首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somaclonal variant plants may be of use in broadening the germplasm base of plant species and providing useful stocks for cytogenetic investigations. This study was conducted to compare morphologic, cytogenetic and enzymatic characteristics of 21 R1 (initial regenerate) bluestem,Bothriochloa sp., plants, visibly identified in a field-grown population of 522 plants as probable variants, with their respective R0 (explant donor) progenitor. An R2 seedling population was grown to ascertain the transmission of the variant R1 phenotypes. All R1 plants differed from their respective R0 progenitors in one or more morphological characters. Foliage colour was the most pronounced difference in most cases. Four of the plants, three of which were dwarfed, produced no inflorescences. The R1 plants tended to be shorter than R0 progenitors and had corresponding decreases in lengths on inflorescences and lowest racemes. All R1 plants of accessions 8911C and 8793 had an increase in chromosome number from2n=4x=40 to2n=5x=50. Three dwarfed R1 plants, derived from accession 8873B, were aneuploids, two having2n=48 chromosomes and the third being a probable mixoploid with 55–58 chromosomes. Other plants of accession 8873B had the R0 chromosome number. Fertility, as estimated by pollen stainability and seed set, generally was reduced in R1 plants relative to the R0. This reduction was not drastic, however, with all flowering plants having 45% or higher seed set. Apomixis apparently maintained fertility in all R1 plants, including those with a pentaploid chromosome number. All R1 plants differed from their respective R0 plants in peroxidase and esterase banding patterns. All R1 plants of accessions 8911C, and 8793, respectively, had identical peroxidase and esterase bands. For both enzyme systems two banding patterns were present in R1 plants of accession 8873B, with 12 of 13 plants exhibiting common patterns. Examination of R2 progeny plants confirmed the genetic transmission of the variant phenotypes and, by virtue of uniformity, indicated apomictic reproduction in the R1 plants. The results demonstrate the production of potentially useful genetic and cytogenetic variant plants via tissue culture in these apomictic species.  相似文献   

2.
Explants from immature inflorescences of four genotypes of Old World bluestem grasses, (Bothriochloa spp.), produced callus tissue on Linsmaier and Skoog (RM) and 1/2 Murashige and Skoog (1/2 MS) media containing high levels of growth regulators. Callus masses were composed of two distinct tissue types, one a compact, white, embryogenic portion (E calli), the other soft, translucent, gelatinous and nonembryogenic (NE calli). When transferred to medium with a reduced level of 2,4-D, and/or supplemented with zeatin, E callus underwent further organization culminating in shoot production. Light and scanning electron microscopy confirmed the embryogenic pathway of differentiation. Genotype significantly affected callus induction frequency and the number of plants regenerated. The RM medium induced more explants to initiate callus compared to the 1/2 MS medium. Age of the inflorescence explant, as indicated by size, was critical for callus induction. Inflorescences with racemes 8 mm in length were superior to older ones. Five-hundred-twenty-two plantlets were regenerated and grown to maturity.  相似文献   

3.
Plant regeneration via somatic embryogenesis in cotton   总被引:6,自引:0,他引:6  
An efficient in vitro plant regeneration system characterized by rapid and continuous production of somatic embryos using leaf and stem explants of abnormal seedling as an explant have been developed in Gossypium hirsutum L. Embryogenic callus and somatic embryos have been obtained directly from the explants of cotton abnormal seedlings. Plant growth regulators influenced the induction of cotton somatic embryogenesis. The optimal medium for direct somatic embryogenesis was modified MS medium supplemented with 0.1 mg l-1 ZT and 2 g l-1 activated carbon. On this medium, an average of 28.0 and 28.1 matured somatic embryos formed from per leaf and stem explants respectively. The highest frequency of somatic embryogenesis was 100%. The somatic embryos were converted into normal plantlets when cultured on modified MS medium supplemented with 0.1 mg l-1 ZT. Upon transfer to soil, plants grew well and appeared normal. Plants could be regenerated within 60–80 days. The system of cotton somatic embryogenesis and plant regeneration described here will facilitate the application of plant tissue culture and genetic engineering on cotton genetic improvement. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Summary Mature seeds of plains Old World bluestem [Bothriochloa ischaemum (L.) Keng.] were used to initiate suspension cultures. The medium contained the major and minor minerals of Murashige and Skoog, Gamborg's B-5 vitamins, 30 g/liter sucrose, and 3 mg/liter 2,4-dichlorophenoxyacetic acid with or without 12 mM proline at pH 5.5. Cultures contained both embryogenic and nonembryogenic (NE) cells. Suspensions that had been filtered through a 40-mesh sieve were plated out on medium with 6 g/liter agar. Two-to-three weeks later, clumps that formed in suspension cultures that had been filtered previously were removed by filtration through a 40-mesh sieve and plated out on agar medium. Colonies were rated on the basis of surface area. of the total area of colonies formed from plated suspensions 70.9% were embryogenic, 19.8% were NE, and 9.3% were mixed colonies. Of the total area from plated clumps, 57.1% were E, 12.9% were NE, and 30% were mixed colonies. Embryoid maturation and germination was accomplished by transferring E or mixed colonies to MS medium with 1 mg/liter zeatin (mixted isomers). Rooting was completed on half-strength basal MS medium. Over 90% of plantlets survived transfer to the greenhouse and 95% of them survived transfer to the field. Seeds were provided by Dr. Charles Taliaferro, Agronomy Department, Oklahoma State University.  相似文献   

5.
Plant regeneration through somatic embryogenesis in Quercus suber   总被引:2,自引:0,他引:2  
Cork oak ( Quercus suber L.) zygotic embryos, endosperm and ovules were treated with different concentrations of 2,4-D for induction of somatic embryos. Plant material was collected during the embryo development season, from June to September. Immature embryos proved to be the most reactive initial explant. Callus and somatic embryos developed a few weeks after the beginning of the 2,4-D treatment. For embryo development experiments, different growth regulators and cold and desiccation treatments were tested. Cold storage of somatic embryos matured in vitro at 5°C was the best treatment for breaking dormancy.  相似文献   

6.
In vitro protocols for plant regeneration of Arachis correntina through both somatic embryogenesis and organogenesis were developed using immature leaves as explants. Morphologically normal somatic embryos were obtained on culture media composed of 20.70 or 41.41 μM picloram (PIC) with the addition of 0.044 μM 6-benzylaminopurine (BA), resulting in a 33 and 24% of conversion into plants, respectively. The source of explants and the developmental stage of the leaves had a marked effect on somatic embryogenesis. The second folded immature leaves from in vitro growing plants were the most responsive producing up to 30% embryogenesis in MS+41.41 μM PIC. Embryos converted into plants after transfer to MS medium devoid of growth regulators and these plants were successfully acclimatised. Adventitious shoots were obtained on culture media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthaleneacetic acid (NAA) with or without 0.044 μM BA, achieving plant regeneration in the induction media. The highest percentage of bud formation was obtained on culture medium composed of␣MS+10.74 μM NAA+0.044 μM BA (12.5%). Roots were formed on all culture media tested. Regenerated plants were transferred to pots and grew well under greenhouse conditions.  相似文献   

7.
Plant regeneration from four genotypes of weeping lovegrass (Eragrostis curvula (Schrad.) Nees), is reported via three developmental pathways: embryogenesis, organogenesis and direct regeneration. Organogenic and embryogenic callus cultures were initiated from young inflorescence segments on Murashige and Skoog's medium supplemented with 2,4-d and BA at different concentrations. The most suitable concentrations of 2,4-d for callus growth and development were 9 and 18 M combined with a BA concentration of 0.044 M. Genotypical differences were observed in the morphogenetic capacity. Direct regeneration was observed under similar culture conditions (culture medium, temperature and photoperiod) but with high light intensity (66 mol m-2 s-1). Young plants were successfully transplanted to pots and grown to maturity in the greenhouse.Abbreviations BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog medium - NAA naphthaleneacetic acid  相似文献   

8.
We induced somatic embryogenesis from the cotyledon segments ofOlea europaea (L) cvs. ‘Chetoui’, ‘Chemleli’, and ‘Arbequina’. Calli were established from all three cultvars on OMc media supplemented with IBA and 2i-R The greatest success was obtained with media that contained zero or low concentrations of growth regulators. High levels of hormones (i.e.,>0.5 mgL-1 IBA and 2i-P) inhibited embryogenesis. Embryos at different maturation stages were observed with continuously proliferating secondary embryogenesis. Abnormally shaped embryos and teratoma were also noted. Four weeks was the optimal incubation period for inducing embryogenesis on the auxin-containing medium. In addition, 30 to 40 gL-1 sucrose was more effective than glucose in stimulating the growth and maturation of somatic embryos. Embryogeic efficiency was also higher when multivariate combinations of nitrogen sources (inorganic and organic nitrogen forms) were used. The plantlets that were derived from our germinating somatic embryos were similar to those obtained from axillary buds.  相似文献   

9.
Callus culture and plant regeneration through somatic embryogenesis have been obtained in Coronilla varia. Media used were UM (25) supplemented with 2 mg/l 2,4-D followed by subculture on MS (18) containing 1 mg/l 2-iP and 0.1 mg/l IAA. Embryoids developed into complete plantlets on filter paper saturated with hormone-free MS medium.  相似文献   

10.
A method to obtain plants from embryogenic callus of Brassica nigra and protoplasts of hypocotyl expiants is described. Callus was initiated on Murashige and Skoog medium containing kinetin (kn) and 2,4-dichlorophenoxy acetic acid (2,4-D). Lowering of auxin induced embryo formation. Supplementation with gibberellic acid (GA3) enhanced embryogenic response tenfold. Passage through liquid medium devoid of growth regulators was essential for the growth of embryos. Secondary embryos were produced on transfer to solid basal medium. Embryogenic callus retained its morphogenic ability even after 12 subcultures. Both primary and secondary embryos produced fertile plants. Hypocotyl-derived protoplasts were also regenerated to plants following the same protocol. The survival of plants on transfer to soil was about 80%. The seeds from plants derived from callus and protoplasts were viable.Abbreviations 2,4-D 2,4-dichlorophenoxy acetic acid - NAA naphthalene acetic acid - IAA indole acetic acid - kn kinetin - GA3 gibberellic acid  相似文献   

11.
Summary Protoplasts were isolated from immature cotyledons of Vigna sinensis and cultured in a modified MS Liquid medium containing 0. 2 mg/l 2, 4-dichlorophenoxyacetic acid (2, 4-D), 1 mg/l naphthaleneacetic acid (NAA) and 0. 5 mg/l 6-benzylaminopurine (BAP) in the dark at a density of 1 × 105/ml. The protoplasts began to divide in 3–5 days. Sustained cell division resulted in formation of cell clusters and small calli, with the cell division frequency and plating efficiency of cell colonies reaching 27. 7% and 1. 7% respectively. When calli of 2 mm in size were transferred onto MSB medium (MS salts and B5 vitamins) containing 500mg/l NaCl, 500 mg/ 1 casein hydrolysate (CH), 2 mg/l 2,4-D and 0. 5 mg/l BAP for further growth, approximately 5% of the calli developed embryogenically. The embryogenic calli were selected and subcultured on the same composition of MSB medium and were able to maintain somatic embryogenesis capacity in subculture for a long time. When the calli were moved to MSB medium with 0. 1 mg/l indole-3-acetic acid (IAA), 0. 5mg/l kinetin(KT), 3–5% mannitol and 2% sucrose in the light, many somatic embryos formed from the calli. Only part of the embryoids developed further to the cotyledonary stage, and the others died at the globular, heart-shaped or torpedo stages. Finally, some cotyledonary embryoids germinated and developed into plants or shoots. The shoots were readily rooted on 1/2 strength MS medium with 0. 1–0.3 mg/l indole-3-butyric acid (IBA). The plants grew well in soil and were fertile.Abbreviations 2, 4-D dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - BAP 6-benzylaminopurine - IAA indole-3-acetic acid - KT kinetin - IBA indole-3-butyric acid - CH casein hydrolysate - CM coconut milk - ZT zeatin  相似文献   

12.
Summary Young inflorescence explants of green bamboo (Bambusa oldhamii Munro) in culture show a high capacity for plant regeneration through somatic embryogenesis. Embryogenic callus was initiated from explants maintained on Murashige and Skoog's medium supplemented with 3 mg/l 2,4-D, 2 mg/l kinetin and a high content (60 g/l) of sucrose. Prolonged culture in the embryoid induction medium or transferral of embryonic callus to auxin-free medium resulted in the continued development and eventual germination of embryoids and establishment of rooted plantlets that were successfully transferred to soil.  相似文献   

13.
Summary Protoplasts were isolated from embryogenic cell suspension cultures derived from proliferating shoot segments of a 20-year-old sandalwood tree (Santalum album Linn.). Under appropriate conditions, isolated protoplasts divided in liquid culture medium and produced embryogenic cell aggregates and globular embryos. Plating of cell aggregates on a fresh medium facilitated the differentiation of somatic emryos which further developed into plantlets.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 Gibberellic acid - IAA indoleacetic acid - IBA indolebutrytic acid - MES 2-(N-morpholino)ethane sulfonic acid - MS Murashige and Skoog's medium as modified in the text  相似文献   

14.
Summary Despite high commercial interest, the success of biotechnological applications in cotton (Gossypium hirsutum) has been limited due to difficulties in genetic transformation. Major problems have been genotype dependence and low frequency of somatic embryogenesis, making it difficult to regenerate plants from transgenic tissue. This study reports an increase in somatic embryogenesis efficiency and the induction of developmental synchrony in embryogenic callus cultures of cotton by a single cycle of myo-inositol depletion in liquid culture. Calluses were initiated on hypocotyl or cotyledon explants of cultivar Coker 312 by culturing these explants on callus-inducing solid medium [Murashige and Skoog salts plus vitamins of Gamborg's B5 medium, 30 g l−1 glucose, 100 mg l−1 myo-inositol, 2.2 μM 2,4-dichlorophenoxyacetic acid, and 0.88 μM 6-benzyladenine]. The calluses were transferred to an identical liquid basal medium devoid of plant growth regulators. This induced the development of embryogenic cells. Friable clumps of cells formed after 20 d in the medium were selectively collected over filter mesh 40 subjected to one cycle of myo-inositol starvation. This induced a highly synchronized embryogenesis in the culture. The optimized protocol gave 100% embryos at the globular stage, out of which more than 80% developed into bipolar torpedo-stage embryos. About 68% of these were converted to plantlets by subculturing onto a simplified solid medium, and finally grown into healthy, fertile plants.  相似文献   

15.
Summary Embryogenic callus was formed from several cultivars of cotton (Gossypium hirsutum L.) when sections of hypocotyl and cotyledon were cultured on medium supplemented with 5 mg/liter 6-(γ, γ-dimethylallyl-amino)-purine (2iP) and 0.1 mg/liter α-naphthaleneacetic acid (NAA) for callus initiation and proliferation, and subcultured on medium supplemented with 5 mg/liter NAA and 0.1 to 1 mg/liter 2iP for embryogenic callus induction. It seems that a high 2iP:auxin ratio is preferred for callus initiation and proliferation, but should be exchanged with a higher NAA:cytokinin ratio before differentiation will occur. Embryogenic calluses were recovered at a frequency of 2 to 85% depending on the cultivar used. Coker cultivars produced embryogenic callus faster and at higher frequencies than other cultivars. Embryogenic callus produced somatic embryos on phytohormone-free medium. This medium was used to maintain and proliferate embryogenic callus for a perid of 18 to 24 mo. Somatic embryos were converted to plants on a lower ionic strength medium supplemented with 0.1 mg/liter gibberellic acid (GA3) and 0.01 mg/liter NAA. Glucose was the only carbohydrate used through all phases of tissue culture and was much better than sucrose, on which phenolic production was very high. High temperature (30° C) and low light intensity (9 μE · m−2 · s−1) were optimal conditions for callus initiation, embryogenic callus induction, and maintenance, whereas lower temperature (25° C) and high light intensity (90 μE · m−2 s−1) were the optimal conditions for somatic embryo maturation, germination, and plantlet development. Plants could be regenerated within 10 to 12 wk in Cokers or 7 to 8 mo. in others.  相似文献   

16.
Somatic embryogenesis in the wild rice species (Oryza perennis) was induced from cultured mature seeds and young inflorescences. Murashige and Skoog's (MS) medium supplemented with 2 mg/l 2,4-D and 0.2 mg/l BAP was used for induction of a compact, white nodular callus and somatic embryos. Plant regeneration occurred with the tranfer of the nodular callus to MS basal medium containing 0.5 mg/l IAA, 0.5 mg/l NAA, 4 mg/l BAP and 500 mg/l casein hydrolysate. The embryogenic nature of the callus from both explants was maintained over 10 subcultures for about 12 months. Plant regeneration with respect to the number of calli plated from the 6th to 10th passage varied from 80% to 60% for young inflorescence derived callus and from 75% to 69.8% for seed-derived callus.Abbreviations MS Murashige and Skoog medium - BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA naphthalene acetic acid - CH casein hydrolysate  相似文献   

17.
Somatic embryos isolated from mature seed-derived cotyledon cultures of cassava (Mannihot esculenta Crantz) underwent direct secondary somatic embryogenesis or plant development under appropriate incubation conditions. Isolated somatic embryos were subjected to a two-stage culture procedure similar to that which induced their development on cotyledon explants. This involved incubation for 24–30 days on Murashige and Skoog basal medium supplemented with 2–8 mgl-1 2,4-dichlorophenoxyacetic acid (2,4-D) (Stage I medium) before transfer to medium supplemented with 0.01 mgl-1 2,4-D and 0.1 mgl-1 6-benzylamino purine (BAP) (Stage II medium). Under these conditions, secondary somatic embryos developed directly from the cotyledons and shoot-tip region of primary somatic embryos by a developmental process morphologically very similar to that occurring on zygotic cotyledon explants. Apical shoot extension and adventitious root formation occurred when somatic embryos were isolated from parental cultures and incubated on Stage II medium. Somatic embryo-derived plants growing in greenhouse conditions appeared morphologically normal when compared with non-regenerated plants.  相似文献   

18.
Protoplasts derived from hypocotyls of seedlings grown on half-strength MS medium containing 1% sucrose were cultured at a density of 5×104 ml-1 in Kao's medium supplemented with 1.0 mgl-12,4-D, 0.1 mgl-1 NAA and 0.5 mgl-1 zeatin riboside. After three days of culture in darkness at 25±1°C, cultures were transferred to light (70 Em-2s-1) in a 16/8 h ligø ht/dark cycle. Cultures were diluted on the 7th, 10th and 13th day with Kao's medium containing 3.4% sucrose, 0.1 mgl-1 2,4-dichlorophenoxyacetic acid and 1.0 mgl-1 benzyladenine. On the fifteenth day, microcalli were plated on K3 medium gelled with 0.5% agarose (Type 1, low EEO, Sigma). After a further period of two weeks, transfers were made to specific media to achieve either organogenesis or somatic embryogenesis. Time taken from plating protoplasts to obtaining plantlets is 8–10 weeks. Using this procedure, several hundred regenerated plants have been hardened in a growth chamber and transferred to soil.  相似文献   

19.
Summary Callus culture was initiated from expiants of mature root tissues of ginseng (Panax ginseng C.A. Meyer) on MS medium enriched with 2,4-D. The ageing callus produced numerous embryoids in this medium. Reculture of these embryoids in media (1/2 MS or B5) supplemented with benzyladenine and gibberellic acid resulted in profuse plantlet regeneration.  相似文献   

20.
Brassinolide (BR), which is the most biologically active brassinosteroid, was used to examine the potential effect of hormone on cotton somatic embryogenesis. Ten-day-old cotton (Gossypium hirsutum L., cv. Cooker) seedlings were used for explant source and hypocotyls were removed and cultured on MS basal medium with B5 vitamins supplemented with 1 mg/L 6-benzylaminopurine + 0.5 mg/L kinetin for callus induction. After one month proliferating calli pieces were collected and cultured on MS basal medium containing various concentrations of BR (0.1, 0.5, 1.0 μM) with their controls. BR treatments were negatively effective on the fresh weight of calli when compared to control. Differential somatic embryogenesis maturation rates due to BR treatment were observed. Somatic embryogenesis was stimulated especially for transition to cotyledonary phase at 0.5 mg/L BR. Histological preparations from embryogenic calli and somatic embryos at different stages of development revealed the spontaneous polyploidisation during early somatic embryogenesis on BR-treated calli. Present results suggest that BR negatively effected calli growth, however, had a stimulating role in maturation of somatic embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号