首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Murine T cell surface antigens, CD4 and CD8 are phosphorylated in response to phorbol 12-myristate 13-acetate, a protein kinase C activator, but not phosphorylated after concanavalin A, Ca2+ ionophore or dibutyryl-cAMP treatment. We examined the cell surface expression of both antigens and show that surface CD4 on CD4+CD8+ and CD4+CD8- thymocytes is rapidly decreased after PMA treatment, while CD8 expression is unaffected. Prolonged PMA treatment, which down-regulates protein kinase C, allows CD4 reexpression only in the CD4+CD8- population, suggesting that different mechanisms of cell surface antigen expression are operating in the two thymocyte subpopulations.  相似文献   

2.
Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell-lines. Whereas recombinant tumor necrosis factor-alpha (rTNF-alpha) slightly up-regulated CD93 expression on the U937 cells, recombinant interleukin-1beta (rIL-1beta), recombinant interleukin-2 (rIL-2), recombinant interferon-gamma (rIFN-gamma) and lipopolysaccharide (LPS) had no effect. Taken together, these findings indicate that the regulation of CD93 expression on these cells involves the PKC isoenzymes.  相似文献   

3.
Incubation of human T lymphocytes with saturating concentrations of combinations of certain anti-CD2 and -CD4 mAb results in reciprocal down-regulation of the cell surface density expression of the respective CD molecules. Such reciprocal down-regulation occurs at 0 degrees C in the presence of sodium azide and appears selective for CD2 and CD4 molecules because mAb identifying various other CD T cell surface molecules (anti-Leu2a, -OK-CLL, -W6/32, -beta 2-microglobulin, -4B4) do not modulate CD2 or CD4 R density, and because anti-CD2 mAb (anti-OKT11 and -D66 clone-1) do not alter CD8 R density (anti-OKT8, -Leu2a) and vice versa. Down-regulation of CD2 by mAb specific to CD4 is epitope-specific but does not vary on the basis of the antibody isotype used. The anti-CD4 mAb, Leu3a, was the strongest CD2 down-regulator examined followed by OKT4F. mAb specific to other CD4 epitopes (B, C, D, and E) caused only slight down-regulation of CD2 expression whereas anti-OKT4 and -OKT4A mAb had no significant regulatory effect. Also, mAb specific to the 9.6 (anti-OKT11) and D66 (anti-D66 clone 1) epitopes of the CD2 molecule down-regulated CD4 density detectable with Leu3a, OKT4, and OKT4A anti-CD4 mAb. Down-regulation of CD2 by anti-CD4 mAb also occurred with the transformed T cell line, KE-37, which demonstrates that such effects can occur without mononuclear phagocytic accessory cells. From these data it can be concluded that important T cell immunoregulatory signals may be transmitted intramembranally between CD2 and CD4 glycoproteins.  相似文献   

4.
G proteins are membrane-bound molecules involved in coupling of surface receptors with signal transduction effector systems in multiple cell types including T lymphocytes. Given that mature T cells which lack antigen receptors (CDl-Ti) are refractory to stimulation through CD2 or other accessory molecules, T cell receptor components likely play a critical role in coupling surface receptors with signal transduction effectors. It has recently been proposed that modulation of T cell receptor components with MAbs results in a physical loss or functional inactivation of G protein(s). In view of the importance of the T cell activation process, we herein examined G proteins in untreated or antibody-modulated Jurkat T cells as well as in genetic variants lacking either CD3-Ti or CD2 surface receptors. 43- and 41-kDa G protein alpha chains are ADP ribosylated with cholera (CTX) and pertussis (PTX) toxins, respectively, in wild type and receptor minus cell populations. In the wild type Jurkat cell line as well as in CD3- and CD2- variants, AlF4- can activate the G protein(s) presumably associated with phospholipase C to generate polyphosphoinositide turnover as well as an increase in cytoplasmic free calcium ions. Furthermore, G protein(s) linked to adenylylcyclase, a pathway which inhibits T lymphocyte activation, can be directly activated with CTX in the absence of CD3-Ti or CD2 on the membrane. Importantly, AlF4- can also induce polyphosphoinositide turnover in Jurkat cells whose T cell receptor proteins have been modulated with anti-CD3 MAb. These data provide functional and biochemical evidence that at least certain G proteins are intact in the absence of surface expression of CD3-Ti or CD2 molecules and imply that CD3-Ti desensitization is not singularly due to G protein loss.  相似文献   

5.
PMA causes rapid down-modulation of CD4 molecules on murine immature thymocytes, human PBL, and CD4-positive human tumor cell lines, but not on murine peripheral lymphocytes. The mechanisms of phorbol ester-induced down modulation of CD4 molecules, however, have not been elucidated. To determine how PMA down-modulates CD4 expression by T lymphocytes, we studied the ability of inhibitors of protein kinase C, calmodulin, actin, and tubulin to block PMA-induced modulation of CD4 in several murine and human cell types. We also tested the ability of intracellular and extracellular calcium chelators to block CD4 internalization. There was marked variability in the degree of PMA-induced down-modulation of CD4 among various cell types. The effects of PMA on CD4 expression were greater for murine thymocytes, for human PBL, and for the human lymphoblastic leukemia cell line, MOLT-3, than for any of the other cell types studied. The protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, blocked phosphorylation but not internalization of CD4 molecules induced by PMA. Therefore, phosphorylation of CD4 molecules by protein kinase C is not required for the internalization of the molecules. Internalization was blocked by both inhibitors of calmodulin, N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide, and trifluoperazine. PMA-induced internalization of CD4 was blocked by Quin-2 AM, which chelates intracellular calcium. EGTA, which chelates extracellular calcium, did not block internalization. Inhibitors of actin or tubulin did not block internalization. These results suggest that PMA-induced modulation of CD4 can occur in the absence of phosphorylation of the CD4 molecules and is calmodulin and intracellular calcium dependent.  相似文献   

6.
The role of CD7, a T cell differentiation antigen, in T cell function is not known at present; this study evaluates the effect of anti-CD7 mAb in PMBC cultures activated with suboptimal concentrations of lectins, antigens, and anti-CD3 mAb. We found that the inclusion of anti-CD7 resulted in increased IL-2 production and IL-2R-alpha expression in these cultures. H-7, a protein kinase C (PKC) inhibitor, and genistein, a protein tyrosine kinase (PTK) inhibitor, significantly suppressed the proliferation of T cells in comitogenic assays. This suggested that the comitogenic effect mediated by CD7 molecule involved both the PKC and the PTK pathways of T cell activation. These drugs appeared to affect the CD7-mediated effects by inhibiting the IL-2 autocrine pathway, especially the up-regulation of IL-2R-alpha since inhibition was not relieved with exogenous rIL-2. Taken together, our results suggest that CD7 augments T cell function by up-regulating IL-2R-alpha expression and IL-2 production via multiple pathways of protein phosphorylation.  相似文献   

7.
Modulation of CD4 by antigenic activation   总被引:17,自引:0,他引:17  
  相似文献   

8.
Expression of CD9 antigen on normal activated human B cells   总被引:1,自引:0,他引:1  
The expression of the CD9 pre-B acute lymphoblastic leukemia (ALL)-associated antigen was studied. CD9-positive B cells were enriched in the in vivo-activated buoyant B cell population isolated from tonsils. Small tonsil B cells activated in vitro with either PWM, phorbol 12-myristate 13-acetate (TPA), or anti-Ig plus low Mr B cell growth factor (BCGF) also demonstrated increased CD9 expression. The peak of CD9 expression (30-40% positive cells) occurred after 4-6 days of activation. The kinetics of increased CD9 expression was similar to that of the 4F2 activation antigen. CD9 antigen expression on tonsillar B cells as well as on pre-B leukemic cell lines was associated with protein kinase C activation. Two phorbols that activate protein kinase C (TPA; phorbol 12,13-dibutyrate) induced expression of the CD9 antigen whereas a phorbol analogue that does not activate C kinase (4-alpha-phorbol 12,13-didecanoate) and an analogue that is a very weak agonist (phorbol 12-myristate 13-acetate-4-0-methyl ether) were unable to induce CD9 expression on tonsil B cells or on the cell lines. The effect of the anti-CD9 monoclonal antibody, DU-ALL-1, on B cell mitogenesis was studied. Dense or buoyant tonsillar B cells were cultured in the presence or absence of DU-ALL-1 antibody plus PWM, anti-Ig, and BCGF, DU-ALL-1 antibody did not inhibit or augment the mitogenic response of resting or activated B cells. These results indicate that the CD9 pre-B ALL antigen is present on a population of normal activated tonsillar B cells and that its induction of expression is associated with protein kinase C activation.  相似文献   

9.
Glycosylation of CD4. Tunicamycin inhibits surface expression   总被引:8,自引:0,他引:8  
The T-cell surface glycoprotein CD4 plays an important role in mediating cellular immunity and serves as the receptor for human immunodeficiency virus. We have examined the glycosylation of CD4 and asked whether carbohydrate addition is essential for proper expression of the glycoprotein on the cell membrane. Under conditions where treatment of CD4+ human acute lymphoblastic leukemia cells (CEM-CM3 cells) with the glycosylation inhibitor tunicamycin decreased surface expression of CD4 in a time- and concentration-dependent manner, the surface expression of several other glycoproteins was unaffected. Incubation with tunicamycin for 48 h inhibited mannose incorporation by 98%, caused a 76% decrease in CD4 surface expression as judged by flow cytometry, and had little effect on methionine incorporation. Scatchard analysis showed a decrease in the total number of CD4 molecules on the cell surface from 17,000 to 8,900 after 24 h of tunicamycin treatment. Immunoprecipitation of metabolically labeled CD4 revealed the presence of an unglycosylated precursor in tunicamycin-treated cells. The observed difference between the Mr of the glycoprotein and its precursor is consistent with glycosylation at two potential N-linked sites. However, this precursor could not be detected by measuring steady state levels by immunoblotting. Also, no intracellular accumulation of CD4 in tunicamycin-treated cells was detectable using immunofluorescence microscopy. We conclude that surface expression of CD4 depends on glycosylation of the protein and that the unglycosylated precursor is preferentially degraded.  相似文献   

10.
CD3 receptor modulation in Jurkat leukemic cell line   总被引:1,自引:0,他引:1  
CD3 antigen is a crucial molecule in T cell signal transduction. Although its expression on cell surface is constitutive, dynamic regulation of TCR-CD3 level is probably the most important mechanism allowing T cells to calibrate their response to different levels of stimuli. In our study we examined the role of two main T cell signal transduction pathways in controlling the surface level of CD3 antigen, one based on protein kinase C activity and the other dependent on calcineurin. As an experimental model we used three clones derived from Jurkat cell line, expressing different levels of CD3 antigen surface expression: CD3(low) (217.6), CD3+(217.9) or CD3(low) (217.7). The cells were stimulated with PMA or ionomycin, acting directly on PKC and calcineurin, respectively. Prior to the stimulation cells were incubated with PKC inhibitor--chelerythrine or calcineurin blocker--cyclosporine A. Changes in CD3 surface expression were measured by flow cytometry. Only PMA and chelerythrine were able to change CD3 expression suggesting important involvement of PKC in the regulation of its expression. To confirm these findings, PKC activity was estimated in Jurkat clones. Our data demonstrated that Jurkat clones with different CD3 expression showed also different PKC activities, so we conclude that PKC-dependent pathway is the main way of controlling CD3 level on Jurkat clones.  相似文献   

11.
It has been proposed that during T cell receptor antigen recognition, CD4- or CD8-p56lck molecules interact with the T cell antigen receptor-CD3 complex (TCR-CD3) to phosphorylate various undefined substrates, which then initiate signal transduction through the TCR-CD3 complex. The ability of CD4 to modulate the TCR-CD3-induced increase in intracellular Ca2+, [Ca2+]i, and substrate tyrosine phosphorylation was studied in mutants of the human leukemic T cell line HPB-ALL characterized by their low expression of the TCR-CD3 complex on the cell surface. In TCR-CD3low cells, in which CD3-zeta was found to be associated with the TCR-CD3 complex, cross-linking CD3 with CD4 resulted in a profile of calcium mobilization, CD3-zeta, and phospholipase C-gamma 1 tyrosine phosphorylation similar to that observed in HPB-ALL cells, although the magnitude of generalized substrate tyrosine phosphorylation appeared to be smaller, as compared with wild-type cells. Responses were weak or absent when CD3 was cross-linked alone. In contrast, in a mutant in which association of CD3-zeta 2 with the TCR-CD3 was defective, cross-linking of CD3 with CD4 had a weaker effect on any of the activation parameters tested. These experiments showed that the presence of CD3-zeta 2 in the TCR-CD3 complex is of critical importance for the ability of CD4 to enhance early transducing signals inside the cell. The data also suggest that CD4-associated protein tyrosine kinase p56lck could up-regulate defective CD3-mediated induction of phospholipase C activity by increasing tyrosine phosphorylation of phospholipase C-gamma 1.  相似文献   

12.
Protection against the pore-forming activity of the human C5b-9 proteins was conferred on a nonprimate cell by transfection with cDNA encoding the human complement regulatory protein CD59. CD59 was stably expressed in Chinese hamster ovary cells using the pFRSV mammalian expression vector. After cloning and selection, the transfected cells were maintained in media containing various concentrations of methotrexate, which induced surface expression of up to 4.2 x 10(6) molecules of CD59/cell. Phosphatidylinositol-specific phospholipase C removed greater than 95% of surface-expressed CD59 antigen, confirming that recombinant CD59 was tethered to the Chinese hamster ovary plasma membrane by a lipid anchor. The recombinant protein exhibited an apparent molecular mass of 21-24 kDa (versus 18-21 kDa for human erythrocyte CD59). After N-glycanase digestion, recombinant and erythrocyte CD59 comigrated with apparent molecular masses of 12-14 kDa, suggesting altered structure of asparagine-linked carbohydrate in recombinant versus erythrocyte CD59. The function of the recombinant protein was evaluated by changes in the sensitivity of the CD59 transfectants to the pore-forming activity of human C5b-9. Induction of cell-surface expression of CD59 antigen inhibited C5b-9 pore formation in a dose-dependent fashion. CD59 transfectants expressing greater than or equal to 1.2 x 10(6) molecules of CD59/cell were completely resistant to human serum complement. By contrast, CD59 transfectants remained sensitive to the pore-forming activity of guinea pig C8 and C9 (bound to human C5b67). Functionally blocking antibody against erythrocyte CD59 abolished the human complement resistance observed for the CD59-transfected Chinese hamster ovary cells. These results confirm that the C5b-9 inhibitory function of the human erythrocyte membrane is provided by CD59 and suggest that the gene for this protein can be expressed in xenotypic cells to confer protection against human serum complement.  相似文献   

13.
In this report we describe a novel pathway of human T cell activation and proliferation involving the CD5 surface Ag. The CD5-specific Cris1 mAb induces by itself monocyte-dependent proliferation of PBMC. Among a panel of CD5-specific mAb (Leu1, OKT1, LO-CD5a, F101-1C5, and F145GF3), only the F145GF3 mAb shared this property with Cris1. The analysis of the biochemical pathway involved in this activation showed the lack of detectable hydrolysis of inositol phosphates or early increments in the intracellular cytosolic calcium concentration, after triggering cells with the mitogenic CD5 mAb. However, stimulation with CD5 induces activation of protein kinase C, as measured by phosphorylation of a specific peptide substrate (peptide GS), which can be inhibited by a pseudosubstrate peptide inhibitor. Stimulation with CD5 mAb induces also tyrosine kinase activity, with a substrate pattern that differs from that induced after triggering lymphocytes through the TCR-CD3 complex. On the other hand the IL-2/IL-2R pathway seems involved in the CD5-mediated proliferation of PBMC because anti-IL-2R-specific mAb inhibits CD5-induced proliferation, and stimulation with mitogenic CD5 mAb induces production of IL-2 and expression of IL-2R alpha and beta chains. Therefore, the triggering of the CD5 Ag can induce IL-2- and monocyte-dependent human T cell proliferation by a biochemical pathway that differs, at least in the first stages, from the one that mediates TCR-CD3 complex-induced T cell activation.  相似文献   

14.
This work shows that tumor promoter agents (TPA) induce the post-translational modification of the human lymphocyte surface CD5 antigen (Tp67) in several cellular types. Treatment of [32P]orthophosphate- and [35S]cysteine-labeled normal and lymphoblastoid T and B cells with active tumor promoters induced the rapid, transitory and dose-dependent appearance of hyperphosphorylated CD5 forms with higher apparent molecular masses. These changes in the electrophoretic mobility of CD5 molecules were independent of RNA and protein synthesis, as well as of differences in neuraminic acid content. The inhibition of the TPA-mediated changes by protein kinase C inhibitors (staurosporine and 1-(5-isoquinolylsulfonyl)-2-methylpiperazine) indicated its protein-kinase-C-mediated nature. Phosphatase digestion of CD5 immunoprecipitates reverted the TPA-mediated mobility changes showing its dependence on phosphorylation. Neuraminidase digestion of intact cells revealed that the target of the TPA effects are surface-expressed CD5 molecules. In conclusion, we suggest that the heterogeneity in the electrophoretic mobility induced by TPA could reflect some structural and/or functional differences within CD5 molecules.  相似文献   

15.
Placental protein 14 (PP14) is a glycoprotein of the lipocalin family that acts as a negative regulator in T cell receptor-mediated activation. In this study, we investigated PP14s potential role in regulating B cell activation. While PP14-inhibited B cell proliferation, IgM secretion and the surface expression of MHC class II, the expression of other surface molecules, such as CD69 and CD86, were unaffected. These observed effects were independent of the anti-IgM concentration used for stimulation, regardless of the presence of either T cells or IL-4, and persisted when B cells were stimulated by stimuli, which circumvent early events during B cell Ag receptor (BCR) activation, namely, protein kinase C activators in combination with Ca(2+) ionophore. Interestingly, we demonstrated that PP14s inhibitory characteristics are reminiscence of that achieved by independent ligation of CD19 using anti-CD19 mAb. Together with our previously reported effects on T cells, these findings identify PP14 as a soluble regulatory factor capable of interacting with both T and B cells in a carbohydrate-dependent manner and as a result it can affect both cellular and humoral immune responses.  相似文献   

16.
In previous studies, we have demonstrated the inhibition of CD4 expression in rat lymphocytes treated with phorbol myristate acetate (PMA) by antisense oligonucleotides (AS-ODNs) directed against the AUG start region of the cd4 gene. The aim of the present study was to inhibit CD4 expression in lymphocytes without promoting CD4 synthesis and to determine the effect of this inhibition on CD4+ T cell function. Four 21-mer ODNs against the rat cd4 gene (AS-CD4-1 to AS-CD4-4) were used. Surface CD4 expression was measured by immunofluorescence staining and flow cytometry, and mRNA CD4 expression was measured by RT-PCR. T CD4+ cell function was determined by specific and unspecific proliferative response of rat-primed lymphocytes. After 24 hours of incubation, AS-CD4-2 and AS-CD4-4 reduced lymphocyte surface CD4 expression by 40%. This effect remained for 72 hours and was not observed on other surface molecules, such as CD3, CD5, or CD8. CD4 mRNA expression was reduced up to 40% at 24 hours with AS-CD4-2 and AS-CD4-4. After 48 hours treatment, CD4 mRNA decreased up to 27% and 29% for AS-CD4-2 and AS-CD4-4, respectively. AS-CD4-2 and AS-CD4-4 inhibited T CD4+ cell proliferative response upon antigen-specific and unspecific stimuli. Therefore, AS-ODNs against CD4 molecules inhibited surface and mRNA CD4 expression, under physiologic turnover and, consequently, modulate T CD4+ cell reactivity.  相似文献   

17.
CD20, a B cell integral membrane protein, regulates B cell activation and is differently phosphorylated in resting and activated cells. We have previously shown that CD20 phosphorylation is increased in activated cells and in phorbol ester-treated resting cells. Phosphorylation is also altered by agents which signal B cell proliferation, such as anti-IgM and a B cell growth factor. The present study was designed to address whether protein kinase C (PKC) or other kinases used CD20 as a substrate. When purified PKC was incubated with isolated CD20, both the 35- and 37-kDa CD20 proteins were phosphorylated in vitro. Intact resting B cells were next incubated with the protein kinase inhibitors H-7, H-8, and W-7. No change in basal CD20 phosphorylation was observed in the presence of W-7 and H-8, indicating that the protein cyclic nucleotide-dependent and calmodulin-dependent kinases were not actively phosphorylating CD20. Surprisingly, the PKC inhibitor H-7 increased CD20 phosphorylation at concentrations above 25-50 microM. To assess whether PKC either activated a phosphatase or inactivated a kinase affecting CD20 phosphorylation, tryptic phosphopeptide mapping of CD20 was performed. These studies revealed that addition of phorbol 12-myristate 13-acetate increased phosphorylation of some peptides differing from those which had increased phosphorylation following addition of H-7. Furthermore, signalling through surface immunoglobulin increased phosphorylation of CD20 peptides distinct from those hyperphosphorylated following addition of phorbol 12-myristate 13-acetate. These results demonstrate that 1) CD20 has multiple phosphorylation sites, as predicted from sequence data, and 2) whereas PKC can use CD20 as substrate, at least one other unidentified kinase phosphorylates CD20 in resting cells. Our data also predict that activation of B cells via the antigen receptor (surface IgM) may activate other protein kinases in addition to PKC.  相似文献   

18.
Invariant natural killer T (iNKT) cells are innate T cells with powerful immune regulatory functions that recognize glycolipid antigens presented by the CD1D protein. While iNKT cell-activating glycolipids are currently being explored for their efficacy to improve immunotherapy against infectious diseases and cancer, little is known about the mechanisms that control CD1D antigen presentation and iNKT cell activation in vivo. CD1D molecules survey endocytic pathways to bind lipid antigens in MHC class II-containing compartments (MIICs) before recycling to the plasma membrane. Autophagosomes intersect with MIICs and autophagy-related proteins are known to support antigen loading for increased CD4+ T cell immunity. Here, we report that mice with dendritic cell (DC)-specific deletion of the essential autophagy gene Atg5 showed better CD1D1-restricted glycolipid presentation in vivo. These effects led to enhanced iNKT cell cytokine production upon antigen recognition and lower bacterial loads during Sphingomonas paucimobilis infection. Enhanced iNKT cell activation was independent of receptor-mediated glycolipid uptake or costimulatory signals. Instead, loss of Atg5 in DCs impaired clathrin-dependent internalization of CD1D1 molecules via the adaptor protein complex 2 (AP2) and, thus, increased surface expression of stimulatory CD1D1-glycolipid complexes. These findings indicate that the autophagic machinery assists in the recruitment of AP2 to CD1D1 molecules resulting in attenuated iNKT cell activation, in contrast to the supporting role of macroautophagy in CD4+ T cell stimulation.  相似文献   

19.
20.
The membrane glycoproteins CD4 (L3T4) and CD8 (Lyt2) are expressed on distinct populations of mature murine T lymphocytes, and are thought to be receptors for monomorphic determinants expressed on MHC class II and class I molecules, respectively. Although they differ in their ligand specificity, it has been presumed that CD4 and CD8 perform equivalent functions in the T cells that bear them. Since activation of protein kinase C (PKC) is known to cause rapid down-regulation of various receptors, including the T cell receptor complex (TcR complex), we treated cells with phorbol 12-myristate 13-acetate (PMA), a PKC activator, to determine whether cell-surface expression of CD4 and CD8 would be similarly affected by this intracellular mediator. Brief or relatively prolonged treatment with PMA induced mature murine T cells to reduce their surface expression of the TcR complex and of CD4, but not of CD8. Similarly, PMA rapidly induced transfected L cells to down-regulate surface CD4 expression, but had no effect on surface CD8 expression. Most significantly, PMA treatment induced CD4+CD8+ immature thymocytes to rapidly reduce their surface CD4 expression, but, again, it had no immediate effect on the surface expression of CD8. These results indicate that CD4 and TcR complex cell-surface expression are both sensitive to PKC activation by brief treatment with PMA, whereas CD8 expression is not, and suggest that CD4 and CD8 surface expression levels are regulated by distinct intracellular mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号