首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The auricle is more mobile than generally recognized and is subject to displacement during rhytidectomy. When the auricle is displaced by a rhytidectomy, movement generally occurs in an anteroinferior direction with forward rotation of the inferior pole. This displacement/rotation is often obscured by concurrent elevation of the temporal hairline and insetting errors of the lobule that may appear to be the sole deformities. Using computer assistance, auricular position was compared in before and after photographs of published rhytidectomy results. Auricular displacement of varying degree was found in 62 percent of the analyzed results. Correlation of the presence, direction, and severity of the displacement with the described surgical technique implicates distraction on the periauricular superficial musculoaponeurotic system/platysma and skin at the time of closure as the causative agent. This retrospective photogrammetric study confirms that the auricle can be displaced if direct or indirect tension is placed on it during rhytidectomy.  相似文献   

2.
New amphiphilic photochromic benzo-15(18)-crown-5(6) ethers (APC) differing in the position of the octadecyl substituent and the size of the crown cavity were synthesized. The compounds form stable monolayers in the air/water and air/alkaline metal salt solution interfaces. The results of the pressure isotherm measurements, atomic force microscopy (AFM), and electronic spectroscopy show that the structure of the monolayers formed depends on the structure of the parent APC and the nature of the cation in salt solutions. The area per molecule of APC in the monolayer (specific area) is the smallest on the water surface and increases by 20-40% on the aqueous subphase surface with an increasing concentration of salts therein to indicate the formation of APC complexes with the metal cations. When the hydrophobic aliphatic substituent is displaced from position 3 to position 5 of the benzothiazole ring, the specific area on the surface of water and subphases decreases twofold, which indicates the compactization of the monolayer on this modification. A reversible E-Z-photoisomerization of APC was found in the monolayers formed in the salt solution/air interface. The features of the reaction are defined by the specific organization of the amphiphilic molecules in the monolayer and by the nature of the cation.  相似文献   

3.
An overview of different applications of polymer interactions with ion-exchange and dye-affinity chromatographic matrices is presented here. The strength of interaction between the ligand and the polymer plays a crucial role in deciding the mode of chromatographic application. Charged, non-ionic and thermosensitive polymers such as poly(ethylene imine), poly(N-vinyl pyrrolidone) and poly(vinyl caprolactam) respectively, show different degrees of interaction with the dye molecules in dye ligand chromatography. Polymers, with their ability of multipoint and hence strong attachment to the chromatographic matrices, were used as efficient displacers in displacement chromatography. The polymer displacement resulted in better recoveries and sharper elution profiles than traditional salt elutions. The globule–coil transition of the thermosensitive reversible soluble–insoluble polymer, poly(vinyl caprolactam), can be exploited in dye-affinity columns for the temperature induced displacement of the bound protein. In another situation, prior to the column chromatography of crude protein extract, polymers formed complexes with the dye matrix and “shielded” the column. The polymer shielding decreased the nonspecific interactions without affecting the specific interactions of the target protein to the dye matrix.  相似文献   

4.
Hyaluronic acid transduces a very gentle pressure into an electrical potential. Such pressure, depending on its direction, changes the optical rotary dispersion properties of the salt, either increasing the rotation in the direction already shown by the unpressured salt or changing and increasing the rotation in the opposite direction. These findings have implications for understanding the funtion of the cochlear and vestibular fluids, renal function, and the approximation to frictionless motion of normal joints.  相似文献   

5.
The assembly of double stranded DNA helices with divalent manganese ion is favored by increasing temperature. Direct force measurements, obtained from the osmotic stress technique coupled with x-ray diffraction, show that the force characteristics of spontaneously precipitated Mn(2+)-DNA closely resemble those observed previously by us for other counterion condensed DNA assemblies. At temperatures below the critical one for spontaneous assembly, we have quantitated the changes in entropy and manganese ion binding associated with the transition from repulsive to attractive interactions between helices mediated by osmotic stress. The release of structured water surrounding the DNA helix to the bulk solution is the most probable source of increased entropy after assembly. Increasing the water entropy of the bulk solution by changing the manganese salt anion from CI- to ClO4- predictably and quantitatively increases the transition entropy. This is further evidence for the dominating role of water in the close interaction of polar surfaces.  相似文献   

6.
Flagellar movement of human spermatozoa held by their heads with a micropipette was recorded by means of a video-strobe system. Spermatozoa were studied in normal Hanks' solution, Hanks' solution with increased viscosity, cervical mucus, and hyaluronic acid. When flagellar movement in normal Hanks' solution was observed from the direction parallel to the beating plane, segments of the flagellum in focus did not lie on a straight line but on two diverging dashed lines. The distance between the two dashed lines was about 20% of the bend amplitude in the major beating plane. These observations indicate that flagellar beating of human spermatozoa in normal Hanks' solution is not planar. In contrast, segments of the flagellum in focus lay on a straight line when the spermatozoa were observed in Hanks' solution with increased viscosity, cervical mucus, or hyaluronic acid. In normal Hanks' solution, free swimming spermatozoa rotated constantly around their longitudinal axes with a frequency similar to the beat frequency, whereas little or no rotation of spermatozoa occurred in Hanks' solution with increased viscosity, in cervical mucus, or in hyaluronic acid. We conclude that human spermatozoa in normal Hanks' solution beat with a conical helical waveform having an elliptical cross section, the semiaxes of which have a ratio of 0.2. The three-dimensional geometry of the flagellar movement is responsible for the rotation of the sperm around their longitudinal axes.  相似文献   

7.
The molar optical rotation at 220 nm and ellipticity values at 210 nm of both sodium hyaluronate and hyaluronic acid are greatly enhanced in comparison to the values for the monomeric units and oligosaccharides indicating a degree of preferred order. With increasing hydrogen ion concentration, there is no appreciable change in the 210 nm circular dichroic band, but the second circular dichroic band below pH 4 changes abruptly to the positive side and reaches a maximum value at pH 2·5. This positive circular dichroic band of hyaluronic acid is temperature and concentration dependent. The major change in sign and position of the second circular dichroic band of hyaluronic acid below pH 4 is attributed to the conformational change of a single polysaccharide chain or to a chain-chain interaction. The results indicate that increase in concentration or decrease in temperature and in the ionization of carboxyl group promotes the formation of ordered cross-link regions. The conformational changes found in solution have been interpreted as an order-disorder transition in the crosslink regions based on the interconversion of random coil and double helix.  相似文献   

8.
Circular dichroism, optical rotatory dispersion, and viscosity of hyaluronic acid at various solvents compositions, concentrations, and pH values have been studied. The data show a large change in the molecular properties in organic/water solvents such as ethanol, p-dioxane, or acetonitrile/water at pH ? pKa. At this pH range of aqueous solution, hyaluronic acid shows a CD minimum near 210 nm whereas in the presence of organic solvent it exhibits a strong negative dichroism (below 200 nm) and a positive band near 226 nm. It undergoes a sharp, cooperative transition with respect to pH and solvent. The observed CD features are assigned to the π-π* and n-π* transitions of the amide and carboxyl chromophores. The ORD results show a gradual blue shift of trough at 220 nm with increasing magnitude of rotation when the organic solvents and hydrogen ion concentrations are increased. A one-term Drude's equation was used to analyze the ORD data, and the result show a variation of dispersion parameters with different solvents in accordance with the observed CD changes. The intrinsic viscosity of hyaluronic acid in mixed solvent at pH 2.6 is lower than that of aqueous solution. All the observed property changes of hyaluronic acid are reversed on addition of foramide in mixed solvents indicating that the hydrogen bonds are involved in this transition. The observed spectroscopic and hydrodynamic features are attributed to a conformational change of hyaluronic acid in a mixed solvent involving intramolecular hydrogen bonding between the acetamido and carboxyl groups. The possible conformational state of hyaluronic acid in solution under various conditions is discussed in terms of the reported helical structure of hyaluronic acid from x-ray diffraction studies.  相似文献   

9.
The protein-keratan sulfate core of bovine nasal cartilage proteoglycan was purified by affinity chromatography on a column of immobilized hyaluronic acid. The hyaluronic acid was immobilized by reaction with a hydrazido-alkyl derivative of Sepharose in the presence of borohydride. Proteoglycan was digested with chondroitinase ABC and the entire mixture was passed over a column of the Sepharose-hyaluronic acid maintained at 4°C. After the digested chondroitin sulfate chains were washed from the column, the bound protein-keratan sulfate core was eluted with 4m guanidinium chloride. The protein-keratan sulfate core interacts with the affinity matrix through its hyaluronic acid binding site as shown by the inhibition of binding by free hyaluronic acid and hyaluronic acid decasaccharide.  相似文献   

10.
Another mechanism is proposed to explain the onset of vertical asymmetry of diverted plasma fluxes in toroidal plasma confinement systems with a helical divertor configuration. The mechanism is governed by the possible regular displacement of plasma particles in a certain direction, e.g., due to the rigid rotation of the plasma column.  相似文献   

11.
The degree to which behaviour, vertical movement and horizontal transport, in relation to local hydrodynamics, may facilitate secondary dispersal in the water column was studied in post-larval Sillaginodes punctata in Port Phillip Bay, Australia. S. punctata were captured in shallow seagrass beds and released at the surface in three depth zones (1.5, 3 and 7 m) off-shore at each of two sites to mimic the re-entrainment of fish. The behaviour, depth and position of S. punctata were recorded through time. The direction and speed of local currents were described using an S4 current meter and the movement of drogues. Regardless of site, fish immediately oriented toward the bottom, and into the current after release. In shallow water (1.5 m), 86% of fish swam to the bottom within 2 min of release. At one site, the net horizontal displacement of fish was largely unrelated to the speed and direction of local currents; at a second site, fish could not maintain their position against the current, and the net horizontal displacement was related to the speed and direction of currents. In the intermediate depth zone, wide variability in depths of individual fish through time led to an average depth reached by fish that was between the shallow and deep zones. Based on daily increments in the otoliths, however, this variability was not related significantly to the time since entry of fish into Port Phillip Bay. In the deepest depth zone, 81% of fish remained within 1 m of the surface and their horizontal displacement was significantly related to the direction and speed of currents. Secondary dispersal of post-larval fish in the water column may be facilitated by the behaviour and vertical movements of fish, but only if fish reach deeper water, where their displacement (direction and distance) closely resembles local hydrodynamic regimes. In shallow water, fish behaviour and vertical migration actually reduce the potential for secondary dispersal.  相似文献   

12.
1. It had been shown in previous papers that when a salt solution is separated from pure water by a collodion membrane, water diffuses through the membrane as if it were positively charged and as if it were attracted by the anion of the salt in solution and repelled by the cation with a force increasing with the valency. In this paper, measurements of the P.D. across the membrane (E) are given, showing that when an electrical effect is added to the purely osmotic effect of the salt solution in the transport of water from the side of pure water to the solution, the latter possesses a considerable negative charge which increases with increasing valency of the anion of the salt and diminishes with increasing valency of the cation. It is also shown that a similar valency effect exists in the diffusion potentials between salt solutions and pure water without the interposition of a membrane. 2. This makes it probable that the driving force for the electrical transport of water from the side of pure water into solution is primarily a diffusion potential. 3. It is shown that the hydrogen ion concentration of the solution affects the transport curves and the diffusion potentials in a similar way. 4. It is shown, however, that the diffusion potential without interposition of the membrane differs in a definite sense from the P.D. across the membrane and that therefore the P.D. across the membrane (E) is a modified diffusion potential. 5. Measurements of the P.D. between collodion particles and aqueous solutions (ε) were made by the method of cataphoresis, which prove that water in contact with collodion particles free from protein practically always assumes a positive charge (except in the presence of salts with trivalent and probably tetravalent cations of a sufficiently high concentration). 6. It is shown that an electrical transport of water from the side of water into the solution is always superposed upon the osmotic transport when the sign of charge of the solution in the potential across the membrane (E) is opposite to that of the water in the P.D. between collodion particle and water (ε); supporting the theoretical deductions made by Bartell. 7. It is shown that the product of the P.D. across the membrane (E) into the cataphoretic P.D. between collodion particles and aqueous solution (ε) accounts in general semiquantitatively for that part of the transport of water into the solution which is due to the electrical forces responsible for anomalous osmosis.  相似文献   

13.
Ion clustering and the solvation properties in the NaCl solutions are explored by molecular dynamics simulations with several popular force fields. The existence of ions has a negligible disturbance to the hydrogen bond structures and rotational mobility of water beyond the first ion solvation shells, which is suggested by the local hydrogen bond structures and the rotation times of water. The potential of mean force (PMF) of ion pair in the dilute solution presents a consistent view with the populations of ion clusters in the electrolyte solutions. The aggregation level of ions is sensitive to the force field used in the simulations. The ion-ion interaction potential plays an important role in the forming of the contact ion pair. The entropy of water increases as the ion pair approaches each other and the association of ion pair is driven by the increment of water entropy according to the results from the selected force fields. The kinetic transition from the single solvent separated state to the contact ion pair is controlled by the enthalpy loss of solution.
Figure
Ion pairing and ion induction to solvent play an important role in the protein folding and chemical reactions in the water solutions. The existence of ions has a negligible disturbance to the hydrogen bond structures and rotational mobility of water beyond the first ion solvation shells in the NaCl solutions. The clustering level of ions is sensitive to the force field used in the simulations. The formation of NaCl ion pair in the dilute solution is driven by the entropy increment of water  相似文献   

14.
We have devised a general protein fractionation procedure which selects for eukaryotic DNA-binding proteins, some of which resemble DNA-unwinding proteins from prokaryotes. Proteins were selected which (a) pass through a native DNA-cellulose column, (b) bind to a denatured DNA-cellulose column, and (c) remain bound to the latter column during a rinse with a dilute solution of the sodium salt of the polyanion dextran sulfate. When this fractionation was applied to the soluble proteins fo calf thymus, three major protein species were recovered. The predominant one has an apparent molecular weight of about 24,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is isoelectric near neutrality, and elutes as a monomer from denatured DNA-cellulose at moderate NaCl concentrations. This protein, designated calf-unwinding protein 1 (UP1), has been purified to homogeneity. However, isoelectric focusing reveals four or five subspecies (apparently separated by single-charge differences) which differ appreciably in their affinities for DNA. Two other major proteins are obtained which have apparent molecular weights in sodium dodecyl sulfate of 33,000: the first, which elutes with low salt from DNA-cellulose as a homogeneous preparation, appears to be a basic protein (although it is clearly not a histone); the other, which elutes from DNA-cellulose as the major component of a "high salt eluting fraction," is an acidic protein which co-purifies with less prominent species of higher molecular weights. Proteins similar to each of these three major calf thymus proteins have been observed by us and others in tissue culture cells of mouse, hamster, monkey, and humans, suggesting their wide occurrence among eukaryotes.  相似文献   

15.
As a contribution to the understanding of the thermodynamic state of single salts in living systems, the activity coefficients of KCl were determined in concentrated bovine serum albumin (BSA) solutions. The concentration range studied was 0.01 to 0.5 M KCl and zero to 18% wt BSA, thus amply covering physiological conditions. The activity coefficients of the salt were measured using the EMF method with ion exchange membrane electrodes. Keeping the salt concentration constant, the activity coefficients of the salt decrease linearly with protein concentration, the effect being more pronounced for low salt content. The maximal deviations of the activity coefficients with respect to those in pure salt solution amount to ca. 40% for 0.01 M KCl and 18% wt BSA. The results were interpreted on the assumption of the superposition of three effects i.e. water bound to BSA molecules as non-solvent water, specific Cl ion binding and the electrostatic interactions of the polyions with the salt ions. In view of the results it can be concluded that only a small portion of simple intracellular ions are bound, based on the assumption that the cytoplasm of living cells may be regarded as a concentrated protein-salt solution.  相似文献   

16.
Mesquite plants (Prosopis glandulosa var. Torreyana) were grown in 2-m long columns 20 cm in diameter, and provided with a constant, stable ground water source 10 cm above the sealed base of the column. Ground water contained 0, 1 or 5 mM nitrate, or a mixed salt solution (1.4, 2.8, or 5.6 dS m-1) with the ionic ratios of ground water found in a field stand of Prosopis at Harper's Well (2.8 dS m-1). Water uptake in the highly salinized columns began to decrease relative to low salt columns when soil salinity probes 30 cm above the column base read approximately 28 dS m-1, a potential threshold for mesquite salt tolerance. Prosopis growth increased with increasing nitrate, and decreased with increasing salinity. Water use efficiency was little affected by treatment, averaging approximately 2 g dry matter L-1 water used. Most fine roots were recovered from a zone about 25 cm above the ground water surface where water content and aeration appeared to be optimal for root growth. Root-shoot ratio was little affected by nitrate, but increased slightly with increasing salinity. Plant tissue P concentrations tended to increase with increasing salinity and decrease with increasing N, approaching potentially deficient foliage concentrations at 5 mM nitrate. The whole-plant leaf samples increased in sodium concentration both with added salt and with added nitrate. Foliar manganese concentrations increased with increasing salt in the absence of nitrate. Concentrations of sodium in leaves were low (<10 g kg-1), considering the high salt concentrations in the ground water. Prosopis appears to exclude sodium very effectively, especially from its younger leaves. Although Prosopis is highly salt tolerant, the degree to which it utilizes soil nitrate in place of biologically fixed N may lower its salinity tolerance and affect its nutrient relations in phreatic environments.  相似文献   

17.
A comparison of 17O and 2H NMR relaxation rates of water in lysozyme solutions as a function of concentration, pH/pD, and magnetic field suggests that only 17O monitors directly the hydration of lysozyme in solution. NMR measurements are for the first time extended to 11.75 T. Lysozyme hydration data are analyzed in terms of an anisotropic, dual-motion model with fast exchange of water between the "bound" and "free" states. The analysis yields 180 mol "bound" water/mol lysozyme and two correlation times of 7.4 ns ("slow") and 29 ps ("fast") for the bound water population at 27 degrees C and pH 5.1, in the absence of salt, assuming anisotropic motions of water with an order parameter value for bound water of 0.12. Under these conditions, the value of the slow correlation time of bound water (7.4 ns) is consistent with the value of 8 ns obtained by frequency-domain fluorescence techniques for the correlation time associated with the lysozyme tumbling motion in solutions without salt. In the presence of 0.1 M NaCl the hydration number increases to 290 mol/mol lysozyme at pD 4.5 and 21 degrees C. The associated correlation times at 21 degrees C in the presence of 0.1 M NaCl are 4.7 ns and 15.5 ps, respectively. The value of the slow correlation time of 4.7 ns is consistent with the calculated value (4.9 ns) for the lysozyme monomer tumbling in solution. The systematic deviations of the relaxation rates, estimated with the single-exponential approximation, from the theoretical, multiexponential nuclear (I' + 1/2) spin relaxation are evaluated at various frequencies for 17O (I = 5/2) with the first-order, linear approximation (25). All NMR relaxation data for hydrated lysozymes are affected by protein activity and are sensitive both to the ionization of protein side chains and to the state of protein aggregation.  相似文献   

18.
Effects of heat in heated solution of tropocollagens of different origins were calorimetrically studied. It was found that denaturation enthalpy and entropy of different tropocollagens increase with increasing imino acid content and thermostability. It is shown that the value and dependence of denaturational enthalpy and entropy on the denaturation temperature for tropocollagens with different imino acid contents are inconsistent with the assumption that the native structure of tropocollagen is stabilized only by intramolecular hydrogen bonds. A supposition is made that the regular water structure near the macromolecule plays an essential role in stabilizing the structure. From the character of tropocollagen melting curves in salt-free solution it is found that the tropocollagen macromolecule is linearly heterogeneous. It is shown that the complex pattern of thermal absorption observed in tropocollagen salt, solution is connected with pre-denaturational conformational transformation when approaching conditions close to the physiological.  相似文献   

19.
Six test subjects were subjected to lateral (+Gy) and longitudinal-lateral (+Gz/+Gy) accelerations in a centrifuge with a rotation radius of 6.55 m. During rotation, test subjects were instructed to indicate the position of subjective visual vertical. Results of this study demonstrated that during exposure to +Gy and +Gz/+Gy accelerations, the direction of the indicated subjective vertical approached the direction of the resultant acceleration vector when the lateral component increased. This observed effect decreases with an increase of the longitudinal component of the acceleration. It was suggested that exposure to (i.e. "pulling") high lateral acceleration (up to 2-3 Gy) in highly maneuverable aircraft can hinder spatial orientation of a pilot due to this persistent illusory spatial position as reported above. Our analysis showed that the process of spatial orientation under the conditions of G-load influence becomes more difficult and it is depending on the compromise between visual and vestibular-proprioceptive inputs. On account of this finding, it may be proposed that under conditions of G-load influence, pilots that rely primarily on visual perception may be exposed to higher risk of spatial disorientation.  相似文献   

20.
Binding of exogenous [35S]sulphate-labelled cartilage proteoglycans to cells was studied with suspension cultures of calf articular-cartilage chondrocytes. Proteoglycans interact with hyaluronic acid at the cell surface via their hyaluronic acid-binding region. The binding is time-dependent and saturable, but does not appear to be freely reversible. The bound 35S-labelled proteoglycans are located at the cell surface, and only small proportions of the proteoglycans are internalized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号