in specific volume. Dense, pressure-stable aggregates could be formed at 2,000 bar which could not be refolded with additional high pressure treatment, demonstrating that aggregate formation conditions and structure dictate pressure-modulated refolding yields.  相似文献   

12.
13.
Water is essential for the stability and functions of proteins and DNA. Reverse micelles are simple model systems where the structure and dynamics of water are controlled. We have estimated the size of complex reverse micelles by light scattering technique and examined the local microenvironment using fluorescein as molecular probe. The micelle size and water polarity inside reverse micelles depend on water volume fraction. We have investigated the different hydration and confinement effects on activity, processivity, and stability of mammalian DNA polymerase β in reverse micelles. The enzyme displays high processivity on primed single-stranded M13mp19 DNA with maximal activity at 10% of water content. The processivity and activity of DNA polymerase strongly depend on the protein concentration. The enzyme reveals also the enhanced stability in the presence of template-primer and at high protein concentration. The data provide direct evidence for strong influence of microenvironment on DNA polymerase activity.  相似文献   

14.
The experimental determination of protein compressibility reflects both the protein intrinsic compressibility and the difference between the compressibility of water in the protein hydration shell and bulk water. We use molecular dynamics simulations to explore the dependence of the isothermal compressibility of the hydration shell surrounding globular proteins on differential contributions from charged, polar, and apolar protein-water interfaces. The compressibility of water in the protein hydration shell is accounted for by a linear combination of contributions from charged, polar, and apolar solvent-accessible surfaces. The results provide a formula for the deconvolution of experimental data into intrinsic and hydration contributions when a protein of known structure is investigated. The physical basis for the model is the variation in water density shown by the surface-specific radial distribution functions of water molecules around globular proteins. The compressibility of water hydrating charged atoms is lower than bulk water compressibility, the compressibility of water hydrating apolar atoms is somewhat larger than bulk water compressibility, and the compressibility of water around polar atoms is about the same as the compressibility of bulk water. We also assess whether hydration water compressibility determined from small compound data can be used to estimate the compressibility of hydration water surrounding proteins. The results, based on an analysis from four dipeptide solutions, indicate that small compound data cannot be used directly to estimate the compressibility of hydration water surrounding proteins.  相似文献   

15.
C Nicot  M Vacher  M Vincent  J Gallay  M Waks 《Biochemistry》1985,24(24):7024-7032
The solubility, reactivity, and conformational dynamics of myelin basic protein (MBP) from bovine brain were studied in reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT)-isooctane and water. Such a membrane-mimetic system resembles the aqueous spaces of native myelin sheath in terms of physicochemical properties as reflected in the high affinity of MBP for interfacial bound water. This is marked by the unusual profile of the solubility curve of the protein in reverse micelles, which shows optimal solubility at a much lower molar ratio of water to surfactant ([ H2O]/[AOT] = w0) than that reported for other water-soluble proteins. The role of counterions and/or charged polar head groups in the solubilization process is revealed by comparison of the solubility of MBP in nonionic surfactant micellar solutions. Whereas MBP is unfolded in aqueous solutions, insertion into reverse micelles generates a more folded structure, characterized by the presence of 20% alpha-helix. This conformation is unaffected by variations in the water content of the system (in the 2.0-22.4 w0 range). The reactivity of epsilon-amino groups of lysine residues with aqueous solutions of o-phthalaldehyde demonstrates that segments of the peptide chain are accessible to water. Similar results were obtained with the sequence involved in heme binding. In contrast, the sole tryptophan residue, Trp-117, is shielded from the aqueous solvent, as indicated by lack of reaction with N-bromosuccinimide. The invariance of the wavelength maximum emission in the fluorescence spectra as a function of w0 is consistent with this result.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To address the contribution of hydrophobic interaction to the stability of molten globule (MG) of proteins, the effects of various polyols (ethylene glycol, glycerol, erythritol, xylitol, sorbitol, and inositol) on the structure of acid-unfolded horse cytochrome c were examined at pH 2, by means of circular dichroism (CD), partial specific volume, adiabatic compressibility, and differential scanning calorimetry (DSC). Addition of polyols induced the characteristic CD spectra of MG, the effect being enhanced with an increase in their concentration and chain length (the number of OH groups) of polyols except for ethylene glycol. The free energy change of MG formation by sorbitol was comparable with those for the salt-induced MG formation but the heat capacity change was negligibly small. The partial specific volume did not change within the experimental error but the adiabatic compressibility largely increased by MG formation. The sorbitol-induced MG showed a highly cooperative DSC thermogram with a large heat capacity change in comparison with the salt-induced one. These results demonstrate that polyols can stabilize the MG state of this protein through the enhanced hydrophobic interaction overcoming the electrostatic repulsion between charged residues. The stabilizing mechanism and structure of MG state induced by polyols were discussed in terms of the preferential solvent interactions and osmotic pressure of the medium, in comparison with the salt-induced one.  相似文献   

17.
Hydration of polyethylene glycol-grafted liposomes.   总被引:2,自引:0,他引:2       下载免费PDF全文
This study aimed to characterize the effect of polyethylene glycol of 2000 molecular weight (PEG2000) attached to a dialkylphosphatidic acid (dihexadecylphosphatidyl (DHP)-PEG2000) on the hydration and thermodynamic stability of lipid assemblies. Differential scanning calorimetry, densitometry, and ultrasound velocity and absorption measurements were used for thermodynamic and hydrational characterization. Using a differential scanning calorimetry technique we showed that each molecule of PEG2000 binds 136 +/- 4 molecules of water. For PEG2000 covalently attached to the lipid molecules organized in micelles, the water binding increases to 210 +/- 6 water molecules. This demonstrates that the two different structural configurations of the PEG2000, a random coil in the case of the free PEG and a brush in the case of DHP-PEG2000 micelles, differ in their hydration level. Ultrasound absorption changes in liposomes reflect mainly the heterophase fluctuations and packing defects in the lipid bilayer. The PEG-induced excess ultrasound absorption of the lipid bilayer at 7.7 MHz for PEG-lipid concentrations over 5 mol % indicates the increase in the relaxation time of the headgroup rotation due to PEG-PEG interactions. The adiabatic compressibility (calculated from ultrasound velocity and density) of the lipid bilayer of the liposome increases monotonically with PEG-lipid concentration up to approximately 7 mol %, reflecting release of water from the lipid headgroup region. Elimination of this water, induced by grafted PEG, leads to a decrease in bilayer defects and enhanced lateral packing of the phospholipid acyl chains. We assume that the dehydration of the lipid headgroup region in conjunction with the increase of the hydration of the outer layer by grafting PEG in brush configuration are responsible for increasing thermodynamic stability of the liposomes at 5-7 mol % of PEG-lipid. At higher PEG-lipid concentrations, compressibility and partial volume of the lipid phase of the samples decrease. This reflects the increase in hydration of the lipid headgroup region (up to five additional water molecules per lipid molecule for 12 mol % PEG-lipid) and the weakening of the bilayer packing due to the lateral repulsion of PEG chains.  相似文献   

18.
Many globular proteins unfold when subjected to several kilobars of hydrostatic pressure. This “unfolding‐up‐on‐squeezing” is counter‐intuitive in that one expects mechanical compression of proteins with increasing pressure. Molecular simulations have the potential to provide fundamental understanding of pressure effects on proteins. However, the slow kinetics of unfolding, especially at high pressures, eliminates the possibility of its direct observation by molecular dynamics (MD) simulations. Motivated by experimental results—that pressure denatured states are water‐swollen, and theoretical results—that water transfer into hydrophobic contacts becomes favorable with increasing pressure, we employ a water insertion method to generate unfolded states of the protein Staphylococcal Nuclease (Snase). Structural characteristics of these unfolded states—their water‐swollen nature, retention of secondary structure, and overall compactness—mimic those observed in experiments. Using conformations of folded and unfolded states, we calculate their partial molar volumes in MD simulations and estimate the pressure‐dependent free energy of unfolding. The volume of unfolding of Snase is negative (approximately ?60 mL/mol at 1 bar) and is relatively insensitive to pressure, leading to its unfolding in the pressure range of 1500–2000 bars. Interestingly, once the protein is sufficiently water swollen, the partial molar volume of the protein appears to be insensitive to further conformational expansion or unfolding. Specifically, water‐swollen structures with relatively low radii of gyration have partial molar volume that are similar to that of significantly more unfolded states. We find that the compressibility change on unfolding is negligible, consistent with experiments. We also analyze hydration shell fluctuations to comment on the hydration contributions to protein compressibility. Our study demonstrates the utility of molecular simulations in estimating volumetric properties and pressure stability of proteins, and can be potentially extended for applications to protein complexes and assemblies. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
We have determined the partial molar volumes and adiabatic compressibilities of a homologous series of six alpha,omega-aminocarboxylic acids over a broad pH range at 25 degrees C. We interpret the resulting data in terms of the changes in hydration associated with neutralization of amino and carboxyl termini. By combining our volumetric results with pH-dependent data on 1-anilinonaphthalene-8-sulfonic acid fluorescence we propose the following explanation to the long-standing observation that changes in volume and compressibility accompanying neutralization of a carboxyl group depend on the type of the solute in contrast to solute-independent changes in these parameters accompanying neutralization of an amino group. Unlike amino groups, neutralized carboxyl groups are capable of forming hydrogen-bonded structures stabilized by hydrogen bonds between the carbonyl oxygen of one solute molecule and the hydroxyl group of another molecule. Formation of such hydrogen-bonded structures causes an additional decrease in solute hydration with concomitant increases in volume and compressibility. Furthermore, solutes with large aliphatic moieties may form larger associates stabilized, in addition to intermolecular hydrogen bonds, by hydrophobic interactions which will result in further increases in volume and compressibility. In the aggregate, our results emphasize the need for further studies focused on developing an understanding of the role of electrostatic interactions in stabilizing/destabilizing proteins and protein complexes.  相似文献   

20.
The sound velocity and density of suspensions of large unilamellar liposomes from dimyristoylphosphatidylcholine with admixed cholesterol have been measured as a function of temperature around the chain melting temperature of the phospholipid. The cholesterol-to-phospholipid molar ratio xc has been varied over a wide range (0 </= xc </= 0.5). The temperature dependence of the sound velocity number, of the apparent specific partial volume of the phospholipid, and of the apparent specific adiabatic compressibility have been derived from the measured data. These data are particularly discussed with respect to the volume fluctuations within the samples. A theoretical relation between the compressibility and the excess heat capacity of the bilayer system has been derived. Comparison of the compressibilities (and sound velocity numbers) with heat capacity traces display the close correlation between these quantities for bilayer systems. This correlation appears to be very useful as it allows some of the mechanical properties of membrane systems to be calculated from the specific heat capacity data and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号