首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous study found that blocking nuclear factor (NF)-κB signaling could protect human umbilical vein endothelial cells (HUVECs) from apoptosis and proliferation inhibition due to high glucose (HG). Intermittent HG makes glucose toxicity more significant. In this study, we aimed to investigate the effect of NF-κB pathway on HUVECs induced by intermittent HG (a daily alternating 5.5 or 30.5 mmol/l glucose). A recombinant adenovirus containing a RNAi cassette targeting the NF-κB/p65 gene was produced, and its silencing effect on p65 gene was detected by Western blot analysis in HUVECs cultured with intermittent HG. The subsequent effect on proliferation of HUVECs in the indicated conditions was measured by the AlamarBlue assay. The Bcl-2 expression was also detected by Western blot. The results showed that the expression of p65 protein could be inhibited efficiently by the RNAi adenovirus. Intermittent HG also induced the translocation of NF-κB in HUVECs. Inhibition of NF-κB with the RNAi adenovirus could prevent the effects. At the 6th day after HUVECs were exposed to intermittent HG, the proliferation of HUVECs with Ad-1566 was significantly higher than that of HUVECs with Ad-DEST (P < 0.01). Knockdown of NF-κB/p65 up-regulated the Bcl-2 expression of HUVECs under intermittent HG conditions (P < 0.01). These findings concluded that the NF-κB/p65-targeting RNAi adenovirus is an important tool, which can efficiently inhibit the expression of p65 gene in HUVECs. Intermittent HG reduces HUVECs proliferation with a concomitant increase in apoptosis. Knockdown of NF-κB/p65 partly protected HUVECs from proliferation inhibition and may reduce apoptosis.  相似文献   

2.
Macrophages can be alternatively activated by TGF-β1 and high-ambient glucose, in which the role of Smad2 and the crosstalk between ERK and Smad2 pathways are not fully understood. The activation of ERK and Smad2 pathways and the expression of arginase-1 were detected by Western blot. The role of Smad2 and the relationship between ERK and Smad2 pathways were investigated by using biochemical inhibitors. The protein of arginase-1 was significantly overexpressed in RAW264.7 cells stimulated by TGF-β1 and high-ambient glucose, which can be partially blocked by not only U0126 (ERK inhibitor) but also SB431542 (Smad2 inhibitor). Furthermore, simply inhibiting one pathway had no effect on the other pathway. In conclusion, both ERK and Smad2 signal pathways are involved in the activation of macrophages induced by TGF-β1 and high-ambient glucose, while there is no crosstalk shown in the process.  相似文献   

3.
Inhibitor of DNA binding 1 (Id1) is a basic helix-loop-helix (bHLH) protein that has a variety of functional roles in cellular events including differentiation, cell cycle and cancer development. In addition, it has been demonstrated that Id1 is related with TGF-β and Smad signaling in various biological conditions. In this study, we investigated the effect of Id1 on TGF-β-induced collagen expression in human dermal fibroblasts. When Id1-b isoform was overexpressed, TGF-β-induced collagen expression was markedly inhibited. Consistent with this result, Id1-b significantly inhibited TGF-β-induced collagen gel contraction. In addition, Id1-b inhibited TGF-β-induced phosphorylation of Smad2 and Smad3. Finally, immunohistochemistry showed that Id1 expression was decreased in fibrotic skin diseases while TGF-β signaling was increased. Together, these results suggest that Id1 is an inhibitory regulator on TGF-β-induced collagen expression in dermal fibroblasts.  相似文献   

4.
Although mesenchymal stem cells (MSCs) are the natural source for bone regeneration, the exact mechanisms governing MSC crosstalk with collagen I have not yet been uncovered. Cell adhesion to collagen I is mostly mediated by three integrin receptors – α1β1, α2β1 and α11β1. Using human MSC (hMSC), we show that α11 subunit exhibited the highest basal expression levels but on osteogenic stimulation, both α2 and α11 integrins were significantly upregulated. To elucidate the possible roles of collagen-binding integrins, we applied short hairpin RNA (shRNA)-mediated knockdown in hMSC and found that α2 or α11 deficiency, but not α1, results in a tremendous reduction of hMSC numbers owing to mitochondrial leakage accompanied by Bcl-2-associated X protein upregulation. In order to clarify the signaling conveyed by the collagen-binding integrins in hMSC, we analyzed the activation of focal adhesion kinase, extracellular signal-regulated protein kinase and serine/threonine protein kinase B (PKB/Akt) kinases and detected significantly reduced Akt phosphorylation only in α2- and α11-shRNA hMSC. Finally, experiments with hMSC from osteoporotic patients revealed a significant downregulation of α2 integrin concomitant with an augmented mitochondrial permeability. In conclusion, our study describes for the first time that disturbance of α2β1- or α11β1-mediated interactions to collagen I results in the cell death of MSCs and urges for further investigations examining the impact of MSCs in bone conditions with abnormal collagen I.  相似文献   

5.
Atrial fibrosis is a crucial mechanism responsible for atrial fibrillation (AF).Sex-determining region Y-box containing gene 9 (Sox9) plays a pivotal role in fi...  相似文献   

6.
Transforming growth factor (TGF)-β1 can cause fibrosis diseases by enhancing production of collagen. However, the intracellular signaling mechanism for TGF-β1 stimulation of this process has not been fully elucidated. The present study focused on this mechanism and the cross-talk between the MAPK and Smad pathways. Extracellular signal-regulated kinase (ERK)2 ablation by a small interfering RNA led to marked inhibition of TGF-β1-induced collagen synthesis and enhanced phosphorylation of the Smad2 linker site in NIH/3T3 fibroblast cells. However, ERK1 ablation had minimal effects. Ablation of either ERK2 or ERK1 had no effect on the phosphorylation of the Smad2 C-terminal site. Furthermore, a Smad2 mutant with reduced phosphorylation of the Smad2 linker site inhibited TGF-β1-induced collagen synthesis. These results indicate that ERK2, rather than ERK1, plays a predominantly positive role in TGF-β1-induced collagen synthesis, and that ERK2 enhances collagen synthesis, at least partially, through activation of the Smad2 linker site.  相似文献   

7.
Depending on conditions of aeration maltose and glucose were found to exhibit different effects on the inducible synthesis of β-galactosidase in aerobically grown cells ofEscherichia coli starving for an exogenous source of nitrogen; both saccharides repressed the synthesis of the enzyme under aerobic conditions, while the above-mentioned saccharides were essential for the enzyme synthesis under anaerobic conditions. The presence of maltose in the medium resulted in the repression of the enzyme synthesis in anaerobically grown cells starving for an exogenous nitrogen source under anaerobic conditions. The synthesis of β-galactosidase-specific messenger RNA was completely blocked and the synthesis of the enzyme proper considerably inhibited in aerobically grown cells incubated anaerobically in a medium without nitrogen and carbon sources.  相似文献   

8.
9.
Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine that signals through the interaction of type I (TβRI) and type II (TβRII) receptors to activate distinct intracellular pathways. TAK1 is a serine/threonine kinase that is rapidly activated by TGF-β1. However, the molecular mechanism of TAK1 activation is incompletely understood. Here, we propose a mechanism whereby TAK1 is activated by TGF-β1 in primary mouse mesangial cells. Under unstimulated conditions, endogenous TAK1 is stably associated with TβRI. TGF-β1 stimulation causes rapid dissociation from the receptor and induces TAK1 phosphorylation. Deletion mutant analysis indicates that the juxtamembrane region including the GS domain of TβRI is crucial for its interaction with TAK1. Both TβRI-mediated TAK1 phosphorylation and TGF-β1-induced TAK1 phosphorylation do not require kinase activity of TβRI. Moreover, TβRI-mediated TAK1 phosphorylation correlates with the degree of its association with TβRI and requires kinase activity of TAK1. TAB1 does not interact with TGF-β receptors, but TAB1 is indispensable for TGF-β1-induced TAK1 activation. We also show that TRAF6 and TAB2 are required for the interaction of TAK1 with TβRI and TGF-β1-induced TAK1 activation in mouse mesangial cells. Taken together, our data indicate that TGF-β1-induced interaction of TβRI and TβRII triggers dissociation of TAK1 from TβRI, and subsequently TAK1 is phosphorylated through TAB1-mediated autophosphorylation and not by the receptor kinase activity of TβRI.Members of the transforming growth factor-β (TGF-β)3 superfamily are key regulators of various biological processes such as cellular differentiation, proliferation, apoptosis, and wound healing (1, 2). TGF-β1, the prototype of TGF-β family, is a potent inducer of extracellular matrix synthesis and is well established as a central mediator in the final common pathway of fibrosis associated with progressive kidney diseases (3, 4). Upon ligand stimulation, TGF-β type I (TβRI) and type II (TβRII) receptors form heterotetrameric complexes, by which TβRI is phosphorylated in the GS domain and activated. Smad signaling pathway is well established as a canonical pathway induced by TGF-β1 (5, 6). Receptor-regulated Smads (Smad2 and Smad3) are recruited and activated by the activated TβRI. The phosphorylation in the GS domain (7) and L45 loop (8) of TβRI are crucial for its interaction with receptor-regulated Smads. After phosphorylation, receptor-regulated Smads are rapidly dissociated from TβRI and interact with common Smad (Smad4) followed by nuclear translocation. In addition to the Smad pathway, a recently emerging body of evidence has demonstrated that TGF-β1 also induces various Smad-independent signaling pathways (917) by which mitogen-activated protein kinases (MAPKs), c-Jun N-terminal kinase (JNK) (18, 19), p38 MAPK (2022), and extracellular signal-regulated kinase 1/2 (23, 24) can be activated by TGF-β1.TAK1, initially identified as a MAPK kinase kinase 7 (MKKK7 or MAP3K7) in the TGF-β signaling pathway (11, 12), also can be activated by environmental stress (25), proinflammatory cytokines such as IL-1 and TNF-α (26, 27) and lipopolysaccharide (28). For TAK1 activation, phosphorylation at Thr-187 and Ser-192 in the activation loop of TAK1 is essentially required (2931). TAK1 can transduce signals to several downstream signaling cascades, including the MAPK kinase (MKK) 4/7-JNK cascade, MKK3/6-p38 MAPK cascade, and nuclear factor κB (NF-κB)-inducing kinase-IκB kinase cascade (2628). A recent report has shown that TAK1 is also activated by agonists of AMP-activated kinase (AMPK) and ischemia, which in turn activates the LKB1/AMPK pathway, a pivotal energy-sensor pathway (32). TAK1 is also involved in Wnt signaling (33). We and others have previously demonstrated that TAK1 is a major mediator of TGF-β1-induced type I collagen and fibronectin expression through activation of the MKK3-p38 MAPK and MKK4-JNK signaling cascades, respectively (3437). Furthermore, increased expression and activation of TAK1 enhance p38 phosphorylation and promote interstitial fibrosis in the myocardium from 9-day-old TAK1 transgenic mice (37). These data implicate a crucial role of TAK1 in extracellular matrix production and tissue fibrosis. TAK1 is also implicated in regulation of cell cycle (38), cell apoptosis (3941), and the Smad signaling pathway (4244). Thus, TAK1 may function as an important regulator and mediator of TGF-β1-induced Smad-dependent and Smad-independent signaling pathways.It has been demonstrated that TAK1 can be activated by the interaction with TAK1-binding protein 1 (TAB1) by in vitro binding assays and in overexpression studies (2931); however, it is not clear whether TAB1 plays a crucial role in ligand-induced TAK1 activation. In embryonic fibroblasts from TAB1 null mice, IL-1 and TNF-α could induce TAK1-mediated NF-κB and JNK activation (45). TAK1 activation induced by TNF-α, IL-1, and T-cell receptor requires TAB2 or its homologous protein TAB3 (4650). Although many questions still remain, much progress has been made in understanding the activation mechanism of TAK1 by inflammatory cytokines (46, 47, 5153). Ligand binding of IL-1 receptor (IL-1R) results in recruitment of MyD88, which serves as an adaptor for IL-1 receptor-associated kinase (IRAK) 1 and 4. Subsequently IRAK1 is hyperphosphorylated and induces interaction with TNF-α receptor-associated factor 6 (TRAF6), resulting in TRAF6 oligomerization. After oligomerization of TRAF6, IRAK1-TRAF6 complex is dissociated from the receptor and associated with TAK1, which is mediated by TAB2 (or TAB3). In this process polyubiquitination of TRAF6 by Ubc13/Uev1A is thought to be critical for the association with TAB2 (or TAB3), which links TAK1 activation (46, 54, 55). In the case of TNF-α stimulation, TNF-α receptors form trimers and recruit adaptor proteins, TRAF2/5, and receptor-interacting protein 1 on the membrane. Ubc13/Uev1A- and TRAF2-dependent polyubiquitination of receptor-interacting protein 1 induce association of TAB2 (or TAB3), which then activates TAK1. Thus, TAB2 is required for ubiquitin-dependent activation of TAK1 by TRAFs. On the other hand, it has been demonstrated that hematopoietic progenitor kinase 1 plays a role as an upstream mediator of TGF-β-induced TAK1 activation, which in turn activates the MKK4-JNK signaling cascade in 293T cells (56, 57). Besides hematopoietic progenitor kinase 1, it has been also suggested that X-linked inhibitor of apoptosis (XIAP) might link TAK1 to TGF-β/BMP receptors through the capability of XIAP to interact with TGF-β/BMP receptors and TAB1 (58). Thus, although various molecules participate in the activation of TAK1, the precise mechanism by which TGF-β1 induces TAK1 activation is incompletely understood. Here, we provide evidence that the association of TAK1 with TGF-β receptors is important for TGF-β1-induced activation of TAK1 in mouse mesangial cells. TGF-β1 stimulation induces interaction of TβRI and TβRII, triggering dissociation of TAK1 from TβRI, and subsequently TAK1 is phosphorylated through TAB1-mediated autophosphorylation, independent of receptor kinase activity of TβRI.  相似文献   

10.
Autophagy is a highly conserved cellular process regulating turnover of cytoplasmic proteins via a lysosome-dependent pathway. Here we show that kidneys from mice deficient in autophagic protein Beclin 1 exhibited profibrotic phenotype, with increased collagen deposition. Reduced Beclin 1 expression, through genetic disruption of beclin 1 or knockdown by specific siRNA in primary mouse mesangial cells (MMC), resulted in increased protein levels of type I collagen (Col-I). Inhibition of autolysosomal protein degradation by bafilomycin A(1) also increased Col-I protein levels and colocalization of Col-I with LC3, an autophagy marker, or LAMP-1, a lysosome marker, whereas treatment with TFP, an inducer of autophagy, resulted in decreased Col-I protein levels induced by TGF-β1, without alterations in Col-I α1 mRNA. Heterozygous deletion of beclin 1 increased accumulation of aggregated Col-I under nonstimulated conditions, and stimulation with TGF-β1 further increased aggregated Col-I. These data indicate that Col-I and aggregated, insoluble procollagen I undergo intracellular degradation via autophagy. A cytoprotective role of autophagy is implicated in kidney injury, and we demonstrate that low-dose carbon monoxide, shown to exert cytoprotection against renal fibrosis, induces autophagy to suppress accumulation of Col-I induced by TGF-β1. We also show that TGF-β1 induces autophagy in MMC via TAK1-MKK3-p38 signaling pathway. The dual functions of TGF-β1, as both an inducer of Col-I synthesis and an inducer of autophagy and Col-I degradation, underscore the multifunctional nature of TGF-β1. Our findings suggest a novel role of autophagy as a cytoprotective mechanism to negatively regulate and prevent excess collagen accumulation in the kidney.  相似文献   

11.
The effect of mouse resistin on hepatic insulin resistance in vivo and in vitro, and its possible molecular mechanism were examined. Focusing on liver glycogen metabolism and gluconeogenesis, which are important parts of glucose metabolism, in primary cultures of rat hepatocytes we found that glycogen content was significantly lower (P < 0.05) after treatment with recombinant murine resistin only in the presence of insulin plus glucose stimulation. Protein levels of factors in the insulin signaling pathway involved in glycogen synthesis were examined by Western blot analysis, with the only significant change observed being the level of phosphorylated (at Ser 9) glycogen synthase kinase-3β (GSK-3β) (P < 0.001). No differences in the protein levels for the insulin receptor β (IRβ), insulin receptor substrates (IRS1 and IRS2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) or their phosphorylated forms were observed between control and resistin treated primary rat hepatocytes. In a mouse model with high liver-specific expression of resistin, fasting blood glucose levels and liver glycogen content changed. Fasting blood glucose levels were significantly higher (P < 0.001) in the model mice, compared to the control mice, while the glycogen content of the liver tissue was about 60% of that of the control mice (P < 0.05). The gluconeogenic response was not altered between the experimental and control mice. The level of phosphorylated GSK-3β in the liver tissue was also decreased (P < 0.05) in the model mice, consistent with the results from the primary rat hepatocytes. Our results suggest that resistin reduces the levels of GSK-3β phosphorylated at Ser 9 leading to impaired hepatic insulin action in primary rat hepatocytes and in a mouse model with high liver-specific expression of resistin.  相似文献   

12.
Hyperglycemia is the major cause of diabetic angiopathy. Sarpogrelate hydrochloride is an antiplatelet drug, and expected to be useful in the treatment of chronic arterial occlusive diseases. The aim of our study was to evaluate the possible effects of sarpogrelate hydrochloride on adhesion molecule expression and its underlying mechanism in the prevention and treatment of cardiovascular disorders. Intercellular adhesion molecule-1 (ICAM-1) expression and superoxide dismutase (SOD) activity were determined after endothelial cells were exposed to high glucose in the absence and presence of sarpogrelate hydrochloride. Coincubation of endothelial cells with high glucose for 24 h resulted in a significant increase of monocyte–endothelial cell adhesion and the expression of ICAM-1 (P < 0.01). These effects were abolished by sarpogrelate hydrochloride and sarpogrelate hydrochloride significantly increased SOD activities (40 ± 8 vs. 47 ± 7, n = 8, P < 0.01). The low dose sarpogrelate group (0.1 μM) had significantly higher monocyte–endothelial cell adhesion and the expression of ICAM-1 than medium dose sarpogrelate group (1.0 μM) and high dose sarpogrelate group (10.0 μM) (P < 0.05 for comparison among three groups and P < 0.01 for difference between low and high dose sarpogrelate groups). These findings suggested that sarpogrelate hydrochloride was able to protect vascular endothelium from dysfunction induced by high glucose.  相似文献   

13.
Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that plays a critical role in modulating immune response and inflammation. We have investigated the effects of TGF-β1 on the expression of type IV collagenases, matrix metalloproteinase (MMP)-2 and MMP-9, in mouse peritoneal macrophages. TGF-β1 alone enhanced the secretion of MMP-9, while it blocked lipopolysaccharide (LPS)-stimulated MMP-9 production. We have shown that this biphasic effect of TGF-β1 is exerted at the mRNA level of the MMP-9 gene. Although TGF-β1 increased both basal and LPS-induced MMP-2 production at the protein and mRNA levels, the extent of the increase was smaller in LPS-activated macrophages than in control macrophages. The expression of type I and type II receptors for TGF-β was significantly decreased upon activation, suggesting that the lesser effect of TGF-β1 in activated macrophages may result from the decreased expression of TGF-β receptors. In addition, the expression of endogenous TGF-β1 mRNA was decreased significantly in activated macrophages. These findings suggest that activated macrophages not only produce less TGF-β1, but also respond less well to TGF-β to provide for inflammatory response.  相似文献   

14.

C-Mannosylation is a rare type of protein glycosylation and is reportedly critical for the proper folding and secretion of parental proteins. Still, the effects of C-mannosylation on the biological functions of these modified proteins remain to be elucidated. The Trp-x-x-Trp (WxxW) sequences, whose first tryptophan (Trp) can be C-mannosylated, constitute the consensus motifs for this glycosylation modification and are commonly found in thrombospondin type 1 repeats that regulate molecular functions of thrombospondin 1 in binding and activation of transforming growth factor β (TGF-β). TGF-β plays critical roles in the control of the central nervous system including synaptogenesis. Here, we investigated whether C-mannosylation of the synthetic Trp-Ser-Pro-Trp (WSPW) peptide may confer certain functions to this peptide in TGF-β-mediated synaptogenesis. By using primary cultured rat astrocytes and cortical neurons, we found that the C-mannosylated WSPW (C-Man-WSPW) peptide, but not non-mannosylated WSPW peptide, suppressed astrocyte-conditioned medium (ACM)-stimulated synaptogenesis. C-Man-WSPW peptide inhibited both ACM- and recombinant mature TGF-β1-induced activations of Smad 2, an important mediator in TGF-β signaling. Interactions of recombinant mature TGF-β with the C-Man-WSPW peptide were similar to those with non-C-mannosylated WSPW peptide. Taken together, our results reveal a novel function of C-mannosylation of the WxxW motif in signaling and synaptogenesis mediated by TGF-β. Molecular details of how C-mannosylation affects the biological functions of WxxW motifs deserve future study for clarification.

  相似文献   

15.
16.
Summary In the presence of -glucosidase from almond, a 90% glucose solution gave four kind of -linked glucose-disaccharides. The yield increased as the concentration of glucose was increased and as the reaction temperature was raised. The maximum yield of disaccharides from 90% glucose solution was 40% at 55°C.  相似文献   

17.
18.
The induced synthesis of β-galactosidase in non-growing cells ofEscherichia coli starving for exogenous carbon and nitrogen sources was stimulated markedly by the addition of any of four nucleosides tested: adenosine, guanosine, cytidine, and uridine. Adenosine was used as a representative of this group of compounds in most experiments. The decrease of ability of the cells to synthesize β-galactosidase, resulting from a prolonged starvation for exogenous carbon and nitrogen, was removed by adenosine. This compound also considerably reduced the inhibitory effect of metabolic poisons on the induced synthesis of β-galactosidase. The blockade of induced β-galactosidase synthesis evoked in aerobically grown cells by anaerobic starvation for exogenous sources of carbon and nitrogen was also significantly reduced by adenosine. The weak transient catabolic repression of induced synthesis of β-galactosidase evoked by glucose in non-growing cells ofEscherichia coli deprived of exogenous carbon and nitrogen sources was prevented by adenosine. The total repression caused by higher glucose concentrations was not influenced by this compound. The results are discussed from the point of view of the role of the energy state ofEscherichia coli cells in the regulation of β-galactosidase synthesis.  相似文献   

19.
Restenosis, or arterial lumen re-narrowing, occurs in 30–50% of the patients undergoing angioplasty. Adaptive remodeling is the compensatory enlargement of the vessel size, and has been reported to prevent the deleterious effects of restenosis. Our previous studies have shown that elevated transforming growth factor (TGF-β) and its signaling protein Smad3 in the media layer induce adaptive remodeling of angioplastied rat carotid artery accompanying an increase of total collagen in the adventitia. In order to gain insights into a possible role of collagen in Smad3-induced adaptive remodeling, here we have investigated a mechanism of cell–cell communication between medial smooth muscle cells (SMCs) and adventitial fibroblasts in regulating the secretion of two major collagen subtypes. We have identified a preferential collagen-3 versus collagen-1 secretion by adventitial fibroblasts following stimulation by the conditioned medium from the TGF-β1-treated/Smad3-expressing medial smooth muscle cells (SMCs), which contained higher levels of CTGF and IGF2 as compared to control medium. Treating the TGF-β/Smad3-stimulated SMCs with an siRNA to either CTGF or IGF2 reversed the effect of conditioned media on preferential collagen-3 secretion from fibroblasts. Moreover, recombinant CTGF and IGF2 together stimulated adventitial fibroblasts to preferentially secrete collagen-3 versus collagen-1. This is the first study to identify a preferential secretion of collagen-3 versus collagen-1 from adventitial fibroblasts as a result of TGF-β/Smad3 stimulation of medial SMCs, and that CTGF and IGF2 function together to mediate this signaling communication between the two cell types.  相似文献   

20.
The interaction of dopamine with the effects of the opiate agonist peptide D-Ala2-MePhe4-met-enkephalin-O-o1 (DAMME) on anterior pituitary hormone secretion was investigated in normal male subjects. DAMME produced clear elevations in prolactin, growth hormone and thyroid-stimulating hormone, while inhibiting the release of luteinising hormone and cortisol. There was no change in follicle stimulating hormone. The elevations in prolactin and TSH were enhanced by the dopamine antagonist, domperidone, and blocked by an infusion of dopamine. Neither dopamine nor domperidone modulated the changes in growth hormone, luteinising hormone or cortisol. The data are comptible with the association of the release of prolactin and TSH by opiate peptides with decreased hypothalamic dopaminergic activity; changes in the other anterior pituitary hormones seem to involve different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号