首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochromes from the SoxAX family have a major role in thiosulfate oxidation via the thiosulfate-oxidizing multi-enzyme system (TOMES). Previously characterized SoxAX proteins from Rhodovulum sulfidophilum and Paracoccus pantotrophus contain three heme c groups, two of which are located on the SoxA subunit. In contrast, the SoxAX protein purified from Starkeya novella was found to contain only two heme groups. Mass spectrometry showed that a disulfide bond replaced the second heme group found in the diheme SoxA subunits. Apparent molecular masses of 27,229 +/- 10.3 Da and 20,258.6 +/- 1 Da were determined for SoxA and SoxX with an overall mass of 49.7 kDa, indicating a heterodimeric structure. Optical redox potentiometry found that the two heme cofactors are reduced at similar potentials (versus NHE) that are as follows: +133 mV (pH 6.0); +104 mV (pH 7.0); +49 (pH 7.9) and +10 mV (pH 8.7). EPR spectroscopy revealed that both ferric heme groups are in the low spin state, and the spectra were consistent with one heme having a His/Cys axial ligation and the other having a His/Met axial ligation. The His/Cys ligated heme is present in different conformational states and gives rise to three distinct signals. Amino acid sequencing was used to unambiguously assign the protein to the encoding genes, soxAX, which are part of a complete sox gene cluster found in S. novella. Phylogenetic analysis of soxA- and soxX-related gene sequences indicates a parallel development of SoxA and SoxX, with the diheme and monoheme SoxA sequences located on clearly separated branches of a phylogenetic tree.  相似文献   

2.
SoxAX cytochromes catalyze the formation of heterodisulfide bonds between inorganic sulfur compounds and a carrier protein, SoxYZ. They contain unusual His/Cys-ligated heme groups with complex spectroscopic signatures. The heme-ligating cysteine has been implicated in SoxAX catalysis, but neither the SoxAX spectroscopic properties nor its catalysis are fully understood at present. We have solved the first crystal structure for a group 2 SoxAX protein (SnSoxAX), where an N-terminal extension of SoxX forms a novel structure that supports dimer formation. Crystal structures of SoxAX with a heme ligand substitution (C236M) uncovered an inherent flexibility of this SoxA heme site, with both bonding distances and relative ligand orientation differing between asymmetric units and the new residue, Met(236), representing an unusual rotamer of methionine. The flexibility of the SnSoxAX(C236M) SoxA heme environment is probably the cause of the four distinct, new EPR signals, including a high spin ferric heme form, that were observed for the enzyme. Despite the removal of the catalytically active cysteine heme ligand and drastic changes in the redox potential of the SoxA heme (WT, -479 mV; C236M, +85 mV), the substituted enzyme was catalytically active in glutathione-based assays although with reduced turnover numbers (WT, 3.7 s(-1); C236M, 2.0 s(-1)). SnSoxAX(C236M) was also active in assays using SoxYZ and thiosulfate as the sulfur substrate, suggesting that Cys(236) aids catalysis but is not crucial for it. The SoxYZ-based SoxAX assay is the first assay for an isolated component of the Sox multienzyme system.  相似文献   

3.
Cheesman MR  Little PJ  Berks BC 《Biochemistry》2001,40(35):10562-10569
The SoxAX complex of the bacterium Rhodovulum sulfidophilum is a heterodimeric c-type cytochrome that plays an essential role in photosynthetic thiosulfate and sulfide oxidation. The three heme sites of SoxAX have been analyzed using electronic absorption, electron paramagnetic resonance, and magnetic circular dichroism spectroscopies. Heme-3 in the ferric state is characterized by a Large g(max) EPR signal and has histidine and methionine axial heme iron ligands which are retained on reduction to the ferrous state. Hemes-1 and -2 both have thiolate plus nitrogenous ligand sets in the ferric state and give rise to rhombic EPR spectra. Heme-1, whose ligands derive from cysteinate and histidine residues, remains ferric in the presence of dithionite ion. Ferric heme-2 exists with a preparation-dependent mixture of two different ligand sets, one being cysteinate/histidine, the other an unidentified pair with a weaker crystal-field strength. Upon reduction of the SoxAX complex with dithionite, a change occurs in the ligands of heme-2 in which the thiolate is either protonated or replaced by an unidentified ligand. Sequence analysis places the histidine/methionine-coordinated heme in SoxX and the thiolate-liganded hemes in SoxA. SoxAX is the first naturally occurring c-type cytochrome in which a thiolate-coordinated heme has been identified.  相似文献   

4.
The heterodimeric hemoprotein SoxXA, essential for lithotrophic sulfur oxidation of the aerobic bacterium Paracoccus pantotrophus, was examined by a combination of spectroelectrochemistry and EPR spectroscopy. The EPR spectra for SoxXA showed contributions from three paramagnetic heme iron centers. One highly anisotropic low-spin (HALS) species (gmax = 3.45) and two "standard" cytochrome-like low-spin heme species with closely spaced g-tensor values were identified, LS1 (gz = 2.54, gy = 2.30, and gx = 1.87) and LS2 (gz = 2.43, gy = 2.26, and gx = 1.90). The crystal structure of SoxXA from P. pantotrophus confirmed the presence of three heme groups, one of which (heme 3) has a His/Met axial coordination and is located on the SoxX subunit [Dambe et al. (2005) J. Struct. Biol. 152, 229-234]. This heme was assigned to the HALS species in the EPR spectra of the isolated SoxX subunit. The LS1 and LS2 species were associated with heme 1 and heme 2 located on the SoxA subunit, both of which have EPR parameters characteristic for an axial His/thiolate coordination. Using thin-layer spectroelectrochemistry the midpoint potentials of heme 3 and heme 2 were determined: Em3 = +189 +/- 15 mV and Em2 = -432 +/- 15 mV (vs NHE, pH 7.0). Heme 1 was not reducible even with 20 mM titanium(III) citrate. The Em2 midpoint potential turned out to be pH dependent. It is proposed that heme 2 participates in the catalysis and that the cysteine persulfide ligation leads to the unusually low redox potential (-436 mV). The pH dependence of its redox potential may be due to (de)protonation of the Arg247 residue located in the active site.  相似文献   

5.
SoxAX cytochromes are essential for the function of the only confirmed pathway for bacterial thiosulfate oxidation, the so-called "Sox pathway," in which they catalyze the initial formation of a S-S bond between thiosulfate and the SoxYZ carrier protein. Our work using the Starkeya novella diheme SoxAX protein reveals for the first time that in addition to two active site heme groups, SoxAX contains a mononuclear Cu(II) center with a distorted tetragonal geometry and three to four nitrogen ligands, one of which is a histidine. The Cu(II) center enhanced SoxAX activity in a newly developed, glutathione-based assay system that mimics the natural reaction of SoxAX with SoxYZ. EPR spectroscopy confirmed that the SoxAX Cu(II) center is reduced by glutathione. At pH 7 a K(m) (app) of 0.19+/-0.028 mm and a k(cat) (app) of 5.7+/-0.25s(-1) were determined for glutathione. We propose that SoxAX cytochromes are a new type of heme-copper proteins, with SoxAX-mediated S-S bond formation involving both the copper and heme centers.  相似文献   

6.
tert-Butyl 1-methyl-2-propynyl ether (tBMP) was analyzed for its ability to act as a mechanism-based inactivator of p450 2B4. tBMP inactivated p450 2B4 in a time-, concentration-, and NADPH-dependent manner. Losses in activity occurred with concurrent losses in the reduced CO spectrum and native p450 heme; however, there was a greater loss in activity than could be accounted for by reduced CO spectra or native heme loss. LC/MS analysis demonstrated that the losses in native heme were accompanied by the appearance of two modified hemes with m/z values of 705Da, consistent with tBMP adducted hemes. Both adducts had identical fragmentation patterns when analyzed by LC/MS/MS. The spectra were consistent with a tBMP molecule and an oxygen atom attached to iron-depleted heme. Proton NMR studies suggest that the two modified hemes in p450 2B1 are N-alkylated on pyrrole rings A and D.  相似文献   

7.
8.
The absorption spectra of alkaline pyridine hemochrome of myeloperoxidase in its native, acid, and modified forms were similar to those of heme a, and the molar extinction coefficient of myeloperoxidase heme was very similar to that of heme a, assuming that myeloperoxidase contains only one heme. The anaerobic titration of myeloperoxidase with dithionite showed that one electron was consumed per molecule of the enzyme for its conversion to its reduced form. The EPR spectrum of myeloperoxidase indicated that the enzyme contains both high-spin heme and non-heme iron. Carbonyl reagents, such as borohydride, hydrazine, and benzhydrazide, reacted with myeloperoxidase, causing blue shifts in its absorption spectrum. The heme was labeled with a tritium of boro[3H]hydride, suggesting that the reagents reacted with a formyl group on the porphyrin ring of the myeloperoxidase heme. When hydrazine was added to cyanide complex I of myeloperoxidase the complex was converted to the hydrazine-enzyme compound. Myeloperoxidase reacted with bisulfite to form a compound with an absorption spectrum similar to that of cyanide complex I. Borohydride-treated myeloperoxidase formed only one cyanide complex, while the native enzyme formed two different cyanide complexes, I (Kd = 0.3 muM) and II (approximate Kd = 0.1 mM). The EPR spectrum indicated that cyanide complex I of myeloperoxidase still contained high-spin heme. The results suggested that cyanide complex I and the bisulfite compound of myeloperoxidase were adducts between the nucleophilic reagents and the formyl group of myeloperoxidase heme. Based on these results, we concluded that one of the two iron atoms in a myeloperoxidase molecule exists in a formyl-heme moiety similar to heme a and the other exists as a non-heme iron.  相似文献   

9.
Summary Vitreoscilla contained a homodimeric bacterial hemoglobin (VtHb). The purification of this protein yielded VtmetHb which exhibited electronic and electron paramagnetic resonance (EPR) spectra, showing that it existed predominantly in a high-spin ferric form, both axial and rhombic components being present. The preparations also contained variable amounts of low-spin components. There was no evidence that these high-spin and low-spin forms were in equilibrium. The former were reducible by NADH catalyzed by the NADH-metVtHb reductase, and the latter were not. High ionic strength and high pH led to the formation of low-spin metVtHb; both treatments were reversible. Cyanide and imidazole liganded to VtHb resulted in the conversion of high-spin to low-spin ferric heme centers, each with characteristic electronic and EPR spectra. Some preparations of VtHb exhibited EPR signals consistent with a sulfur ligand bound to the ferric site. When VtHb was treated with NADH plus the reductase in the presence of oxygen, the intensity of the high-spin EPR signals decreased significantly. No reduction occurred in the absence of oxygen, suggesting a possible role for the superoxide anion. Dithionite treatment of VtHb resulted in a slow reduction, but the main product of the reaction of dithionite-reduced VtHb with oxygen was VtmetHb, not VtHbO2. EPR spectra of whole cells ofVitreoscilla exhibited a variety of intense signals at low and high magnetic field, theg-values being consistent with the presence of high-spin ferric heme proteins, in addition to an iron-containing superoxide dismutase (FeSOD) and iron-sulfur proteins. EPR spectra of the cytosol fraction ofVitreoscilla showed the expected resonances for VtmetHb and FeSOD.Abbreviations A absorbance - DEAE diethylaminoethyl - EDTA ethylenediamine tetraacetate - EPR electron paramagnetic resonance - HiPIP high-potential iron protein - SDS sodium dodecyl sulfate - SOD superoxide dismutase - VtHb Vitreoscilla hemoglobin - VtmetHb oxidizedVitreoscilla hemoglobin - VtHbO2 oxygenatedVitreoscilla hemoglobin  相似文献   

10.
Lipoyl synthase (LS) is a member of a recently established class of metalloenzymes that use S-adenosyl-l-methionine (SAM) as the precursor to a high-energy 5'-deoxyadenosyl 5'-radical (5'-dA(*)). In the LS reaction, the 5'-dA(*) is hypothesized to abstract hydrogen atoms from C-6 and C-8 of protein-bound octanoic acid with subsequent sulfur insertion, generating the lipoyl cofactor. Consistent with this premise, 2 equiv of SAM is required to synthesize 1 equiv of the lipoyl cofactor, and deuterium transfer from octanoyl-d(15) H-protein of the glycine cleavage system-one of the substrates for LS-has been reported [Cicchillo, R. M., Iwig, D. F., Jones, A. D., Nesbitt, N. M., Baleanu-Gogonea, C., Souder, M. G., Tu, L., and Booker, S. J. (2004) Biochemistry 43, 6378-6386]. However, the exact identity of the sulfur donor remains unknown. We report herein that LS from Escherichia coli can accommodate two [4Fe-4S] clusters per polypeptide and that this form of the enzyme is relevant to turnover. One cluster is ligated by the cysteine amino acids in the C-X(3)-C-X(2)-C motif that is common to all radical SAM enzymes, while the other is ligated by the cysteine amino acids residing in a C-X(4)-C-X(5)-C motif, which is conserved only in lipoyl synthases. When expressed in the presence of a plasmid that harbors an Azotobacter vinelandii isc operon, which is involved in Fe/S cluster biosynthesis, the as-isolated wild-type enzyme contained 6.9 +/- 0.5 irons and 6.4 +/- 0.9 sulfides per polypeptide and catalyzed formation of 0.60 equiv of 5'-deoxyadenosine (5'-dA) and 0.27 equiv of lipoylated H-protein per polypeptide. The C68A-C73A-C79A triple variant, expressed and isolated under identical conditions, contained 3.0 +/- 0.1 irons and 3.6 +/- 0.4 sulfides per polypeptide, while the C94A-C98A-C101A triple variant contained 4.2 +/- 0.1 irons and 4.7 +/- 0.8 sulfides per polypeptide. Neither of these variant proteins catalyzed formation of 5'-dA or the lipoyl group. M?ssbauer spectroscopy of the as-isolated wild-type protein and the two triple variants indicates that greater than 90% of all associated iron is in the configuration [4Fe-4S](2+). When wild-type LS was reconstituted with (57)Fe and sodium sulfide, it harbored considerably more iron (13.8 +/- 0.6) and sulfide (13.1 +/- 0.2) per polypeptide and catalyzed formation of 0.96 equiv of 5'-dA and 0.36 equiv of the lipoyl group. M?ssbauer spectroscopy of this protein revealed that only approximately 67% +/- 6% of the iron is in the form of [4Fe-4S](2+) clusters, amounting to 9.2 +/- 0.4 irons and 8.8 +/- 0.1 sulfides or 2 [4Fe-4S](2+) clusters per polypeptide, with the remainder of the iron occurring as adventitiously bound species. Although the M?ssbauer parameters of the clusters associated with each of the variants are similar, EPR spectra of the reduced forms of the cluster show small differences in spin concentration and g-values, consistent with each of these clusters as distinct species residing in each of the two cysteine-containing motifs.  相似文献   

11.
New small cytochrome c (TniCYT) was purified from haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens. The protein was analyzed by mass spectrometry as well as using visible, CD and EPR spectroscopy. It was found that TniCYT is a monomer with a molecular mass of 9461 Da which contains two hemes per molecule. The data of CD and EPR spectroscopy showed that two hemes possess different optical activity and are in distinct, high and low spin states. TniCYT was also demonstrated to have unusual characteristics in the visible spectrum, namely, the splitting of characteristic peaks was observed in α- and β-bands of the heme spectrum when the reduced form of cytochrome was analyzed. The α-band has two peaks with maximum at 548 and 556 nm whereas the β-band showes ones at 520 and 528 nm. According to the MALDI finger-print analysis, the new cytochrome has a unique amino acid sequence.  相似文献   

12.
The purified cytochrome b-c1 complex of Rhodopseudomonas sphaeroides has two b cytochromes distinguishable by optical, thermodynamic and electron paramagnetic resonance criteria (gz values are approximately equal to 3.75 and approximately equal to 3.4). EPR features typical of a Rieske iron sulfur cluster (g values of 2.03 1.90 and 1.81) and a c1 type cytochrome (g approximately equal to 3.4) were also observed. The b and c1 cytochromes were individually purified from the complex. The cytochrome c1 retained its native EPR spectrum. The b cytochrome lost over 90% of the intensity from the 'b566 type' heme site (g approximately equal to 3.75), while the 'b561 type' heme site (g approximately equal to 3.4) retained its native EPR spectrum.  相似文献   

13.
Examination of the peroxidase isolated from the inkcap Basidiomycete Coprinus cinereus shows that the 42,000-dalton enzyme contains a protoheme IX prosthetic group. Reactivity assays and the electronic absorption spectra of native Coprinus peroxidase and several of its ligand complexes indicate that this enzyme has characteristics similar to those reported for horseradish peroxidase. In this paper, we characterize the H2O2-oxidized forms of Coprinus peroxidase compounds I, II, and III by electronic absorption and magnetic resonance spectroscopies. Electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) studies of this Coprinus peroxidase indicate the presence of high-spin Fe(III) in the native protein and a number of differences between the heme site of Coprinus peroxidase and horseradish peroxidase. Carbon-13 (of the ferrous CO adduct) and nitrogen-15 (of the cyanide complex) NMR studies together with proton NMR studies of the native and cyanide-complexed Coprinus peroxidase are consistent with coordination of a proximal histidine ligand. The EPR spectrum of the ferrous NO complex is also reported. Protein reconstitution with deuterated hemin has facilitated the assignment of the heme methyl resonances in the proton NMR spectrum.  相似文献   

14.
SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (Em) at pH 7.0 of approximately +210, −340, and −400 mV for the His/Met, His/Cys, and active site His/CysS-ligated heme, respectively. Exposing SoxAX to S2O42−, a substrate analog with Em ∼−450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (Em ∼−1140 mV), allows cyanide to displace the cysteine persulfide (CysS) ligand to the active site heme. This provides the first evidence for the dissociation of CysS that has been proposed as a key event in SoxAX catalysis.  相似文献   

15.
Human apohemoglobin (globin) was spin-labeled at the beta-93 sulfhydryl groups with 2,2,5,5-tetramethyl-3-aminopyrrolidine-I-oxyl. Spin-labeled globin exhibited an EPR spectra that is less immobilized than that of spin-labeled hemoglobin, indicating the conformational difference in the vicinity of the label between hemoglobin and globin. Spectrophotometric titration of spin-labeled globin with protohemin showed that 1 mol of globin (on the tetramer basis) combines with 4 mol of hemin, producing a holomethemoglobin spectrophotometrically indistinguishable from native methemoglobin. The EPR spectrum was also changed strikingly upon the addition of protohemin. This change, however, was not proportional to the amount of hemin added, but marked changes occurred after 3 to 4 mol of hemin were mixed with 1 mol of spin-labeled globin. The EPR spectrum of spin-labeled hemoglobin thus prepared was identical with that prepared by direct spin labeling to methemoglobin. These results suggest the preferential binding of hemin to alpha-globin chains in the course of heme binding by globin. This assumption was further confirmed by preparing spin-labeled semihemoglobin in which only one kind of chain contained hemin (alpha h betaO SL and alpha O beta h SL). The EPR spectrum of the alpha h beta O SL molecule showed a slightly immobilized EPR spectrum, similar to that of spin-labeled globin mixed with 50% of the stoichiometric amount of hemin. On the other hand, the alpha O beta h SL molecule showed a distinctly different EPR signal from that of globin half-saturated with hemin, and showed an intermediate spectrum between those of beta h SL and alpha h beta h SL. These results indicate that heme binding to globin chains brings about a major conformational change in the protein moiety and that chain-chain association plays a secondary role. We conclude that hemin binds preferentially to alpha-globin chains and that the conformation of globin changes rapidly to that of methemoglobin after all four hemes are attached to globin heme pockets.  相似文献   

16.
The EPR spectra of the nitric oxide (NO) derivatives of structurally perturbed Fe (II) hemeproteins show various patterns, all of which are characterized by the conspicuous three-line hyperfine splitting due to 14NO, in contrast to that of the native proteins. For the purpose of obtaining structural information from these three line spectra, the model systems were studied, which consist of NO, heme (or TPP-Fe(II), where TTP means alpha, beta, gamma, delta-tetraphenylporphine) and the nitrogenous base, pyridine or quinoline, which, respectively, give the native type or the three line (perturbed type) EPR spectrum. The ring proton paramagnetic shift of quinoline in this system shows that it is not coordinated to NO-TPP-Fe(II) as a normal axial ligand, in contrast to pyridine which gives the shift pattern of the ordinary axial ligation. This observation suggests that in the NO-hemeproteins some perturbations of the protein structure cause the rupture or distortion of the bond between the imidazole nitrogen on the fifth coordination site and the heme iron, resulting in the three line spectrum. The EPR study of the model systems, the pentacoordinated complex, NO-heme and NO-TPP-Fe(II), in various media revealed that the pentacoordinated species indeed exhibits, depending upon its environment, a variety of spectra, which closely reproduce the three line patterns observed in the perturbed proteins and some related model systems. Such spectral variation can be attributed to the difference in the degree of quenching the internal motion and/or the structural heterogeneity caused by molecular environment.  相似文献   

17.
18.
Janick & Siegel [Janick, P. A., & Siegel, L. M. (1982) Biochemistry 21, 3538-3547] showed that the EPR spectrum of the reduced Fe4S4 center (S = 1/2) in fully reduced native ("unligated") Escherichia coli NADPH-sulfite reductase hemoprotein subunit (SiR-HP) is perturbed by interaction with paramagnetic ferrous siroheme (S = 1 or 2) to yield several novel sets of EPR signals: one set with all g values between 2.0 and 2.8, termed "S = 1/2" type, and two sets with the lowest field g value between 4.7 and 5.4, termed "S = 3/2" type. The present study has shown that EPR spectra of fully reduced SiR-HP are nearly quantitatively converted to the classical "g = 1.94" type typical of S = 1/2 Fe4S4 clusters when the heme has been ligated by strong field ligands such as CO, CN-, S2-, and AsO2-, converting the ferroheme to S = 0. However, the exact line shapes and g values of the g = 1.94 differ markedly when different ligands are bound to the heme. Also, optical difference spectra taken between enzyme species in which the heme is kept in the same (Fe2+) oxidation state while the Fe4S4 center is reduced or oxidized show that the optical spectrum of the ligated siroheme is sensitive to the oxidation state of the Fe4S4 cluster. These results indicate that the heme-Fe4S4 interaction of native SiR-HP persists even when the heme Fe is bound to exogenous ligands. We have also found that the g values of the exchange-coupled S = 1/2 and S V 3/2 type signals of native reduced SiR-HP can be significantly shifted by addition of potential weak field heme ligands--halides and formate--or low concentrations of certain chaotropic agents--guanidinium salts and dimethyl sulfoxide--to the fully reduced enzyme. Such agents can also promote interconversion of the S = 1/2 and S = 3/2 type signals. These effects are reversed on removal of the agent. Treatment of reduced SiR-HP with relatively large concentrations of chaotropes, e.g., 60% dimethyl sulfoxide or 2 or 3 M urea, leads to abolition of the S = 1/2 and S = 3/2 EPR signals and their replacement by signals of the g = 1.94 type.  相似文献   

19.
EPR spectroscopy of semi-methemerythrin   总被引:2,自引:0,他引:2  
EPR spectra of semi-met forms of octameric hemerythrin from Themiste zostericola, prepared by one electron reduction of methemerythrin or by one electron oxidation of deoxyhemerythrin, have been visualized at liquid helium temperatures. The spectrum of that prepared by one electron reduction has principal g-values of 1.96 +/- 0.01, 1.88 +/- 0.01, and 1.67 +/- 0.02 while that obtained by one electron oxidation has g = 1.95 +/- 0.01, 1.72 +/- 0.01, and 1.68 +/- 0.02. The amplitude of either spectrum decreases with time on incubation at room temperature according to a first order rate with t 1/2 = 5-8 min, apparently because of an intramolecular disproportionation. Similar EPR spectra have been obtained with semi-metmyohemerythrin of T. zostericola and with the octameric semi-met form of Phascolopsis gouldii. However, these forms disproportionate to a much lesser degree. The azide adduct of the octameric semi-met form of T. zostericola has g-values of 1.94 +/- 0.01, 1.85 +/- 0.01, and 1.57 +/- 0.02. Its EPR spectrum differs somewhat from those of the azide adducts of the octamer of P. gouldii and the monomer of T. zostericola although all are resistant to disproportionation. Methemerythrin and deoxyhemerythrin have no EPR spectra even at liquid helium temperature.  相似文献   

20.
BACKGROUND: Typically, a diagnosis of diabetes mellitus is based on elevated circulating blood glucose levels. In an attempt to discover additional markers for the disease and predictors of prognosis, we undertook the characterization of HbA1d3 in diabetic and normal patients. MATERIAL AND METHODS: PolyCAT A cation exchange chromatography and liquid chromatography-mass spectroscopy was utilized to separate the alpha- and beta-globin chains of HbA1d3 and characterize their presence in normal and diabetic patients. RESULTS: We report the characterization of HbA1d3 as a glutathionylated, minor hemoglobin subfraction that occurs in higher levels in diabetic patients (2.26 +/- 0.29%) than in normal individuals (1.21 +/- 0.14%, p < 0.001). The alpha-chain spectrum displayed a molecular ion of m/z 15126 Da, which is consistent with the predicted native mass of the HbA0 alpha-globin chain. By contrast, the mass spectrum of the beta-chain showed a mass excess of 307 Da (m/z = 16173 Da) versus that of the native HbA0 beta-globin chain (m/z = 15866 Da). The native molecular weight of the modified beta-globin chain HbA0 was regenerated by treatment of HbA1d3 with dithiothreitol, consistent with a glutathionylated adduct. CONCLUSIONS: We propose that HbA1d3 (HbSSG) forms normally in vivo, and may provide a useful marker of oxidative stress in diabetes mellitus and potentially other pathologic situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号