首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Subcellular fractionation studies of rat liver localized the activity of palmitoyl-L-carnitine hydrolase to the microsomal fraction whereas palmitoyl-CoA hydrolase activity was found both in the microsomal fraction and in mitochrondria. An unusual biphasic sataration curve for palmitoyl-CoA was observed when intact mitochondrial hydrolase activity. Disruption of the mitochondrial structure doubled the palmitoyl-CoA hydrolysis. Discontinuous sucrose gradient centrifugation and digitonin fractionation of rat liver mitochondria demonstrated that a palmitoyl-CoA hydrolase was associated with the matrix fraction. Pure matrix and microsomal fractions showed that the two hydrolase activities were differently affected by the presence of divalent cations. Both the specific activity and the saturation concentration of palmitoyl-CoA were higher for the microsomal enzyme than for the matrix-associated enzyme.  相似文献   

3.
Immunochemical techniques were used to investigate the biochemical properties of human lung epoxide hydrolases. Two epoxide hydrolases with different immunoreactive properties were identified. These two epoxide hydrolases were found in both cytosolic and microsomal cell fractions. Immunotitration of enzyme activity showed that enzymes that catalyze the hydration of benzo(a)pyrene 4,5-oxide react with antiserum to rat microsomal epoxide hydrolase; those that hydrate trans-stilbene oxide do not. Immunotitration and Western blot experiments showed that microsomal and cytosolic benzo(a)pyrene 4,5-oxide hydrolases have significant structural homology. Immunohistochemical staining of human lung benzo(a)pyrene 4,5-oxide hydrolase showed that the enzyme is localized primarily in the bronchial epithelium. No cell type-specific localization was observed. An enzyme-linked immunosorbent assay was developed which allows direct quantitation of benzo(a)pyrene 4,5-oxide hydrolase protein. Levels of enzyme protein detected by this assay correlated well with enzyme levels determined by substrate conversion assays.  相似文献   

4.
We determined the histochemical characteristics of nonspecific esterase in different populations of rat macrophages. The cells included alveolar and peritoneal macrophages recovered by lavage and a mixed cell population obtained by collagenase digestion of the small intestine. The histochemically localized enzyme activity of alveolar and peritoneal macrophages was cytoplasmic, diffuse, and inhibited by sodium fluoride. Both populations were effectively stained using alpha-naphthyl acetate and alpha-naphthyl butyrate as the esterase substrate. When the intestinal cells were examined for activity, a greater percentage of cells showed positive nonspecific esterase than would be predicted by differential counts for macrophages on the basis of morphological criteria. We confirmed, using cell smears and tissue sections, that rat intestinal epithelial cells, a prominent component of the isolated cell population, possessed esterases that react similarly to macrophage esterases with histochemical procedures.  相似文献   

5.
    
Synopsis Whele homogenate of guinea-pig small intestine mucosa was analysed by centrifugation in a zonal rotor. The results indicate that FAD-linked -glycerophosphate dehydrogenase is localized in the mitochondria and that NAD-linked -glycerophosphate dehydrogenase is a soluble phase enzyme. An enzyme hydrolysing -naphthyl palmitate at an acid pH was localized in the lysosomes and was activated by 0.1% Triton X-roo and by freezing and thawing. An alkaline hydrolase acting on -naphthyl laurate was localized in the microsomes. The possibility of this enzyme being different from -naphthyl acetate hydrolase is discussed.  相似文献   

6.
An FAD-containing L-alpha-glycerophosphate oxidase has been purified to homogeneity from Streptococcus faecium. The purified protein exists as a dimer (subunit Mr = 65,000); each subunit contains 1 mol of FAD. The enzyme contains no iron, as determined by atomic absorption spectroscopy. The alpha-glycerophosphate oxidase reacts reversibly with sulfite to form a covalent N(5) adduct; it preferentially binds the anionic form of the native oxidized FAD, and it also stabilizes the p-quinonoid form of 8-mercapto-FAD. The enzyme shows an unusually high reactivity with ferricyanide in the absence of oxygen; however, there is no evidence for any superoxide ion (O2-.) generation under standard assay conditions. Dithionite titrations of the enzyme reveal an unusual pH dependence for the stabilization of the flavin semiquinone; only at pH 8.5 does significant anionic semiquinone accumulate. L-alpha-Glycerophosphate rapidly reduces the enzyme-bound FAD; in addition, a small amount of catalytically insignificant red semiquinone appears under these conditions. The 5-deaza-FAD-reconstituted enzyme is also reduced by substrate, strongly suggesting that a radical mechanism is not involved in the oxidation of alpha-glycerophosphate. Furthermore, nitroethane anion reduces the native enzyme; this observation suggests that an electron transfer mechanism involving a substrate carbanion is possible with this enzyme.  相似文献   

7.
Alpha-glycerophosphate oxidase in Streptococcus faecium F 24   总被引:1,自引:0,他引:1       下载免费PDF全文
alpha-Glycerophosphate oxidase, in a strain of Streptococcus faecium, was found to be adaptive to aerated conditions of growth. The enzyme was purified and found to mediate electron transfer from alpha-glycerophosphate to O(2), with the production of stoichiometric concentrations of H(2)O(2) and dihydroxyacetone phosphate. The enzyme is an anionic flavoprotein, with flavine adenine dinucleotide as the apparent prosthetic group. By manometric methods, a K(m) of 6 x 10(-3)m, with reference to substrate concentration, was obtained. An active reduced nicotinamide adenine dinucleotide diaphorase was closely associated with this enzyme in chromatographic mobility on ECTEOLA-cellulose. The purified alpha-glycerophosphate oxidase was not inhibited by KCN, azide, or sulfhydryl reagents, nor was it stimulated by alpha-lipoate, yeast extract, or other supplements.  相似文献   

8.
Human jejunal intracellular pteroylpolyglutamate hydrolase was purified 30-fold from intestinal mucosa. The apparent molecular weight of the enzyme was 75,000 by Sephadex G-200 gel filtration, and the isoelectric point was at pH 8.0. The enzyme was maximally active at pH 4.5 and was unstable at increasing temperatures. Intracellular pteroylpolyglutamate hydrolase cleaved both terminal and internal gamma-glutamate linkages. In contrast, brush-border pteroylpolyglutamate hydrolase catalyzed the hydrolysis of only terminal gamma-glutamate linkages. The intracellular enzyme showed greatest affinity for the complete folic acid molecule with longer glutamate chains. Subcellular fractionation studies showed the intracellular enzyme was localized in lysosomes. These data show that the properties of human jejunal intracellular pteroylpolyglutamate hydrolase are distinct from those of the brush-border enzyme but are similar to the properties of intracellular pteroylpolyglutamate hydrolase described in other tissues.  相似文献   

9.
The properties and subcellular distribution of CMP-N-acetylneuraminic acid (CMP-NAcNeu) hydrolase were studied in the cortex of calf kidney. The pH optimum was 9.0 in both Tris - HCl and glycine/NaOH buffer. The apparent Km was 0.47 mM and the apparent V 15.3 mumol/h/g wet wt of calf kidney cortex. A stimulation by divalent metal ions (Ca2+ and Mg2+) was demonstrated for the hydrolase. In the presence of Triton X-100 an increase in enzyme activity was observed. CMP-NAcNeu hydrolase was inhibited by EDTA, beta-mercaptoethanol, nucleoside phosphates and nucleotide-sugars. The inhibition was more pronounced when a sub-optimal CMP-NAcNeu concentration was used. The enzyme appeared to be localized in the plasma membranes. In the plasma membrane preparation of calf kidney cortex, which was derived mainly from the proximal tubule cells, the yield of CMP-NAcNeu hydrolase (13%) and its increase in specific activity (9-fold) was as high as for the plasma membrane marker enzymes. From subcellular distribution studies it appeared that the enzyme was localized mainly at the bursh border side of the plasma membrane of the proximal tubule cell.  相似文献   

10.
A demonstration of cell-specific patterns of development in the immature CNS is provided by examples of characteristic, cell-specific time-courses of enzyme development in different classes of brain cells isolated in highly purified form by bulk-separation from the cerebral and cerebellar cortex of the growing rat. The enzymatic analysis was carried out at the level of the nerve and glial cell lysosomes and mitochondria, two subcellular organelles crucial to the economy of all cells. The findings reveal rather similar developmental patterns for the lysosomal hydrolase N-acetyl-beta-D-glucosaminidase in neurons and glial cells of the cerebral cortex as well as in two different cerebellar nerve cell types, the Purkinje and the granule cell. However, significant differences in the post-natal chronology of development of the mitochondrial enzyme alpha-glycerophosphate dehydrogenase were noted between cortical nerve and glial cells, the glial enzyme exhibiting 6-fold higher levels of activity than the neuronal one throughout the first month of postnatal life. The findings emphasize the feasibility as well as the necessity of studies aimed at the elucidation of the cell-specific aspects of the biochemistry of developing nerve and glial cells.  相似文献   

11.
The activities of long-chain acyl-CoA hydrolase (palmitoyl-CoA hydrolase, EC 3.1.2.2) and long-chain acyl-L-carnitine hydrolase, EC 3.1.1.28) in brown adipose tissue from cold-exposed and control guinea pigs were studied. Mitochondria from cold-exposed animals hydrolysed 21 nmol of palmitoyl-CoA/min per mg of protein and 1.3 nmol of palmitoyl-L-carnitine/min per mg of protein, and the specific activities were respectively 2 and 5 times as high in cold-exposed as in control animals. The subcellular-localization studies showed that both the long-chain acyl-CoA hydrolase and long-chain acyl-L-carnitine hydrolase were localized in the mitochondria. A location also in the soluble fraction cannot be excluded. The long-chain acyl-CoA hydrolase activity was doubled when the mitochondria were disrupted; this indicates that the enzyme is localized in the matrix compartment.  相似文献   

12.
13.
The properties and subcellular distribution of CMP-N-acetylneuraminic acid (CMP-NAcNeu) hydrolase were studied in the cortex of calf kidney. The pH optimum was 9.0 in both Tris · HCl and glycine/NaOH buffer. The apparent Km was 0.47 mM and the apparent V 15.3 μmol/h/g wet wt of calf kidney cortex. A stimulation by divalent metal ions (Ca2+ and Mg2+) was demonstrated for the hydrolase. In the presence of Triton X-100 an increase in enzyme activity was observed. CMP-NAcNeu hydrolase was inhibited by EDTA, β-mercaptoethanol, nucleoside phosphates and nucleotide-sugars. The inhibition was more pronounced when a sub-optimal CMP-NAcNeu concentration was used, The enzyme appeared to be localized in the plasma membranes. In the plasma membrane preparation of calf kidney cortex, which was derived mainly from the proximal tubule cells, the yield of CMP-NAcNeu hydrolase (13%) and its increase in specific activity (9-fold) was as high as for the plasma membrane marker enzymes. From subcellular distribution studies it appeared that the enzyme was localized mainly at the brush border side of the plasma membrane of the proximal tubule cell.  相似文献   

14.
Agarose is degraded by a beta-agarase from Pseudomonas atlantica to neoagarooligosaccharides of degree of polymerization (DP), 4, 6, 8, and 10. A beta-neoagarotetraose hydrolase cleaves the central beta-linkage in neoagarotetraose and the beta-linkage near the nonreducing end in neoagarohexaose and -octaose to yield neoagarobiose. The beta-neoagarotetraose hydrolase was localized on or outside the cytoplasmic membrane, in the cell wall region. The enzyme was activated by NaCl, KCl, CaCl2, MnCl2, and MgSO4, has a Km of 3.4 X 10(-3) M for neoagarotetraose, was free from beta-agarase and alpha-neoagarobiose hydrolase activity, and showed no transglycosidic activity.  相似文献   

15.
The properties and subcellular distribution of the enzymes involved with the synthesis and hydrolysis of cholesteryl esters were investigated in skin of normal and essential fatty acid-deficient rats. Most of the activity of the cholesterol-esterifying enzyme(s) is associated with the 12000g and 105000g particulate fractions. The dependence of the enzyme reaction on ATP and CoA suggests that the esterification of cholesterol by rat skin is mediated by a fatty acyl-CoA-cholesterol acyltransferase (EC 2.3.1.-). On the other hand, most of the activity of the cholesteryl ester hydrolase (EC 3.1.1.13) is localized in the 105000g supernatant fraction. Although the activity of the cholesterol-esterifying enzyme(s) was elevated in skin preparations from essential fatty acid-deficient rats, the activity of the hydrolase was significantly decreased. These observations may explain in part the elevated concentrations of sterol esters in the skin of these animals. Prostaglandin E(2) at low concentrations exerted marked inhibitory effect on the activity of the cholesterol-esterifying enzyme(s), whereas no effect was observed on the activity of the hydrolase at similar concentrations. However, at high concentrations prostaglandin E(2) exerted moderate stimulatory effect on the activity of the hydrolase. These results suggest a possible physiological role of this substance in regulating the production of sterol esters in this tissue.  相似文献   

16.
Pyrimidine base and ribonucleoside catabolic enzyme activities of the two type strains of the Pseudomonas diminuta group were investigated for taxonomic classification purposes. The presence of the pyrimidine salvage enzyme nucleoside hydrolase was indicated in both type strains following thin-layer chromatographic analysis. The presence of the hydrolase was also confirmed by enzyme assay. In addition, the activities of the pyrimidine salvage enzymes dihydropyrimidine dehydrogenase and dihydropyrimidinase were measurable in cell-free extracts of both P. diminuta and P. vesicularis. An absence of cytosine deaminase activity was found when assaying extracts of the two type strains. Nucleoside hydrolase and dihydropyrimidine dehydrogenase levels in P. vesicularis were influenced by carbon source while dihydropyrimidinase activity was observed to increase after P. diminuta growth on dihydrothymine as a nitrogen source.  相似文献   

17.
Leukotriene A4 hydrolase was rapidly and extensively purified from rat neutrophils using anion exchange and gel filtration high-pressure liquid chromatography. The enzyme which converts the allylic epoxide leukotriene A4 to the 5,12-dihydroxyeicosatetraenoic acid leukotriene B4 was localized in the cytosolic fraction and exhibited an optimum activity at pH 7.8 and an apparent Km for leukotriene A4 between 2 X 10(-5) and 3 X 10(-5) M. The purified leukotriene A4 hydrolase was shown to have a molecular weight of 68 000 on sodium dodecylsulfate polyacrylamide gel electrophoresis and of 50 000 by gel filtration. The molecular weight and monomeric native form of this enzyme are unique characteristics which distinguish leukotriene A4 hydrolase from previously purified epoxide hydrolases.  相似文献   

18.
The Escherichia coli genes frmB (yaiM) and yeiG encode two uncharacterized proteins that share 54% sequence identity and contain a serine esterase motif. We demonstrated that purified FrmB and YeiG have high carboxylesterase activity against the model substrates, p-nitrophenyl esters of fatty acids (C2-C6) and alpha-naphthyl acetate. However, both proteins had the highest hydrolytic activity toward S-formylglutathione, an intermediate of the glutathione-dependent pathway of formaldehyde detoxification. With this substrate, both proteins had similar affinity (Km = 0.41-0.43 mM), but FrmB was almost 5 times more active. Alanine replacement mutagenesis of YeiG demonstrated that Ser145, Asp233, and His256 are absolutely required for activity, indicating that these residues represent a serine hydrolase catalytic triad in this protein and in other S-formylglutathione hydrolases. This was confirmed by inspecting the crystal structure of the Saccharomyces cerevisiae S-formylglutathione hydrolase YJG8 (Protein Data Bank code 1pv1), which has 45% sequence identity to YeiG. The structure revealed a canonical alpha/beta-hydrolase fold and a classical serine hydrolase catalytic triad (Ser161, His276, Asp241). In E. coli cells, the expression of frmB was stimulated 45-75 times by the addition of formaldehyde to the growth medium, whereas YeiG was found to be a constitutive enzyme. The simultaneous deletion of both frmB and yeiG genes was required to increase the sensitivity of the growth of E. coli cells to formaldehyde, suggesting that both FrmB and YeiG contribute to the detoxification of formaldehyde. Thus, FrmB and YeiG are S-formylglutathione hydrolases with a Ser-His-Asp catalytic triad involved in the detoxification of formaldehyde in E. coli.  相似文献   

19.
Endogenous, constitutive soluble epoxide hydrolase in mice 3T3 cells was localized via immunofluorescence microscopy exclusively in peroxisomes, whereas transiently expressed mouse soluble epoxide hydrolase (from clofibrate-treated liver) accumulated only in the cytosol of 3T3 and HeLa cells. When the C-terminal lie of mouse soluble epoxide hydrolase was mutated to generate a prototypic putative type 1 PTS (-SKI to -SKL), the enzyme targeted to peroxisomes. The possibility that soluble epoxide hydrolase-SKI was sorted slowly to peroxiosmes from the cytosol was examined by stably expressing rat soluble epoxide hydrolase-SKI appended to the green fluorescent protein. Green fluorescent protein soluble epoxide hydrolase-SKI was strictly cytosolic, indicating that -SKI was not a temporally inefficient putative type 1 PTS. Import of soluble epoxide hydrolase-SKI into peroxisomes in plant cells revealed that the context of -SKI on soluble epoxide hydrolase was targeting permissible. These results show that the C-terminal -SKI is a non-functional putative type 1 PTS on soluble epoxide hydrolase and suggest the existence of distinct cytosolic and peroxisomal targeting variants of soluble epoxide hydrolase in mouse and rat.  相似文献   

20.
Cytosolic epoxide hydrolase   总被引:3,自引:0,他引:3  
Epoxide hydrolase activity is recovered in the high-speed supernatant fraction from the liver of all mammals so far examined, including man. For some as yet unexplained reason, the rat has a very low level of this activity, so that cytosolic epoxide hydrolase is generally studied in mice. This enzyme selectively hydrolyzes trans epoxides, thereby complementing the activity of microsomal epoxide hydrolase, for which cis epoxides are better substrates. Cytosolic epoxide hydrolase has been purified to homogeneity from the livers of mice, rabbits and humans. Certain of the physicochemical and enzymatic properties of the mouse enzyme have been thoroughly characterized. Neither the primary amino acid, cDNA nor gene sequences for this protein are yet known, but such characterization is presently in progress. Unlike microsomal epoxide hydrolase and most other enzymes involved in xenobiotic metabolism, cytosolic epoxide hydrolase is not induced by treatment of rodents with substances such as phenobarbital, 2-acetylaminofluorene, trans-stilbene oxide, or butylated hydroxyanisole. The only xenobiotics presently known to induce cytosolic epoxide hydrolase are substances which also cause peroxisome proliferation, e.g., clofibrate, nafenopin and phthalate esters. These and other observations indicate that this enzyme may actually be localized in peroxisomes in vivo and is recovered in the high-speed supernatant because of fragmentation of these fragile organelles during homogenization, i.e., recovery of this enzyme in the cytosolic fraction is an artefact. The functional significance of cytosolic epoxide hydrolase is still largely unknown. In addition to deactivating xenobiotic epoxides to which the organism is exposed directly or which are produced during xenobiotic metabolism, primarily by the cytochrome P-450 system, this enzyme may be involved in cellular defenses against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号