首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In order to identify the protein(s) secreted into culture medium by the soo1-1/ret1-1 mutation of Saccharomyces cerevisiae, proteins from the culture medium of cells grown at permissive (28 degrees C) and non-permissive temperatures (37 degrees C), were analyzed. Comparison of protein bands separated by SDS-PAGE identified a prominent band of 47-kDa band from a mutant grown at 37 degrees C. N-terminal amino acid sequencing of this 47-kDa protein showed high identity with enolases 1 and 2. Western blot analysis revealed that most of the cell wall-bound enolase was released into the culture medium of the mutant grown at 37 degrees C, some of which were separated as those with lower molecular weights. Our results, presented here, indicate the impairment of cell wall enolase biogenesis and assembly by the soo1-1/ret1-1 mutation of S. cerevisiae.  相似文献   

3.
J Miki  M Maeda    M Futai 《Journal of bacteriology》1988,170(1):179-183
A mutant of Escherichia coli showing temperature-sensitive growth on succinate was isolated, and its mutation in the initiation codon (ATG to ATA) of the uncG gene (coding for the gamma subunit of H+-ATPase F0F1) was identified. This strain could grow on succinate as the sole carbon source at 25 and 30 degrees C, but not at 37 or 42 degrees C. When this strain was grown at 25 degrees C on succinate or glycerol, its membranes had about 15% of the ATPase activity of wild-type membranes, whereas when it was grown at 42 degrees C, its membranes had about 2% of the wild-type ATPase activity. Membranes of the mutant grown at 25 or 42 degrees C could bind F1 functionally, resulting in about 40% of the specific activity of wild-type membranes. The gamma subunit was identified in an EDTA extract of membranes of the mutant grown at 25 degrees C, but was barely detectable in the same amount of extract from the mutant grown at 42 degrees C. These results indicate that initiation of protein synthesis from the AUA codon is temperature sensitive and that the gamma subunit is essential for assembly of F1 in vivo as shown by in vitro reconstitution experiments (S. D. Dunn and M. Futai, J. Biol. Chem. 255:113-118, 1980).  相似文献   

4.
5.
We devised an in situ assay method for the activity of serine palmitoyltransferase (SPT) that catalyzes the first step in sphingolipid biosynthesis and isolated a temperature-sensitive mutant of Chinese hamster ovary cells with thermolabile SPT. This mutant stopped growing at 40 degrees C after several generations, although the cells grew at 33 and 37 degrees C at rates similar to those of the parent. The SPT activity in cell homogenates of the mutant grown at low temperatures was 4-8% of that in the parent homogenates. When the cells were cultured for several generations at 40 degrees C, the activity in the mutant homogenate became negligible. When cell homogenates were incubated at 45 degrees C before enzyme assay, mutant SPT was more markedly inactivated than parental SPT, indicating that mutant SPT had become thermolabile. The rates of de novo synthesis of sphingolipids in the mutant were much slower at 40 degrees C than at lower temperatures, in contrast to those in the parent. The sphingomyelin content in the mutant cultivated at 40 degrees C for several generations was also less than that at low temperatures. These results indicate that SPT functions in the main pathway for sphingolipid biosynthesis. The temperature-sensitive growth of the mutant defective in sphingolipid synthesis suggests that sphingolipid(s) plays an essential role in cell growth.  相似文献   

6.
7.
8.
9.
10.
A rapid method for the detection, purification, and identification of proteins in bacterial extracts was developed using surface enhanced laser desorption/ionization (SELDI) ProteinChip technology. The effectiveness of this technique for monitoring the expression and identification of temperature- and calcium-regulated virulence factors of Yersinia pestis, the bacterium that causes human plague, is demonstrated. Y. pestis infection of its mammalian host is thought to be accompanied by rapid up-regulation of a number of genes following a shift from 26 degrees C (the temperature of the flea vector) to 37 degrees C (the temperature of the mammalian host). To model this process, Y. pestis cells were grown at 26 degrees C and 37 degrees C in a Ca(2+)-deficient medium. Through an initial protein profiling of the crude bacterial extract on strong anion exchange and copper affinity, ProteinChip arrays detected five proteins that were up-regulated and three proteins that were down-regulated at 37 degrees C. Two of the proteins predominately expressed at 37 degrees C were semi-purified in less than two days. The two proteins were identified as catalase-peroxidase and Antigen 4. Aside from its speed, a salient feature of the SELDI technique is the microgram amounts of crude sample required for analysis.  相似文献   

11.
The protein composition of the outer membrane of Yersinia pestis grown at 26 and at 37 degrees C was examined. The outer membrane was isolated by isopycnic sucrose density centrifugation, and its degree of purity was determined with known inner and outer membrane components. Using two-dimensional gel electrophoresis, we identified a large number of heat-modifiable proteins in the outer membrane of cells grown at either incubation temperature. One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of heated preparations indicated five proteins in the outer membrane of 37 degrees C-grown cells not evident in 26 degrees C-grown cells. Differences in the protein composition of the outer membrane due to the stage of growth were evident at both 26 degrees C and 37 degrees C, although different changes were found at each temperature. When cell envelopes were examined for the presence of peptidoglycan-associated proteins, no differences were seen as a result of stage of growth. Envelopes from 26 degrees C-grown cells yielded two peptidoglycan-associated proteins, E and J. Cells grown at 37 degrees C, however, also contained an additional protein (F) which was not found in either the bound or free form 26 degrees C. The changes in outer membrane protein composition in response to incubation temperature may relate to known nutritional and antigenic changes which occur under the same conditions.  相似文献   

12.
Growth of temperature-sensitive mutant Bacillus cereus T JS22-C occurred normally at the restrictive temperature (37 degrees C), but sporulation was blocked at stage 0. The production of extracellular and intracellular proteases and of alkaline phosphatase occurred at 37 degrees C, but the expression of a functional tricarboxylic acid cycle did not. At the permissive temperature (26 degrees C), the mutant sporulated at a slightly lower frequency (60%) and at a lower rate than the parent strain. The oxidation of organic acids, which accumulate in the growth medium began at T0 in cultures of the parent strain but was delayed until about T3 in cultures of the mutant. Later events in sporulation were also delayed in the mutant by about 3 h. Experiments in which the temperature of growth was shifted from 37 to 26 degrees C or from 26 to 37 degrees C at various times showed that the temperature-sensitive event began approximately 1 h after the end of exponential growth and ended when the cells reached the end of stage II (septum formation). The absence of a functional tricarboxylic acid cycle in cells of the mutant grown at 37 degrees C or shifted from 26 to 37 degrees C before T1 did not appear to be due to a lesion in one of the structural genes of the tricarboxylic acid cycle but was more likely due to the inability of the cells to derepress the synthesis of some of the enzymes of that cycle.  相似文献   

13.
14.
We have analyzed the relationship between expression of the transformed phenotype and thyroid hormone (triiodothyronine, T3) inducibility of Na,K-ATPase and binding of 125I-epidermal growth factor (EGF) to cell membrane receptors in wild-type (wt) and mutant type 5 adenovirus (Ad5)-transformed CREF cells displaying a cold-sensitive (cs) expression of the transformed phenotype. CREF cells respond to thyroid hormone treatment with increased Na,K-ATPase activity and bind similar levels of 125I-EGF at 32 degrees C, 37 degrees C and 39.5 degrees C. In contrast, CREF cells transformed by wt Ad5 or the E1a plus E1b-transforming genes of wt Ad5 are refractile to T3 treatment and bind lower levels of 125I-EGF than CREF cells at all three temperatures. By employing a series of cloned CREF cell lines transformed by a host-range cold-sensitive mutant virus, H5hr1 or H5dl101, or the E1a or E1a plus E1b genes from these viruses, we have investigated expression of the transformed state and its relationship with hormone inducibility and EGF binding. When cs virus, cs E1a- or cs E1a plus E1b-transformed CREF clones were grown at 32 degrees C, a nonpermissive transforming temperature in which cs-transformed cells exhibit properties similar to untransformed CREF cells, T3 induced Na,K-ATPase activity and these cells bound similar levels of 125I-EGF as CREF cells. However, when cs virus- and cs Ela plus E1b-transformed CREF clones were incubated at 37 degrees C or 39.5 degrees C, temperatures at which cs-transformed cells exhibit properties similar to wt Ad5-transformed CREF cells, they did not respond to T3 and bound lower levels of 125I-EGF than CREF cells. In the case of cs E1a-transformed CREF clones, thyroid hormone responsiveness was observed at both 32 degrees C and 37 degrees C, but not at 39.5 degrees C. By performing temperature shift experiments--i.e. 32 degrees C to 37 degrees C, 32 degrees C to 39.5 degrees C, 37 degrees C to 32 degrees C, and 39.5 degrees C to 32 degrees C, it was demonstrated that after a shift from lower to higher temperature a 24-hr lag period was required for cs-transformed CREF cells to lose T3 inducibility and exhibit reduced EGF binding, whereas 96 hr after a shift from higher to lower temperature a 96-hr lag period was required for cs-transformed cells to regain T3 inducibility and increased 125I-EGF binding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
To investigate the biosynthetic mechanisms involved in the expression of the renal epithelial inward rectifying K(+) channel, ROMK1 (Kir1.1a), a six amino acid epitope (AU1) was introduced onto the extreme N-terminus for efficient immunoprecipitation. As expressed in Xenopus oocytes, the AU1 epitope did not modify the functional properties of the ROMK1 channel. To analyze kinetics of ROMK1 synthesis in renal epithelial cells, the AU1-ROMK1 construct was stably transfected in MDCK cells and pulse chase experiments were conducted. When the cells are grown at 37 degrees C, the ROMK1 protein was unstable, being rapidly degraded with a t(1/2) < 1 hour. Furthermore, whole cell patch clamp experiments failed to detect functional ROMK1 channels at the plasma membrane in cells grown at 37 degrees C. In contrast, the degradation process was minimized when the cells were grown at 26 degrees C (t(1/2) > 4 hours), allowing ROMK1 channels to be functionally expressed on the plasma membrane. In summary, in a mammalian epithelial expression system maintained at a physiological temperature, wild-type ROMK1 is bio-synthetically labile and incapable of efficient traffic to the plasmalemma. These observations are reminiscent of temperature sensitive biosynthetic defects in mutant plasma membrane proteins, suggesting that wild-type ROMK1 may require other factors, like the association of a surrogate subunit, for appropriate biosynthetic processing.  相似文献   

16.
17.
18.
To define additional components of the export machinery of Escherichia coli, I have isolated extragenic suppressors of a mutant [secA(Ts)] that is temperature sensitive for growth and secretion at 37 degrees C. Suppressors that restored growth at 37 degrees C, but that rendered the cell cold sensitive for growth at 28 degrees C, were obtained. The suppressor mutations fall into at least seven loci, two of which (prlA and secC) have been previously implicated in protein secretion. The five remaining loci (ssaD, ssaE, ssaF, ssaG, and ssaH) have been mapped by P1 transduction and appear to define new genes in E. coli. All of the suppressor mutations allow both enhanced growth and protein secretion of the secA(Ts) mutant at 37 degrees C, but not 42 degrees C, indicating a continued requirement for SecA protein. Strains carrying solely the cold-sensitive mutations show reduced levels of certain periplasmic proteins when grown at low temperatures. In at least one case, that of maltose-binding protein, this defect is at the level of synthesis of the protein. Since mutants in any of seven genes as well as secA amber mutants halt or reduce the synthesis of an exported protein, it appears that E. coli may possess a general and complex mechanism for coupling protein synthesis and secretion.  相似文献   

19.
20.
Two mutants of Streptococcus pneumoniae deficient in autolysin activity produced a protein that showed immunological identity with the N-acetyl-muramyl-L-alanyl-amidase present in the wild-type strain, when tested with antiserum obtained against this enzyme. The protein was produced by the mutant cultures grown either at 37 degrees C or at 30 degrees C, although only the cell extracts obtained at 30 degrees C showed significant cell wall hydrolysing activity. In contrast to the lysis resistance of these bacteria grown at 37 degrees C, mutant cultures grown at 30 degrees C exhibited significant degrees of autolysis when treated with detergent or cell wall inhibitors. Extracts of the mutant cultures contained a cell wall hydrolysing activity that was rapidly inactivated during incubation at 37 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号