首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Biosensors provide a sophisticated and discriminating means of probing biomolecular interactions. Specific ligands such as peptides and proteins can be immobilized onto sensor surfaces by a number of means including covalent attachment via amine, thiol or aldehyde chemistry, capture via biotin-avidin interaction or the use of specific tags. We have devised a simple chemoselective ligation method to selectively conjugate an anchoring functionality onto N-terminal serine or threonine residues of peptides and proteins allowing them to be immobilised onto the sensor surface in a defined orientation. It is based on the specific reaction of the 1,2-aminothiol of cysteine with an aldehyde under acidic conditions to form a stable thiazolidine product. The carbonyl precursors are derived from the 1,2-aminoalcohols of Ser or Thr that can be selectively and rapidly converted to the aldehyde form by periodate oxidation. Biotinylation of the aldehyde is then achieved via simple conjugation with a novel water-soluble dipeptide that contains a lysine residue bearing an Nε-cysteine-derived 1,2-aminothiol and an Nα-biotin moiety. Use of this method allowed selective biotinylation of a native form of murine EGF (mEGF2-53) that has an N-terminal serine residue. This derivative was then immobilised onto a streptavidin biosensor surface, and the resultant surface activity compared with those obtained by immobilising recombinant human EGF or the soluble extracellular domain of the EGF receptor (sEGFR1-621) using amine coupling (NHS/EDC) chemistry. The surface recognised the recombinant sEGFR with a similar K D to that of human EGF immobilised using NHS/EDC chemistry, or if the receptor was immobilised and murine EGF injected.  相似文献   

2.
Biosensors provide a sophisticated and discriminating means of probing biomolecular interactions. Specific ligands such as peptides and proteins can be immobilized onto sensor surfaces by a number of means including covalent attachment via amine, thiol or aldehyde chemistry, capture via biotin-avidin interaction or the use of specific tags. We have devised a simple chemoselective ligation method to selectively conjugate an anchoring functionality onto N-terminal serine or threonine residues of peptides and proteins allowing them to be immobilised onto the sensor surface in a defined orientation. It is based on the specific reaction of the 1,2-aminothiol of cysteine with an aldehyde under acidic conditions to form a stable thiazolidine product. The carbonyl precursors are derived from the 1,2-aminoalcohols of Ser or Thr that can be selectively and rapidly converted to the aldehyde form by periodate oxidation. Biotinylation of the aldehyde is then achieved via simple conjugation with a novel water-soluble dipeptide that contains a lysine residue bearing an N-cysteine-derived 1,2-aminothiol and an N-biotin moiety. Use of this method allowed selective biotinylation of a native form of murine EGF (mEGF2-53) that has an N-terminal serine residue. This derivative was then immobilised onto a streptavidin biosensor surface, and the resultant surface activity compared with those obtained by immobilising recombinant human EGF or the soluble extracellular domain of the EGF receptor (sEGFR1-621) using amine coupling (NHS/EDC) chemistry.The surface recognised the recombinant sEGFR with a similar KD to that of human EGF immobilised using NHS/EDC chemistry, or if the receptor was immobilised and murine EGF injected.  相似文献   

3.
Methanethiosulfonate reagents may be used to introduce virtually unlimited structural modifications in enzymes via reaction with the thiol group of cysteine. The covalent coupling of enantiomerically pure (R) and (S) chiral auxiliary methanethiosulfonate ligands to cysteine mutants of subtilisin Bacillus lentus induces spectacular changes in catalytic activity between diastereomeric enzymes. Amidase and esterase kinetic assays using a low substrate approximation were used to establish kcat/KM values for the chemically modified mutants, and up to 3-fold differences in activity were found between diastereomeric enzymes. Changing the length of the carbon chain linking the phenyl or benzyl oxazolidinone ligand to the mutant N62C by a methylene unit reverses which diastereomeric enzyme is more active. Similarly, changing from a phenyl to benzyl oxazolidinone ligand at S166C reverses which diastereomeric enzyme is more active. Chiral modifications at S166C and L217C give CMMs having both high esterase kcat/KM's and high esterase to amidase ratios with large differences between diastereomeric enzymes.  相似文献   

4.
Gough JD  Gargano JM  Donofrio AE  Lees WJ 《Biochemistry》2003,42(40):11787-11797
The production of proteins via recombinant DNA technology often requires the in vitro folding of inclusion bodies, which are protein aggregates. To create a more efficient redox buffer for the in vitro folding of disulfide containing proteins, aromatic thiols were investigated for their ability to increase the folding rate of scrambled RNase A. Scrambled RNase A is fully oxidized RNase A with a relatively random distribution of disulfide bonds. The importance of the thiol pK(a) value was investigated by the analysis of five para-substituted aromatic thiols with pK(a) values ranging from 5.2 to 6.6. Folding was measured at pH 6.0 where the pK(a) value of the thiols would be higher, lower, or equal to the solution pH. Thus, relative concentrations of thiol and thiolate would vary across the series. At pH 6.0, the aromatic thiols increased the folding rate of RNase A by a factor of 10-23 over that observed for glutathione, the standard additive. Under optimal conditions, the apparent rate constant increased as the thiol pK(a) value decreased. Optimal conditions occurred when the concentration of protonated thiol in solution was approximately 2 mM, although the total thiol concentration varied considerably. The importance of the concentration of protonated thiol in solution can be understood based on equilibrium effects. Kinetic studies suggest that the redox buffer participates as the nucleophile and/or the center thiol in the key rate determining thiol disulfide interchange reactions that occur during protein folding. Aromatic thiols proved to be kinetically faster and more versatile than classical aliphatic thiol redox buffers.  相似文献   

5.
Poly(vinylpyrrolidone) (PVP), a nonionic and nontoxic polymer with antifouling properties, has been synthesized via RAFT polymerization to obtain thiol-terminated PVP. We demonstrate that when the polymer is adsorbed onto the surface of colloidal silica particles, the terminal thiol groups of PVP remain accessible for chemical modification and lend themselves to the immobilization of ligands. We show that ligand attachment onto the surface via conjugation to PVP is reversible, as the polymer can be desorbed from the surface for conjugate and surface recovery. We present the conjugation of a model peptide and an oligonucleotide to PVP via the polymer terminal thiol and demonstrate that conjugates remain functional in molecular recognition assay. The developed technique offers a novel method to functionalize low-fouling surfaces for a variety of biomedical applications and presents opportunities to use PVP as a macromolecular drug carrier.  相似文献   

6.
Lipophilic thiol compounds interact spectrally with liver microsomes from phenobarbital-pretreated rats by formation of unusual optical difference spectra with peaks at 378, 471, 522 and 593 nm in the oxidized state. The binding kinetics were biphasic. The EPR spectrum of cytochrome P-450 was slightly modified but the magnitude of the low-spin signal was unchanged. n-Octanethiol competitively displaced metyrapone and n-octane from the active site of cytochrome P-450. Other thiols behaved similarly with variations in the magnitude and the affinity of the binding process. Tertiary thiols caused the formation of the high-spin cytochrome P-450 substrate complex, and model studies with myoglobin revealed that steric hindrance prevented the liganding of the tertiary thiol group to the ferric cytochrome P-450. Addition of thiols to dithionite reduced microsomes resulted in relatively small spectral changes with maxima at 449 nm typical for ligand complexes of the ferrous cytochrome. It was concluded that lipophilic thiols can be bound as ligands by at least two species of oxidized cytochrome P-450 which represent, however, not more than about one fifth of the total cytochrome P-450 content in liver microsomes from phenobarbital-pretreated rats.  相似文献   

7.
Electron flow via thiols is a theme with many variations in all kingdoms of life. The favourable physichochemical properties of the redox active couple of two cysteines placed in the optimised environment of the thioredoxin fold allow for two electron transfers in between top biological reductants and ultimate oxidants. The reduction of ribonucleotide reductases by thioredoxin and thioredoxin reductase of Escherichia coli (E. coli) was one of the first pathways to be elucidated. Diverse functions such as protein folding in the periplasm, maturation of respiratory enzymes, detoxification of hydrogen peroxide and prevention of oxidative damage may be based on two electron transfers via thiols. A growing field is the relation of thiol reducing pathways and the interaction of E. coli with different organisms. This concept combined with the sequencing of the genomes of different bacteria may allow for the identification of fine differences in the systems employing thiols for electron flow between pathogens and their corresponding mammalian hosts. The emerging possibility is the development of novel antibiotics.  相似文献   

8.
Poly(ethylene terephthalate) (PET) was photografted in a solvent free vapor of maleic anhydride and benzophenone. After hydrolysis of the initially grafted succinic anhydride groups, the carboxylic PET surfaces were modified by coupling reactions in organic and aqueous solutions. 2,2,2-Trifluoroethylamine and diamino PEGs of molecular weight 3400 and 2000 were reacted with acid chloride groups obtained by treating the PET-COOH surface with PCl(5). Furthermore, fluoro substituted thiols and a cystein terminated RGD containing peptide were bound to PET-COOH surfaces via a disulfide link by a three step coupling sequence. Coupling yields and surface concentrations of the fluoro substituted ligands were calculated from ESCA data. The RGD-peptide surfaces were evaluated by cultivation with rat smooth muscle cells.  相似文献   

9.
Electron flow via thiols is a theme with many variations in all kingdoms of life. The favourable physichochemical properties of the redox active couple of two cysteines placed in the optimised environment of the thioredoxin fold allow for two electron transfers in between top biological reductants and ultimate oxidants. The reduction of ribonucleotide reductases by thioredoxin and thioredoxin reductase of Escherichia coli (E. coli) was one of the first pathways to be elucidated. Diverse functions such as protein folding in the periplasm, maturation of respiratory enzymes, detoxification of hydrogen peroxide and prevention of oxidative damage may be based on two electron transfers via thiols. A growing field is the relation of thiol reducing pathways and the interaction of E. coli with different organisms. This concept combined with the sequencing of the genomes of different bacteria may allow for the identification of fine differences in the systems employing thiols for electron flow between pathogens and their corresponding mammalian hosts. The emerging possibility is the development of novel antibiotics.  相似文献   

10.
BackgroundA set of engineered ferritin mutants from Archaeoglobus fulgidus (Af-Ft) and Pyrococcus furiosus (Pf-Ft) bearing cysteine thiols in selected topological positions inside or outside the ferritin shell have been obtained. The two apo-proteins were taken as model systems for ferritin internal cavity accessibility in that Af-Ft is characterized by the presence of a 45 Å wide aperture on the protein surface whereas Pf-Ft displays canonical (threefold) channels.MethodsThiol reactivity has been probed in kinetic experiments in order to assess the protein matrix permeation properties towards the bulky thiol reactive DTNB (5,5′-dithiobis-2-nitrobenzoic acid) molecule.ResultsReaction of DTNB with thiols was observed in all ferritin mutants, including those bearing free cysteine thiols inside the ferritin cavity. As expected, a ferritin mutant from Pf-Ft, in which the cysteine thiol is on the outer surface displays the fastest binding kinetics. In turn, also the Pf-Ft mutant in which the cysteine thiol is placed within the internal cavity, is still capable of full stoichiometric DTNB binding albeit with an almost 200-fold slower rate. The behaviour of Af-Ft bearing a cysteine thiol in a topologically equivalent position in the internal cavity was intermediate among the two Pf-Ft mutants.Conclusions and general significanceThe data thus obtained indicate clearly that the protein matrix in archaea ferritins does not provide a significant barrier against bulky, negatively charged ligands such as DTNB, a finding of relevance in view of the multiple biotechnological applications of these ferritins that envisage ligand encapsulation within the internal cavity.  相似文献   

11.
Chemical oxidation or reduction of lymphocyte cell surface thiol or disulfide groups, respectively, has been shown to alter the proliferative activity of murine T cells. S-2-(3-aminopropylamino)ethylphosphothioic acid, a compound containing no free thiol group until it is intracellularly dephosphorylated, did not enhance Con A-induced proliferation which suggested that thiols did not mediate proliferative enhancement via an intracellular mechanism. Glutathione, an impermeant thiol, enhanced T-cell proliferation 68% as effectively as 2-mercaptoethanol (2-ME), which suggested that the thiol-sensitive site was at the cell surface. A battery of structural analogs to 2-ME was employed to elucidate the chemical requirements for the biological activity of the thiols. The necessity for a hydrogen-binding moiety on the thiol reagent was determined by the use of non-hydrogen-binding analogs and by competitive inhibition of the thiol-enhancing activity of 2-ME by non-thiol-containing hydrogen-binding analogs. Pretreatment of cells with the copper:phenanthroline complex (CuP), an impermeant oxidant of thiol groups, reduced the Con A-induced response >79%; however, the presence of 2-ME in culture completely reversed the inhibitory effect of CuP pretreatment. Oxidation of T cells by high oxygen tension (17% O2) also ablated the Con A response but did not alter the response to Con A + 2-ME. Protection from oxidative inhibition also was afforded T cells by sequential reduction and blockage of cell surface thiol groups. Finally, a model which correlates the chemical study of cell surface residues with T-lymphocyte responsiveness is presented.  相似文献   

12.
Analytical methods have been developed for the determination of cyanate esters and imidocarbonates, the active species present on CNBr-activated polysaccharide resins. Imidocarbonates are determined by selective acid hydrolysis followed by determination of the liberated ammonia by a modification of the ninhydrin reaction. Cyanate esters are determined by a spectrophotometric procedure based on the reaction with pyridine and employing N,N'-dimethylbarbituric acid as a color-forming reagent. For the determination of the coupling capacity, a procedure is suggested which allows the amount of coupled ligand to be determined directly on the resin and without prior hydrolysis. Using those procedures it was found that the coupling capacity of activated resins toward small ligands can be predicted by determining the amounts of cyanate esters and imidocarbonates present on the resin, and that cyanate esters are predominantly responsible for coupling of ligand to activated Sepharose.  相似文献   

13.
Wipf P  Jayasuriya N 《Chirality》2008,20(3-4):425-430
The in situ hydrozirconation-transmetalation-aldehyde addition process is a convenient method for the generation of allylic alcohols. Ongoing research has focused on enhancing the enantioselectivity and substrate scope of this process. A chiral beta-amino thiol scaffold was evaluated in the addition reaction. Amino thiols tend to provide the highest ee's, in part due to the higher affinity of sulfur for zinc over zirconium. A class of valine-based thiol ligands was identified to be effective for the formation of enantiomerically enriched allylic alcohols in terms of low ligand loading and high % ee.  相似文献   

14.
In this work, a new methodology is developed for selection of affinity ligands towards the enzyme “trypsin” using quartz crystals microbalance (QCM) technique. To achieve this goal, the surface amination of gold plated QCM crystals was achieved in 13.56 MHz plasma polymerization system by using ethylenediamine. Three different ligands (i.e., 4-aminobenzamidine, 4-aminobenzoic acid, and phenylalanine) were immobilized on the aminated QCM crystals surface via glutaraldhyde coupling. All three ligand immobilized QCM crystals were characterized and compared under different experimental conditions. It was observed that the benzamidine ligand showed higher affinity to trypsin with a dissociation constant on the order of 1.76 × 10−9 M, which is within the range of 10−4–10−8 M for affinity ligands. Thus, its selectivity was suitable for purification of trypsin from biological fluids.  相似文献   

15.
Absorption UV-VIS and pre-resonance Raman spectra of acidic cyt c solutions with a series of thiols added (thiophenol, n-propanethiol, isopropanethiol, L-cysteine, dithiothreitol, 2-mercaptoethanol, N-acetyl-L-cysteine, p-acetamidothiophenol, 2-mercaptoethanamine, thioglycolic acid and mercaptopropionic acid), are presented. Interactions of cyt c molecule with the thiols were studied with the aim to identify binding of the thiols with the cyt c heme as its iron axial ligands. Absorption and Raman spectra showed some correlation between maxima of 700 nm region absorption band (typical for Fe-S axial bond in cyt c heme) and also wave numbers of spin state marker and axial ligand sensitive Raman bands on one, and pKa constant values of appropriate thiols on the other hand. These results imply thiol replacement of Met-80 from axial bond with heme iron and suggest that the force of Fe-L-cysteine axial bond is very close to the native axial bond (Fe-Met) for cyt c in neutral solution.  相似文献   

16.
Plasma membrane vesicles of HeLa cells are characterized by a drug-responsive oxidation of NADH. The NADH oxidation takes place in an argon or nitrogen atmosphere and in samples purged of oxygen. Direct assay of protein thiols by reaction with 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB; Ellman's reagent), suggests that protein disulfides may be the natural electron acceptors for NADH oxidation by the plasma membrane vesicles. In the presence of NADH, protein disulfides of the membranes were reduced with a concomitant stoichiometric increase in protein thiols. The increase in protein thiols was inhibited in parallel to the inhibition of NADH oxidation by the antitumor sulfonylurea LY181984 with an EC50 of ca. 30 nM. LY181984, with an EC50 of 30 nM, also inhibited a protein disulfide–thiol interchange activity based on the restoration of activity to inactive (scrambled) RNase and thiol oxidation. The findings suggest that thiol oxidation, NADH-dependent disulfide reduction (NADH oxidation), and protein disulfide–thiol interchange in the absence of NADH all may be manifestations of the same sulfonylurea binding protein of the HeLa plasma membrane. A surface location of the thiols involved was demonstrated using detergents and the impermeant thiol reagent p-chloromercuriphenylsulfonic acid (PCMPS). The surface location precludes a physiological role of the protein in NADH oxidation. Rather, it may carry out some other role more closely related to a function in growth, such as protein disulfide–thiol interchange coupled to cell enlargement.  相似文献   

17.
Almost all therapeutic proteins and most extracellular proteins contain disulfide bonds. The production of these proteins in bacteria or in vitro is challenging due to the need to form the correctly matched disulfide bonds during folding. One important parameter for efficient in vitro folding is the composition of the redox buffer, a mixture of a small molecule thiol and small molecule disulfide. The effects of different redox buffers on protein folding, however, have received limited attention. The oxidative folding of denatured reduced lysozyme was followed in the presence of redox buffers containing varying concentrations of five different aromatic thiols or the traditional aliphatic thiol glutathione (GSH). Aromatic thiols eliminated the lag phase at low disulfide concentrations, increased the folding rate constant up to 11-fold, and improved the yield of active protein relative to GSH. The yield of active protein was similar for four of the five aromatic thiols and for glutathione at pH 7 as well as for glutathione at pH 8.2. At pH 6 the positively charged aromatic thiol provided a higher yield than the negatively charged thiols.  相似文献   

18.
Improved affinity chromatography procedures for the purification of cytosolic epoxide hydrolase are described. An earlier affinity purification method using immobilized 7-methoxycitronellyl thiol (MCT) sporadically produced final enzyme preparations containing major impurities. To eliminate these impurities, we tested alternate ligands, spacer arms, and ligand concentrations. A series of alkyl and aryl thiols coupled to epoxy-activated Sepharose were found to exhibit markedly different binding characteristics as compared with commercially available alkyl- and aryl-Sepharose gels. Using one of these new matrices, benzylthio-Sepharose, cytosolic epoxide hydrolase from mouse liver was purified over 100-fold, appeared homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and was obtained with 60-90% recovery of enzyme activity. The impurities previously observed with the MCT-Sepharose procedure were reduced or eliminated by using an MCT ligand concentration of 5 microequivalents per gram or less. MCT-Sepharose and benzylthio-Sepharose provide rapid and convenient one-step procedures for obtaining purified cytosolic epoxide hydrolase from numerous species and tissues.  相似文献   

19.
Thiol homeostasis plays an important role in human health and aging by regulation of cellular responses to oxidative stress. Due to major constraints that hamper reliable plasma thiol/disulfide redox status assessment in clinical research, we introduce an improved strategy for comprehensive thiol speciation using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) that overcomes sensitivity, selectivity and dynamic range constraints of conventional techniques. This method integrates both specific and nonspecific approaches toward sensitivity enhancement for artifact-free quantification of labile plasma thiols without complicated sample handling. A multivariate model was developed to predict increases in ionization efficiency for reduced thiols when conjugated to various maleimide analogs based on their intrinsic physicochemical properties. Optimization of maleimide labeling in conjunction with online sample preconcentration allowed for simultaneous analysis of nanomolar levels of reduced thiols and free oxidized thiols as their intact symmetric or mixed disulfides. Identification of low-abundance thiols and various other polar metabolites detected in plasma was supported by prediction of their relative migration times using CE as a qualitative tool complementary to ESI-MS. Plasma thiol redox status determination together with untargeted metabolite profiling offers a systemic approach for elucidation of the causal role of dysregulated thiol metabolism in the etiology of human diseases.  相似文献   

20.
We describe a reversible immobilization method for carboxyl group containing haptens that makes the repeated usage of a BIAcore biosensor chip possible. Haptens which are immobilized according to the surface thiol method can be removed completely from the sensor surface again by a reducing step. In the first part of our study, analogues of the herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid were immobilized in succession to a biosensor surface of a BIAcore surface plasmon resonance instrument according to the thiol coupling method. Direct kinetic analysis of these ligands to a polyclonal anti-2,4-dichlorophenoxyacetic acid antibody were performed using these biosensor surfaces. In the second part of the study, different amounts of 2,4-dichlorophenoxyacetic acid were sequentially immobilized onto the same biosensor surface in order to generate a calibration plot for 2,4-dichlorophenoxyacetic acid. Using this plot, the quantitative detection of the herbicide down to a concentration of 0.1 microg/mL, the maximum admissible concentration of pesticides in drinking water, is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号