首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 play important roles in mitogenesis and chemotaxis of endothelial cells. In normal human skin, VEGF is expressed and secreted by epidermal keratinocytes. Emerging data suggest that keratinocyte-derived VEGF targets other cell types besides the dermal endothelial cells. We have recently showed that keratinocytes from human normal skin expressed all five known VEGF receptors and co-receptors (neuropilin 1 and 2). To define the functional significance of VEGFR-2 in epidermis, we examined its role in a keratinocyte cell line, HaCaT cells, in response to VEGF treatment. Expression of VEGFR-2 on HaCaT cells was confirmed at both RNA and protein levels and was regulated by VEGF165 treatment. Treatment of HaCaT cells with VEGF165 induced tyrosine-autophosphorylation of VEGFR-2 and phosphorylation of PLC-gamma and p44/42 MAPK in a time-dependent manner. Preincubation with a neutralizing antibody for VEGFR-2 (MAB3571) completely abrogated these phosphorylation effects. Furthermore, VEGF165 stimulated proliferation and migration of HaCaT cells, and this effect was significantly blocked by a pretreatment with MAB3571. Neutralizing VEGFR-2 in HaCaT cells increased cell adhesion during culture. Our results suggest that VEGFR-2 expressed on HaCaT cells plays a crucial role in VEGF-mediated regulation of cell activity.  相似文献   

2.
3.
4.
Mounting evidence indicates that signaling via VEGF receptors (VEGFRs) extends beyond blood vessel formation. Recently, VEGFRs are also found to be constitutively expressed in keratinocytes and epidermal appendages. Here, we show that the expression of VEGFRs (including VEGFR-1, VEGFR-2, and NRP-1) was significantly enhanced by moderate dose of ultraviolet B (UVB) in normal human keratinocytes and epidermis. The elevated expression of VEGFRs by UVB was independent of autocrine stimulation by their natural ligand, VEGF, but mainly mediated through hypoxia and oxidative stress. Moderate dose UVB also promoted tyrosine phosphorylation of VEGFR-1 and VEGFR-2, this effect was again VEGF independent. Both α and δ isoforms of protein kinase C (PKC) were required for UVB-induced phosphorylation of VEGFR-1, but only the δ isoform was required for VEGFR-2 phosphorylation. The phosphorylation of VEGFRs or isoforms of PKC was completely inhibited by PP2, a specific inhibitor for Src family kinases (SFKs), indicating that SFKs are upstream of PKC and VEGFRs. Moderate dose UVB-induced VEGF exerted an anti-apoptotic effect for keratinocytes, whereas high dose UVB-induced VEGF played as an inflammatory factor. Of note, neutralization of VEGFR-2 but not VEGFR-1 exacerbated UVB-induced cell death and reduced survival of keratinocytes. Furthermore, VEGFR-2 neutralization inhibited the activation of ERK1/2 and Akt by UVB, suggesting that VEGFR-2 signaling was involved in the pro-survival mechanism via ERK1/2 and PI3-K/Akt pathway. Taken together, we demonstrate for the first time that VEGFR-2 signaling is activated and promotes survival of keratinocytes under moderate dose of UVB irradiation.  相似文献   

5.
The association of the cytoskeleton with the cadherin--catenin complex is essential for strong cell-cell adhesion in epithelial cells. In this study, we have investigated the effect of microtubule organization on cell-cell adhesion in differentiating keratinocytes. When microtubules of normal human epidermal keratinocytes (NHEKs) grown in low calcium media (0.05 mM) were disrupted with nocodazole or colcemid, cell-cell adhesion was induced through relocalization of the E-cadherin-catenin-actin complex to the cell periphery. This was accompanied by actin polymerization. Also, it was found that microtubule disruption-induced cell-cell adhesion was significantly reduced in more advanced differentiated keratinocytes. For example, when NHEK cells cultured under high calcium (1.2 mM) for 8 d and then in low calcium for 1 d were treated with nocodazole, there was no induction of cell-cell adhesion. Also long-term treatment of a phorbol ester for 48 h inhibited nocodazole-induced cell-cell adhesion of NHEK. Furthermore, this nocodazole-induced cell-cell adhesion could be observed in squamous cancer cell lines (A431 and SCC-5, -9, and -25) under low calcium condition, but not in the keratinocyte cell lines derived from normal epidermis (HaCaT, RHEK). On the other hand, HaCaT cells continuously cultivated in low calcium media regained a less differentiated phenotype such as decreased expression of cytokeratin 10, and increased K5; these changes were accompanied with inducibility of cell-cell adhesion by nocodazole. Together, our results suggest that microtubule disruption can induce the cell-cell adhesion via activation of endogenous E-cadherin in non- or early differentiating keratinocytes. However, this is no longer possible in advanced terminally differentiating keratinocytes, possibly due to irreversible changes effected by cell envelope barrier formation.  相似文献   

6.
Neuropilin-1 (NRP-1) is a co-receptor for vascular endothelial growth factor (VEGF). During neovascularization, vascular smooth muscle cells (VSMCs) and pericytes modulate the function of endothelial cells. Factors that mediate NRP-1 in human VSMCs (hVSMCs) remain to be elucidated. We studied various angiogenic cytokines to identify factors that increase NRP-1 expression in hVSMCs. Treatment of hVSMCs with basic fibroblast growth factor (b-FGF) induced expressions of NRP-1 mRNA and protein whereas epidermal growth factor, insulin-like growth factor-1, and interleukin-1beta did not. b-FGF induced phosphorylation of Erk-1/2 and JNK. MEK1/2 and nuclear factor kappa B (NF-kappaB) inhibitors (U0126 and TLCK, respectively) blocked the ability of b-FGF to induce NRP-1 mRNA expression, but inhibition of JNK (SP600125) or PI3-kinase activity (wortmannin) did not. Further, the increase in NRP-1 expression by b-FGF enhanced hVSMCs migration in response to VEGF(165). This effect was dependent on the binding of VEGF(165) to VEGFR-2, as blocking antibodies to VEGFR-2, but not VEGFR-1, inhibited VEGF(165)-induced migration. In conclusion, b-FGF increased NRP-1 expression in hVSMCs that in turn enhance the effect of VEGF(165) on cell migration. The enhanced migration of hVSMCs was mediated through binding of VEGF(165) to both NRP-1 and VEGFR-2, as inhibition of VEGFR-2 on these cells blocked the effect of VEGF-mediated cell migration.  相似文献   

7.
Parathyroid hormone-related protein (PTHrP) (107-139), in contrast to the N-terminal fragment PTHrP (1-36), has been shown to interact with the vascular endothelial growth factor (VEGF) system to modulate human osteoblast differentiation. In this study, we evaluated whether this interaction might affect human osteoblastic cell survival. Pre-incubation with PTHrP (107-139) for 1-24 h dose-dependently (0.1-100 nM) inhibited dexamethasone- or etoposide-induced cell death in human osteoblastic MG-63 cells and human osteoblast-like cells from trabecular bone. This effect, but not that elicited by PTHrP (1-36), was abolished by the VEGF receptor (VEGFR)-2 inhibitors SU5614 and SU1498 or VEGFR-2 siRNA transfection in these cells. PTHrP (107-139), but not PTHrP (1-36), at 100 nM, rapidly (within 2 min) increased VEGFR-2 tyrosine-phosphorylation in MG-63 cells; an effect unaffected by several inhibitors of metalloproteinases, neutralizing VEGF(165) or VEGFR-2 antibodies, or the VEGF binding inhibitor CBO-PP1. The latter two antagonists also failed to affect (125)I-[Tyr(116)] PTHrP (107-115) binding to these cells. Consistent with its effect on VEGFR-2 activation, PTHrP (107-139) rapidly induced extracellular signal-regulated kinase (ERK) 1/2 and Akt activaton, and both ERK and phosphatidylinsositol-3 kinase (PI3K) inhibitors abolished its pro-survival effect in human osteoblastic cells. In addition, SU5614 and the latter two types of inhibitors abrogated Runx2 activation by this peptide in MG-63 cells. Transfection with a dominant-negative Runx2 construct abolished the pro-survival effect of PTHrP (107-139), associated with a decrease in Bcl-2/Bax protein ratio. Our findings demonstrate that PTHrP (107-139) interacts with VEGFR-2 to promote human osteoblastic cell survival by a mechanism involving Runx2 activation.  相似文献   

8.
During pregnancy, VEGF (vascular endothelial growth factor) regulates in part endothelial angiogenesis and vasodilation. In the present study we examine the relative roles of VEGFRs (VEGF receptors) and associated signalling pathways mediating the effects of VEGF(165) on eNOS (endothelial nitric oxide synthase) activation. Despite equal expression levels of VEGFR-1 and VEGFR-2 in UAECs (uterine artery endothelial cells) from NP (non-pregnant) and P (pregnant) sheep, VEGF(165) activates eNOS at a greater level in P- compared with NP-UAEC, independently of Akt activation. The selective VEGFR-1 agonist PlGF (placental growth factor)-1 elicits only a modest activation of eNOS in P-UAECs compared with VEGF(165), whereas the VEGFR-2 kinase inhibitor blocks VEGF(165)-stimulated eNOS activation, suggesting VEGF(165) predominantly activates eNOS via VEGFR-2. Although VEGF(165) also activates ERK (extracellular-signal-regulated kinase)-1/2, this is not necessary for eNOS activation since U0126 blocks ERK-1/2 phosphorylation, but not eNOS activation, and the VEGFR-2 kinase inhibitor inhibits eNOS activation, but not ERK-1/2 phosphorylation. Furthermore, the inability of PlGF to activate ERK-1/2 and the ability of the VEGFR-2 selective agonist VEGF-E to activate ERK-1/2 and eNOS suggests again that both eNOS and ERK-1/2 activation occur predominantly via VEGFR-2. The lack of VEGF(165)-stimulated Akt phosphorylation is consistent with a lack of robust phosphorylation of Ser(1179)-eNOS. Although VEGF(165)-stimulated eNOS phosphorylation is observed at Ser(617) and Ser(635), pregnancy does not significantly alter this response. Our finding that VEGF(165) activation of eNOS is completely inhibited by wortmannin but not LY294002 implies a downstream kinase, possibly a wortmannin-selective PI3K (phosphoinositide 3-kinase), is acting between the VEGFR-2 and eNOS independently of Akt.  相似文献   

9.
Placental villous development requires the co-ordinated action of angiogenic factors on both endothelial and trophoblast cells. Like vascular endothelial growth factor (VEGF), VEGF-C increases vascular permeability, stimulates endothelial cell proliferation and migration. In the present study, we investigated the expression of VEGF-C and its receptors VEGFR-3 and VEGFR-2 in normal and intrauterine growth-restricted (IUGR) placenta. Immunolocalisation studies showed that like VEGF and VEGFR-1, VEGF-C, VEGFR-3 and VEGFR-2 co-localised to the syncytiotrophoblast, to cells in the maternal decidua, as well as to the endothelium of the large placental blood vessels. Western blot analysis demonstrated a significant decrease in placental VEGF-C and VEGFR-3 protein expression in severe IUGR as compared to gestationally-matched third trimester pregnancies. Conditioned medium from VEGF-C producing pancreatic carcinoma (Suit-2) and endometrial epithelial (Hec-1B) cell lines caused an increased association of the phosphorylated extracellular signal regulated kinase (ERK) in VEGFR-3 immunoprecipitates from spontaneously transformed first trimester trophoblast cells. VEGF121 caused dose-dependant phosphorylation of VEGFR-2 in trophoblast cells as well as stimulating DNA synthesis. In addition, premixing VEGF165 with heparin sulphate proteoglycan potentiated trophoblast proliferation and the association of phospho-ERK with the VEGFR-2 receptor. VEGF165-mediated DNA synthesis was inhibited by anti-VEGFR-2 neutralising antibody. The results demonstrate functional VEGFR-2 and VEGFR-3 receptors on trophoblast and suggest that the decreased expression of VEGF-C and VEGFR-3 may contribute to the abnormal villous development observed in IUGR placenta.  相似文献   

10.
The normal vasculature is maintained by a balance between angiogenic factors and anti-angiogenic factors. Recent studies have shown that pigment epithelium-derived factor (PEDF) can induce differentiation and inhibit angiogenesis of tumors. This study was designed to investigate the expression of PEDF and its roles in proliferation, adhesion and migration of HaCaT cells, a human keratinocyte cell line. Our results have shown that PEDF is expressed in HaCaT cells at both mRNA and protein levels determined by RT-PCR and Western blot, separately. PEDF signal mainly localizes in the cytoplasm of HaCaT cell, as determined by immunofluorescence. Furthermore, expression of PEDF is decreased by 50 ng/ml of VEGF165. Proliferation and migration of HaCaT cells are decreased by PEDF, while adhesion of HaCaT cells is upregulated approximately by 29%. PEDF also induce the S phase accumulation of HaCaT cells. In addition, phosphorylation of ERK1/2, not JNK and p38, is decreased by PEDF. These results indicate that PEDF may play an inhibitory role on growth and migration of HaCaT cells through dephosphorylation of ERK1/2.  相似文献   

11.
Yu XJ  Li CY  Wang KY  Dai HY 《Regulatory peptides》2006,137(3):134-139
Psoriasis is a chronic disease characterized by abnormal epidermal proliferation, inflammation and angiogenesis. The pathogenetic process resulting in hypervascularity remains to be further investigated. It has been reported that a potent angiogenic factor, vascular endothelial growth factor (VEGF) is overexpressed in psoriatic epidermis and that the level of calcitonin gene-related peptide (CGRP) is elevated in psoriasis lesions and CGRP-containing neuropeptide nerve fibers are denser in the psoriatic epidermis. We hypothesized that CGRP might regulate the expression of VEGF by human keratinocytes. VEGF expression in the CGRP-treated human keratinocytes was investigated and the CGRP signaling pathways were examined with respect to VEGF expression. The mRNA and protein levels of VEGF by CGRP were increased in a concentration-dependent manner. However, this increase was abrogated by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor PD98059. The CGRP-mediated VEGF induction was also effectively inhibited by a pretreatment with the CGRP receptor antagonist CGRP 8-37. In addition, CGRP treatment induced rapid phosphorylation of ERK1/2, PD98059 and CGRP 8-37 were able to inhibit CGRP-induced ERK1/2 phosphorylation. These results suggest that CGRP regulates the expression of VEGF through the CGRP receptor and ERK1/2 MAPK signaling pathway in human HaCaT keratinocytes.  相似文献   

12.
13.
Keratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin. The expression of KGF receptor (KGFR) mRNA was lower in cutaneous SCCs (n = 6) than in normal skin samples (n = 6). Expression of KGFR mRNA was detected in 6 out of 8 cutaneous SCC cell lines and the levels were downregulated by 24-h treatment with KGF. KGF did not stimulate SCC cell proliferation, but it reduced invasion of SCC cells through collagen. Gene expression profiling of three cutaneous SCC cell lines treated with KGF for 24 h revealed a specific gene expression signature characterized by upregulation of a set of genes specifically downregulated in SCC cells compared to normal epidermal keratinocytes, including genes with tumor suppressing properties (SPRY4, DUSP4, DUSP6, LRIG1, PHLDA1). KGF also induced downregulation of a set of genes specifically upregulated in SCC cells compared to normal keratinocytes, including genes associated with tumor progression (MMP13, MATN2, CXCL10, and IGFBP3). Downregulation of MMP-13 and KGFR expression in SCC cells and HaCaT cells was mediated via ERK1/2. Activation of ERK1/2 in HaCaT cells and tumorigenic Ha-ras-transformed HaCaT cells resulted in downregulation of MMP-13 and KGFR expression. These results provide evidence, that KGF does not promote progression of cutaneous SCC, but rather suppresses the malignant phenotype of cutaneous SCC cells by regulating the expression of several genes differentially expressed in SCC cells, as compared to normal keratinocytes.  相似文献   

14.
Vascular endothelial growth factor (VEGF) plays an important role in normal and pathological angiogenesis. VEGF receptors (VEGFRs, including VEGFR-1, VEGFR-2, and VEGFR-3) and neuropilins (NRPs, including NRP-1 and NRP-2) are high-affinity receptors for VEGF and are typically considered to be specific for endothelial cells. Here we showed expression of VEGFRs and NRPs on cultured epidermal keratinocytes at both mRNA and protein levels. We further localized these receptors by immunofluorescence (IF) staining in the epidermis of surgical skin specimens. We found positive staining for VEGFRs and NRPs in all layers of the epidermis except for the stratum corneum. VEGFR-1 and VEGFR-2 are primarily expressed on the cytoplasmic membrane of basal cells and the adjacent spinosum keratinocytes. All layers of the epidermis except for the horny cell layer demonstrated a uniform pattern of VEGFR-3, NRP-1, and NRP-2. Sections staining for NRP-1 and NRP-2 also showed diffuse intense fluorescence and were localized to the cell membrane and cytoplasm of keratinocytes. In another panel of experiments, keratinocytes were treated with different concentrations of VEGF, with or without VEGFR-2 neutralizing antibody in culture. VEGF enhanced the proliferation and migration of keratinocytes, and these effects were partially inhibited by pretreatment with VEGFR-2 neutralizing antibody. Adhesion of keratinocytes to type IV collagen-coated culture plates was decreased by VEGF treatment, but this reduction could be completely reversed by pretreatment with VEGFR-2 neutralizing antibody. Taken together, our results suggest that the expression of VEGFRs and NRPs on keratinocytes may constitute important regulators for its activity and may possibly be responsible for the autocrine signaling in the epidermis.  相似文献   

15.
16.
To clarify the role of caveolae in VEGF/VEGF receptor-2 (VEGFR-2)-mediated signaling cascades, primary cultured human umbilical vein endothelial cells (HUVECs) were fractionated to isolate caveolae-enriched cell membranes. Interestingly, VEGFR-2, phospholipase D2 (PLD2), and Ras were enriched in caveolae-enriched fractions. Moreover, VEGF increased PLD activity in a time- and dose-dependent manner in HUVECs, whereas a ligand specific for VEGFR-1 placental growth factor did not change PLD activity. A PLD inhibitor, 1-butanol, almost completely suppressed VEGF-induced ERK phosphorylation and cellular proliferation, whereas the negative control for 1-butanol, 3-butanol, did not produce significant changes. Addition of phosphatidic acid negated the 1-butanol-induced suppression. Pharmacological analyses using several inhibitors indicated that PKC-delta regulates the VEGF-induced activation of PLD/ERK. Thus PLD2 could be involved in MEK/ERK signaling cascades that are induced by the VEGF/VEGFR-2/PKC-delta pathway in endothelial cells. Pretreatment with the cholesterol depletion agent methyl-beta-cyclodextrin (MbetaCD) almost completely disassembled caveolar structures, whereas the addition of cholesterol to MbetaCD-treated cells restored caveolar structures. Pretreatment with MbetaCD largely abolished phosphorylation of MEK/ERK by VEGF, whereas the addition of cholesterol restored VEGF-induced MEK/ERK phosphorylations. These results indicate that intact caveolae are required for the VEGF/VEGFR-2-mediated MEK/ERK signaling cascade.  相似文献   

17.
18.
A member of the vascular endothelial growth factor (VEGF) family, VEGF165, regulates vascular endothelial cell functions in autocrine and paracrine fashions in microvessels. Proteoglycans are highly glycosylated poly-anionic macromolecules that influence cellular behaviors such as proliferation and migration by interacting with cytokines/growth factors. In the present study, we investigated the regulation of proteoglycan synthesis by VEGF165 in cultured human brain microvascular endothelial cells. The cells were exposed to recombinant human VEGF165, and the proteoglycans were then characterized using biochemical techniques. VEGF165 treatment increased the accumulation of proteoglycans 1.4- and 1.6-fold in the cell layer and conditioned medium, respectively. This effect resulted from the activation of VEGFR-2, and was mimicked by vammin, a VEGFR-2 ligand from snake venom but not placenta growth factor, which binds specifically to VEGFR-1. VEGF165 stimulated the production and secretion of perlecan, substituted with shorter heparan sulfate side chains, but with unaltered sulfated disaccharide composition. The perlecan secreted by VEGF165-stimulated endothelial cells may be involved in the regulation of cellular behavior during angiogenesis, in diseases of the brain microvessels, and in the maintenance of the endothelial cell monolayer.  相似文献   

19.
20.
We have previously reported that MAPK phosphatase-1 (MKP-1/CL100) is a thrombin-responsive gene in endothelial cells (ECs). We now show that VEGF is another efficacious activator of MKP-1 expression in human umbilical vein ECs. VEGF-A and VEGF-E maximally induced MKP-1 expression in ECs; however, the other VEGF subtypes had no effect. Using specific neutralizing antibodies, we determined that VEGF induced MKP-1 specifically through VEGF receptor 2 (VEGFR-2), leading to the downstream activation of JNK. The VEGF-A(165) isoform stimulated MKP-1 expression, whereas the VEGF-A(162) isoform induced the gene to a lesser extent, and the VEGF-A(121) isoform had no effect. Furthermore, specific blocking antibodies against neuropilins, VEGFR-2 coreceptors, blocked MKP-1 induction. A Src kinase inhibitor (PP1) completely blocked both VEGF- and thrombin-induced MKP-1 expression. A dominant negative approach revealed that Src kinase was required for VEGF-induced MKP-1 expression, whereas Fyn kinase was critical for thrombin-induced MKP-1 expression. Moreover, VEGF-induced MKP-1 expression required JNK, whereas ERK was critical for thrombin-induced MKP-1 expression. In ECs treated with short interfering (si)RNA targeting MKP-1, JNK, ERK, and p38 phosphorylation were prolonged following VEGF stimulation. An ex vivo aortic angiogenesis assay revealed a reduction in VEGF- and thrombin-induced sprout outgrowth in segments from MKP-1-null mice versus wild-type controls. MKP-1 siRNA also significantly reduced VEGF-induced EC migration using a transwell assay system. Overall, these results demonstrate distinct MAPK signaling pathways for thrombin versus VEGF induction of MKP-1 in ECs and point to the importance of MKP-1 induction in VEGF-stimulated EC migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号