首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The adherence of Candida albicans to human buccal and vaginal epithelial cells was studied by transmission electron microscopy. Adherence to epithelial cells was confirmed by both a radiometric assay as well as direct microscopic examination of stained cell preparations. Ultramicroscopic preparations revealed that yeast cells were closely appressed to epithelial cell surfaces and were often partially enclosed within phagocyticlike invaginations of the epithelial cells. A murine model of vaginitis caused by C. albicans was also used to study adherence to epithelial cells and to follow the course of colonization. Ultramicroscopic preparations of murine vaginal tissue revealed that within 2 h postinfection, yeast cells could be seen adhering to epithelial cells. At 6 h postinfection, hyphae and yeast cells were not only found on the epithelial cell surface but also within the submucosal tissue. When observed on the epithelial cell surface, Candida cells were either attached to host cells, or when infected tissue was stained with ruthenium red, Candida cells were observed on the epithelial surface embedded within an electron-dense matrix. Fungal elements were abundant in the submucosa at 24 h postinfection and were still observed on the epithelial cell surface; all of this was accompanied by an inflammatory response.  相似文献   

2.
Twenty-seven Candida albicans strains and 26 Candida dubliniensis strains, isolated from HIV patients, were tested for their adherence to buccal and vaginal epithelial cells. Both species showed important levels of adhesion to buccal and vaginal epithelial cells, although C. albicans showed the highest levels of adhesion. These results suggest that both Candida species are well adapted, in terms of adhesion capability, to the oral and vaginal environment.  相似文献   

3.
4.
The effect of growth temperature on the binding of Candida albicans to human buccal epithelial cells (BECs) was examined using an equilibrium of binding analysis. Candida albicans was cultured in M9 medium either for 12 h at 25 degrees C or for 9 h at 25 degrees C and then shifted to 37 degrees C for 3 h. The temperature shift did not result in germ tube formation; however, the adherence of C. albicans to BECs was altered. Shifting temperature increased the yeast's ability to bind to BECs. A Langmuir adsorption isotherm was used to calculate the maximum number of available binding sites (N) and the apparent association constants of binding (Ka) for all resolvable adhesin-receptor interactions. Three classes of adhesin-receptor interactions were resolved when the yeast was cultured at 25 degrees C and included a low copy number site (N = 3.0 cfu/BEC; Ka = 2.11 X 10(-6) mL/cfu), a medium copy number site (N = 23.6 cfu/BEC, Ka = 8.21 X 10(-7) mL/cfu), and a high copy number site (N = 91.7 cfu/BEC, Ka = 3.35 X 10(-8) mL/cfu). Two classes of adhesin-receptor interactions were resolved when the incubation temperature was shifted to 37 degrees C: a low copy number site (N = 4.5 cfu/BEC, Ka = 3.98 X 10(-6) mL/cfu) and a high copy number site (N = 150.5 cfu/BEC, Ka = 8.47 X 10(-8) mL/cfu). Augmented C. albicans adherence to BECs due to the elevated growth temperatures appears to result from a temperature-regulated alteration in the C. albicans adhesin that recognizes a high copy number receptor site with relatively low affinity.  相似文献   

5.
Adherence of Candida albicans to host cells   总被引:6,自引:0,他引:6  
Abstract Research devoted to uncovering the mechanisms of adherence of Candida albicans to human tissue is reviewed. The physical aspects of adherence of the fungus to host cells and the biochemical and molecular features, as far as they are known, are discussed. Relevant pre- and post-adherence events in the pathogenesis of disease caused by this fungus are also noted. Putative adhesins and surface receptors of C. albicans for host proteins are discussed in detail.  相似文献   

6.
Adhesion of four isolates of Candida albicans to buccal epithelial cells was determined after growth of the yeasts in defined medium containing 50 mM glucose or 500 mM galactose as the carbon source. With each isolate, adhesion of galactose-grown yeasts was significantly higher than that of glucose-grown organisms. Yeast cell-surface hydrophobicity was assessed by two methods, a modified hydrocarbon adhesion assay and a more sensitive polystyrene microsphere assay. All four isolates were significantly more hydrophobic after growth on 500 mM galactose than after growth on 50 mM glucose. Overall, a strong positive correlation between adhesion and surface hydrophobicity was observed (r = 0.965). These results are discussed in relation to the role of yeast-surface hydrophobicity in pathogenesis.  相似文献   

7.
Adherence abilities of 45 Candida strains to human buccal and vaginal epithelial cells in vitro were tested in two media: 0.9% saline and phosphate buffer. Candida albicans cells adhered more strongly to epithelial cells than fungal cells of other Candida species. These findings were statistically significant according to Mann-Whitney's "U" test with buccal epothelial cells in both of the test media and with vaginal cells in saline only.  相似文献   

8.
The rapid-freezing technique was applied in association with scanning and transmission electron microscopy to observe the initial attachment (or contact) ofCandida albicans cells to exfoliated human buccal epithelial cells. Low temperature scanning electron microscopy provided detailed three-dimensional morphological features of the yeast-epithelial cell association; adhesion ofC. albicans cells to host cells was primarily owing to an interaction between fibrillar layer of the yeast cell wall and the membrane interdigitations of the epithelial cells. Such a particular interconnection between the two cells was confirmed by the freeze-substitution fixation for transmission electron microscopy. These results clearly demonstrate the outermost fibrillar cell wall layer ofC. albicans responsible for adhesion to host cells.  相似文献   

9.
10.
The aim of this study was to evaluate adherence of 83 strains of Pseudomonas aeruginosa isolated from humans and different animals to trypsin-treated buccal cells. We have demonstrated that Pseudomonas aeruginosa attached to trypsin-treated buccal cells in far greater numbers than to cells from controls (normal buccal epithelial cells). The mean number of bacteria adhering to trypsin-treated cells amounted 107.05 +/- 102.16 and to normal cells - 6.97 +/- 3.53. We conclude that exposure of cells to proteolytic enzymes increases Pseudomonas aeruginosa binding to buccal cells.  相似文献   

11.
The rapid-freezing technique was applied in association with scanning and transmission electron microscopy to observe the initial attachment (or contact) of Candida albicans cells to exfoliated human buccal epithelial cells. Low temperature scanning electron microscopy provided detailed three-dimensional morphological features of the yeast-epithelial cell association; adhesion of C. albicans cells to host cells was primarily owing to an interaction between fibrillar layer of the yeast cell wall and the membrane interdigitations of the epithelial cells. Such a particular interconnection between the two cells was confirmed by the freeze-substitution fixation for transmission electron microscopy. These results clearly demonstrate the outermost fibrillar cell wall layer of C. albicans responsible for adhesion to host cells.  相似文献   

12.
The fungus, Candida albicans, interacts with epithelial cells in the human host both as a normal commensal and as an invasive pathogen. It has evolved multiple complementary mechanisms to adhere to epithelial cells. Adherent C. albicans cells can invade epithelial surfaces both by penetrating into individual epithelial cells, and by degrading interepithelial cell junctions and passing between epithelial cells. Invasion into epithelial cells is mediated by both induced endocytosis and active penetration, whereas degradation of epithelial cell junction proteins, such as E‐cadherin, occurs mainly via proteolysis by secreted aspartyl proteinases. C. albicans invasion of epithelial cells results in significant epithelial cell damage, which is probably induced by lytic enzymes, such as proteases and phospholipase secreted by the organism. Future challenges include identifying the epithelial cell targets of adhesins and invasins, and determining the mechanisms by which C. albicans actively penetrates epithelial cells and induces epithelial cell damage.  相似文献   

13.
14.
The early in vitro kinetics of Candida albicans attachment to human buccal epithelial cells was studied with the aid of an adhesion assay and solutions of concanavalin A (Con A), a lectin which is capable of inhibiting yeast adhesion. Various saccharides and putative receptor analogues were also tested. Solutions of each single reagent were added to tubes containing aliquots of mucosal cells and germinated yeasts at the beginning of a 1-hour incubation period (time O) or at 10 minute intervals during the assay. The number of yeasts attached to 200 mucosal cells was subsequently determined microscopically. Yeast adhesion remained constant following addition of phosphate-buffered saline (PBS) at time 0 or at any time thereafter. However, addition of Con A at 0, 10 or 20 minutes of incubation decreased adhesion significantly to 38%, 45% and 63% of control values. This inhibitory effect dwindled as time of incubation prior to lectin addition increased and Con A could not inhibit adhesion significantly after twenty minutes. Results obtained with Con A using live germinated yeasts were similar to those obtained with formalin-killed C. albicans. The other reagents tested failed to decrease adhesion significantly. These included the putative receptor analogues fibronectin, N-acetyl-d-glucosamine and d-galactose, and several non-specific saccharides such as -d-methylglucopyranoside, d-ribose and d-xylose. It is suggested that in vitro attachment to human mucosal cells by C. albicans is inhibitable up to a defined point in time by a lectin with affinity for mannosecontaining surface moieties, but becomes non-reversible thereafter. This experimentally-observed irreversibility is independent of yeast cell viability.  相似文献   

15.
Data from our previous studies suggested that the fungal cell wall component, chitin, is involved in the adhesion of Candida albicans to mucosal surfaces. In the present study, we investigated the effect of polyoxin D, an inhibitor of chitin synthase, on the interaction of the fungus with epithelial cells. The effect of polyoxin D on Candida was evaluated in in vitro assays for its capacity to adhere to buccal epithelial cells (BEC), and by fluorescent-microscopy photometry and flow cytometry using cells stained with cellufluor (CF), a fluorochrome with affinity for chitin. C. albicans grown with and without polyoxin D was stained with CF and examined in a fluorescent microscope equipped with a photometer. Measurements of fluorescence revealed a wide range of intensity among C. albicans cells and a decreased intensity in polyoxin D treated cultures. Flow cytometry analyses of yeasts revealed 2 peaks of fluorescence intensity, and pointed to differences between polyoxin D treated and non-treated microorganisms. C. albicans stained with CF were separated into 2 subpopulations by flow cytometry according to fluorescence intensity. In vitro adhesion of each subpopulation to BEC was similar. Polyoxin D treated fungi showed significantly reduced adherence to BEC, as evaluated by a radioactivity assay with radiolabelled yeasts and by microscopic readings. The reduction in adhesion was Polyoxin D concentration dependent. These observations support our previous findings suggesting involvement of chitin in the attachment process of C. albicans (CBS562) to epithelial cells.  相似文献   

16.
Microbial adherence to mucosal surfaces is an important first step in the initiation of the pathogenic process in the oral cavity. Candida albicans, the most adherent and pathogenic Candida species, utilizes a variety of mechanisms to adhere to human tissues. Although the strongest mechanism of adherence involves mannoprotein adhesins on C. albicans, cell surface hydrophobicity (CSH) plays an important role in the adherence process by providing hydrophobic interactions that turn the initial attachment between the yeast and a surface into a strong bond. Recent cell wall analytical and comparative studies showed that, Candida dubliniensis, unlike C. albicans, possesses cell surface variations that allow it to be constantly hydrophobic, regardless of growth temperature. Based on these observations, the present study was designed to compare the adherence abilities of C. dubliniensis and C. albicans to pooled human buccal epithelial cells (BEC), in regards to their cell surface hydrophobicity. Ten C. albicans and nine C. dubliniensis isolates, as well as the C. albicans hydrophobic variant A9V10 were evaluated for adherence with BEC using visual aggregation in the wells of a microtiter plate and microscopic examination. All 11 C. albicans isolates failed to show adherence to BEC, visually or microscopically, when grown at 37 degrees C. The same isolates, however, showed significant increase in aggregation and microscopic adherence to BEC when grown at 25 degrees C. All C. dubliniensis isolates tested and the A9V10 C. albicans hydrophobic variant resulted in visual aggregation and adhered to BEC when grown at either temperature. The findings from this study show that, based on comparative adherence results and growth temperature changes, C. dubliniensis seems to have greater adherence to BEC than do typical C. albicans strains and that hydrophobic interactions seem to be the mechanism of adherence involved. Although many questions remain to be answered regarding the clinical implications of this observed in vitro enhanced adherence of C. dubliniensis to human BEC, these findings support the establishment of this novel species as a clinically significant yeast.  相似文献   

17.
In this study, the in vitro adherence capabilities of Pseudomonas aeruginosa and Candida albicans clinical isolates to urinary catheters were investigated. Quantitative analysis was performed by colony-forming unit counts and scanning electron microscopy. Results demonstrated that the adherence of P. aeruginosa to urinary catheters was enhanced in the presence of C. albicans, while C. albicans adherence was not significantly affected. Further investigations are warranted to fully understand the pathogenic potential of their interaction in order to aid in the design of novel strategies for the prevention and treatment of catheter-related UTIs.  相似文献   

18.
Candida albicans interactions with epithelial cells are critical for commensal growth, fungal pathogenicity and host defence. This review will outline our current understanding of C. albicans-epithelial interactions and will discuss how this may lead to the induction of a protective mucosal immune response.  相似文献   

19.
Adherence and receptor relationships of Candida albicans.   总被引:61,自引:1,他引:61       下载免费PDF全文
The cell surface of Candida albicans is composed of a variety of polysaccharides such as glucan, chitin, and mannan. The first two components primarily provide structure, while the mannan, often covalently linked to protein, constitutes the major antigen of the organism. Mannoproteins also have enzymatic activity (acid protease) and ligand-receptor functions. The complement receptors of C. albicans appear to be mannoproteins that are required for the adherence of the organism to endothelial cells. This is certainly true of the CR3-like protein of C. albicans. Proof that the CR3 is the Candida receptor for endothelial cells is derived from two observations. First, mutants lacking CR3 activity are less adherent in vitro and, in fact, less virulent. Second, the ligand recognized by the CR3 receptor (C3bi) as well as anti-CR3 antibodies blocks adherence of the organism to endothelial cells. The CR2 of C. albicans appears to promote the adherence of the organism to plastic substrates. Unlike the CR2 of mammalian cells, the Candida CR2 recognizes ligands containing the RGD sequence of amino acids in addition to the C3d ligand, which does not contain the RGD sequence. There is uncertainty as to whether the Candida CR2 and CR3 are, in fact, different proteins. A mannoprotein has also been described as the adhesin for epithelial cells. In this case, the receptor has a lectinlike activity and recognizes fucose- or glucosamine-containing glycoproteins of epithelial cells, depending on the strain of C. albicans. The oligosaccharide component of the receptor is probably not involved in ligand recognition and may serve to stabilize the receptor. However, the oligosaccharide factor 6 epitope of mannan may also provide adhesin activity in the recognition of epithelial cells. Mannoproteins can be extracted from cells by a number of reagents. Zymolyase, for instance, tends to remove structural mannoproteins, which contain relatively little protein and are linked to glucan. Reagents such as dithiothreitol, on the other hand, tend to extract mannoproteins containing higher amounts of protein that appear to have receptor function. The mannoproteins of C. albicans are dynamically expressed and may be growth phase and growth form specific.  相似文献   

20.
Candida albicans yeasts adhered avidly to extracellular matrix (ECM) proteins, type IV collagen, laminin, and fibronectin immobilized on plastic. Type IV collagen showed an increase of adherence of 400% above control values; laminin, 300%; and fibronectin, 150%. In addition, all three (in quantities of 0.02-200 micrograms/well of a culture tray) bound yeasts in a dose-response fashion. Adherence was inhibited when the proteins were preincubated with specific antibody, except with type IV collagen. Soluble laminin or fibronectin inhibited yeast adherence to the same proteins by 36 and 94%, respectively. Soluble fibronectin bound to the yeast surface and in so doing inhibited subsequent yeast adherence to fibronectin by 66%. By comparison, Candida albicans yeasts adhered in smaller numbers to glycosaminoglycans (GAGs). Keratan sulfate, hyaluronic acid, chondroitin sulfate, Type B, and heparin actually decreased yeast adherence compared to control from 10% to 25%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号