首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 1010 L mol?1 s?1, indicating forming QNPL–BSA complex through the intermolecular binding interaction. The binding constant for the QNPL–BSA complex is in the order of 105 M?1, indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal’s forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.  相似文献   

2.
Ticlopidine is an anti-platelet drug that functions as a P2Y12 receptor antagonist. The present study provides a detailed characterization of interaction of ticlopidine with a model transport protein, bovine serum albumin (BSA) as well as an assessment of its bilirubin displacing ability using a multi-spectroscopic approach in combination with isothermal titration calorimetry. The value of binding constant determined using ITC studies was found to be 3.03 × 103 M?1 with a binding stoichiometry of approximately 1:1. Competitive site marker experiments indicate that ticlopidine binds to Sudlow site I, located in subdomain IIA of BSA. In addition, Circular dichroism and 3D fluorescence spectroscopy indicated structural and conformational changes in BSA on interaction with ticlopidine. Thermodynamic parameters suggested that the reaction was spontaneous, exothermic, entropically driven, and involved hydrophobic interactions. These results were well supported by those obtained through molecular docking studies. Additionally, the effect of ticlopidine on bilirubin and albumin interaction was evaluated using the peroxidase method as well as through fluorescence spectroscopy. Ticlopidine was found to displace bilirubin from serum albumin. Moreover, the binding constant of bilirubin–serum albumin interaction also decreased in presence of ticlopidine. The results indicated that ticlopidine is a competitive displacer of bilirubin in vitro and may contribute to the incidences hyperbilirubinemia associated with the usage of this drug.  相似文献   

3.
A combination of fluorescence, UV–Vis absorption, circular dichroism (CD), Fourier transform infrared (FT-IR) and molecular modeling approaches were employed to determine the interaction between lysionotin and bovine serum albumin (BSA) at physiological pH. The fluorescence titration suggested that the fluorescence quenching of BSA by lysionotin was a static procedure. The binding constant at 298 K was in the order of 105 L mol?1, indicating that a high affinity existed between lysionotin and BSA. The thermodynamic parameters obtained at different temperatures (292, 298, 304 and 310 K) showed that the binding process was primarily driven by hydrogen bond and van der Waals forces, as the values of the enthalpy change (ΔH°) and entropy change (ΔS°) were found to be ?40.81 ± 0.08 kJ mol?1 and ?35.93 ± 0.27 J mol?1 K?1, respectively. The surface hydrophobicity of BSA increased upon interaction with lysionotin. The site markers competitive experiments revealed that the binding site of lysionotin was in the sub-domain IIA (site I) of BSA. Furthermore, the molecular docking results corroborated the binding site and clarified the specific binding mode. The results of UV–Vis absorption, CD and FT-IR spectra demonstrated that the secondary structure of BSA was altered in the presence of lysionotin.  相似文献   

4.
The interactions of bovine serum albumin (BSA) with urea/water were investigated by computer simulation. It was revealed that the BSA-hydrophobic residues in urea solutions favored contact with urea more than with water. Energy decomposition analysis showed that van der Waals energy was the dominant driving force behind urea affinity for hydrophobic residues, whereas coulombic attraction was largely responsible for water affinity for these residues. Meanwhile, urea–BSA hydrogen bond energies were found to be weaker than water–BSA hydrogen bond energies. The greater strength of water–BSA hydrogen bonds than urea–BSA hydrogen bonds, and the opposing preferential interaction between the BSA and urea suggest that disruption of hydrophobic interaction predominates urea–protein denaturation. In pure water, hydrophobic residues showed aggregation tendencies at 323 K, suggesting an increase in hydrophobicity, while at 353 K the residues were partly denatured due to loss of hydrogen bonds; thus, disruption of hydrophobic interactions appeared to contribute less to thermal denaturation.  相似文献   

5.
This work deals with the synthesis of 6-methyl-3-[(4′-methylphenyl)imino]methyl-4H-chromen-4-one (MMPIMC), its binding to β-cyclodextrin, and the influence of the cyclodextrin complexation on the compound’s binding to bovine serum albumin (BSA). The 1:2 stoichiometry for the complexation of MMPIMC with β-cyclodextrin is determined with the binding constant of 1.90 × 104 M?2. The structure of host–guest complex plays a role in protein binding of MMPIMC. One- and two-dimensional NMR spectra are used to determine the mode of binding of the guest to β-cyclodextrin cavity and the structure of the inclusion complex is proposed. The binding of MMPIMC with BSA in the absence and the presence of β-cyclodextrin is studied. The binding strengths of MMPIMC–BSA (1.73 × 105 M?1) and β-cyclodextrin-complexed MMPIMC–BSA (9.0 × 104 M?1) show difference in magnitude. The Förster Resonance Energy Transfer efficiency and the proximity of the donor and acceptor molecules, are modulated by β-cyclodextrin. Molecular modeling is used to optimize the sites and mode of binding of MMPIMC with bovine serum albumin.  相似文献   

6.
The binding of one fluorine including triazole (C10H9FN4S, FTZ) to bovine serum albumin (BSA) was studied by spectroscopic techniques including fluorescence spectroscopy, UV–Vis absorption, and circular dichroism (CD) spectroscopy under simulative physiological conditions. Fluorescence data revealed that the fluorescence quenching of BSA by FTZ was the result of forming a complex of BSA–FTZ, and the binding constants (K a) at three different temperatures (298, 304, and 310 K) were 1.516?×?104, 1.627?×?104, and 1.711?×?104?mol L?1, respectively, according to the modified Stern–Volmer equation. The thermodynamic parameters ΔH and ΔS were estimated to be 7.752 kJ mol?1 and 125.217 J?mol?1?K?1, respectively, indicating that hydrophobic interaction played a major role in stabilizing the BSA–FTZ complex. It was observed that site I was the main binding site for FTZ to BSA from the competitive experiments. The distance r between donor (BSA) and acceptor (FTZ) was calculated to be 7.42 nm based on the Förster theory of non-radioactive energy transfer. Furthermore, the analysis of fluorescence data and CD data revealed that the conformation of BSA changed upon the interaction with FTZ.  相似文献   

7.
The binding of clofazimine to human serum albumin (HSA) was investigated by applying optical spectroscopy and molecular docking methods. Fluorescence quenching data revealed that clofazimine binds to protein with binding constant in the order of 104 M?1, and with the increase in temperature, Stern–Volmer quenching constants gradually decreased indicating quenching mode to be static. The UV–visible spectra showed increase in absorbance upon interaction of HSA with clofazimine which further reveals formation of the drug–albumin complex. Thermodynamic parameters obtained from fluorescence data indicate that the process is exothermic and spontaneous. Forster distance (Ro) obtained from fluorescence resonance energy transfer is found to be 2.05 nm. Clofazimine impelled rise in α-helical structure in HSA as observed from far-UV CD spectra while there are minor alterations in tertiary structure of the protein. Clofazimine interacts strongly with HSA inducing secondary structure in the protein and slight alterations in protein topology as suggested by dynamic light scattering results. Moreover, docking results indicate that clofazimine binds to hydrophobic pocket near to the drug site II in HSA.  相似文献   

8.
Abstract

The binding characteristic of anti-platelet drug dipyridamole has been investigated with a transport protein, serum albumin. A multi-spectroscopic approach has been employed, and the results were well supported by in silico molecular docking and simulation studies. The fluorescence quenching of serum albumin at three different temperatures revealed that the mechanism involved is static and the binding constant of the interaction was found to be of the order of 104 M?1. The reaction was found to be spontaneous and involved hydrophobic interactions. Synchronous, 3D fluorescence and CD spectroscopy indicated a change in conformation of bovine serum albumin (BSA) on interaction with DP. Using site-selective markers, the binding site of DP was found to be in subdomain IB. Molecular docking studies further corroborated these results. Molecular dynamic (MD) simulations showed lower RMSD values on interaction, suggesting the existence of a stable complex between DP and BSA. Furthermore, since β-Cyclodextrin (βCD) is used to improve the solubility of DP in ophthalmic solutions, therefore, the effect of (βCD) on the interaction of BSA and DP was also studied, and it was found that in the presence of βCD, the binding constant for BSA-DP interaction decreased. The present study is an attempt to characterize the transport of DP and to improve its bioavailability, consequently helping in dosage design to achieve optimum therapeutic levels.

Communicated by Ramaswamy H. Sarma  相似文献   

9.
The interaction of bovine serum albumin (BSA) with isoxazolcurcumin (IOC) and diacetylcurcumin (DAC) has been investigated. Binding constants obtained were found to be in the 105 M? 1 range. Minor conformational changes of BSA were observed from circular dichroism (CD) and Fourier transformed infrared (FT-IR) studies on binding. Based on Förster's theory of non-radiation energy transfer, the average binding distance, r between the donor (BSA) and acceptors IOC and DAC was found to be 3.79 and 4.27 nm respectively. Molecular docking of isoxazolcurcumin and diacetylcurcumin with bovine serum albumin indicated that they docked close to Trp 213, which is within the hydrophobic subdomain.  相似文献   

10.
The present study employed the spectroscopic techniques, i.e. fluorescence, and circular dichroism (CD) and the molecular docking approach to investigate the mechanism of interaction of a potent anticancer glucosinolate, sinigrin (SIN), with bovine serum albumin (BSA). SIN binding to BSA resulted in the quenching of intrinsic fluorescence, and the analysis of results revealed the presence of static quenching mechanism. Based on the results, it was evident that the interaction of SIN with BSA was mainly stabilized by hydrogen bonding. Results from CD analysis revealed that the binding of SIN does not induce significant conformational changes in BSA. Molecular docking studies showed that four hydrogen bonds stabilize the binding of SIN in the site I of BSA with a binding energy of ?6.2 kcal mol?1. These findings will not only provide insights about the mechanism of interaction of sinigrin but also showed the effect of methylglyoxal-mediated glycation on ligand binding with BSA.  相似文献   

11.
The interaction of etravirine with β-cyclodextrin is analyzed by UV–visible absorption, infrared, fluorescence, nuclear magnetic resonance, two-dimensional rotational frame nuclear Overhauser effect spectroscopy, and molecular modeling studies. The 4-hydroxy-3, 5-dimethylbenzonitrile moiety is found to take part in the binding. The stoichiometry of the inclusion complex of ET with β-CD is 1:1 with the binding constant of 2.03 × 103 mol?1 dm3. The binding of ET with calf thymus DNA (ctDNA) and bovine serum albumin (BSA) protein is investigated in the presence and the absence of β-CD. Fluorescence enhancement is observed during the binding of ET with ctDNA in the absence of β-CD, whereas in the presence of β-CD, fluorescence quenching is observed. The binding constants of the binding of ET and ET–β-CD to ctDNA are 7.84 × 104 and 4.38 × 104 mol?1 dm3, respectively. The binding constant of the binding of ET and ET–β-CD to BSA are 3.14 × 104 and 1.6396 × 104 mol?1 dm3, respectively. The apparent binding constants between ET–β-CD complex and ctDNA or BSA protein decreases significantly. The numbers of binding sites of interaction of ET with BSA protein and the binding distance between BSA protein and ET the absence and the presence of β-CD differ. β-CD modulates the binding of ET with the macromolecular targets.  相似文献   

12.
Human serum albumin (HSA) and α-1-acid glycoprotein (AGP) (acute phase protein) are the plasma proteins in blood system which transports many drugs. To understand the pharmacological importance of piperine molecule, here, we studied the anti-inflammatory activity of piperine on mouse macrophages (RAW 264.7) cell lines, which reveals that piperine caused an increase in inhibition growth of inflammated macrophages. Further, the fluorescence maximum quenching of proteins were observed upon binding of piperine to HSA and AGP through a static quenching mechanism. The binding constants obtained from fluorescence emission were found to be Kpiperine?=?5.7 ± .2 × 105 M?1 and Kpiperine = 9.3± .25 × 104 M?1 which correspond to the free energy of ?7.8 and ?6.71 kcal M?1at 25 °C for HSA and AGP, respectively. Further, circular dichrosim studies revealed that there is a marginal change in the secondary structural content of HSA due to partial destabilization of HSA–piperine complexes. Consequently, inference drawn from the site-specific markers (phenylbutazone, site I marker) studies to identify the binding site of HSA noticed that piperine binds at site I (IIA), which was further authenticated by molecular docking and molecular dynamic (MD) studies. The binding constants and free energy corresponding to experimental and computational analysis suggest that there are hydrophobic and hydrophilic interactions when piperine binds to HSA. Additionally, the MD studies have showed that HSA–piperine complex reaches equilibration state at around 3 ns, which prove that the HSA–piperine complex is stable in nature.  相似文献   

13.
Eriocitrin is a flavanone glycoside, which exists in lemon or lime citrus fruits. It possesses antioxidant, anticancer, and anti‐allergy activities. In order to investigate the pharmacokinetics and pharmacological mechanisms of eriocitrin in vivo, the interaction between eriocitrin and bovine serum albumin (BSA) was studied under the simulated physiological conditions by multispectroscopic and molecular docking methods. The results well indicated that eriocitrin and BSA formed a new eriocitrin‐BSA complex because of intermolecular interactions, which was demonstrated by the results of ultraviolet‐visible (UV‐vis) absorption spectra. The intrinsic fluorescence of BSA was quenched by eriocitrin, and static quenching was the quenching mechanism. The number of binding sites (n) and binding constant (Kb) at 310 K were 1.22 and 2.84 × 106 L mol?1, respectively. The values of thermodynamic parameters revealed that the binding process was spontaneous, and the main forces were the hydrophobic interaction. The binding distance between eriocitrin and BSA was 3.43 nm. In addition, eriocitrin changed the conformation of BSA, which was proved by synchronous fluorescence and circular dichroism (CD) spectra. The results of site marker competitive experiments suggested that eriocitrin was more likely to be inserted into the subdomain IIA (site I), which was further certified by molecular docking studies.  相似文献   

14.
Molecular interaction of atenolol, a selective β1 receptor antagonist with the major carrier protein, bovine serum albumin (BSA), was investigated under imitated physiological conditions (pH 7.4) by means of fluorescence spectroscopy, UV absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and molecular modeling studies. The steady-state fluorescence spectra manifested that static type, due to formation of the atenolol-BSA complex, was the dominant mechanism for fluorescence quenching. The characteristic information about the binding interaction of atenolol with BSA in terms of binding constant (Kb) were determined by the UV–vis absorption titration, and were found to be in the order of 103 M?1 at different temperatures, indicating the existence of a weak binding in this system. Thermodynamic analysis revealed that the binding process was primarily mediated by van der Waals force and hydrogen bonds due to the negative sign for enthalpy change (ΔH0), entropy change (ΔS0). The molecular docking results elucidated that atenolol preferred binding on the site II of BSA according to the findings observed in competitive binding experiments. Moreover, via alterations in synchronous fluorescence, three-dimensional fluorescence and FT-IR spectral properties, it was concluded that atenolol could arouse slight configurational and micro-environmental changes of BSA.  相似文献   

15.
Ye H  Qiu B  Lin Z  Chen G 《Luminescence》2011,26(5):336-341
The interaction between tamibarotene and bovine serum albumin (BSA) was studied using fluorescence quenching technique and ultraviolet–visible spectrophotometry. The results of experiments showed that tamibarotene could strongly quench the intrinsic fluorescence of BSA by a dynamic quenching mechanism. The apparent binding constant, number of binding site and corresponding thermodynamic parameters at different temperatures were calculated respectively, and the main interaction force between tamibarotene and BSA was proved to be hydrophobic force. Synchronous fluorescence spectra showed that tamibarotene changed the molecular conformation of BSA. When BSA concentration was 1.00 × 10?6 mol L?1, the quenched fluorescence ΔF had a good linear relationship with the concentration of tamibarotene in the range 1.00 × 10?6 to 12.00 × 10?6 mol L?1 with the detection limit of 6.52 × 10?7 mol L?1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Thymol is the main monoterpene phenol present in the essential oils which is used in the food industry as flavoring and preservative agent. In this study, the interaction of thymol with the concentration range of 1 to 6 μM and bovine serum albumin (BSA) at fixed concentration of 1 μM was investigated by fluorescence, UV‐vis, and molecular docking methods under physiological‐like condition. Fluorescence experiments were performed at 5 different temperatures, and the results showed that the fluorescence quenching of BSA by thymol was because of a static quenching mechanism. The obtained binding parameters, K, were in the order of 104 M?1, and the binding number, n, was approximately equal to unity indicating that there is 1 binding site for thymol on BSA. Calculated thermodynamic parameters for enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) showed that the reaction was spontaneous and hydrophobic interactions were the main forces in the binding of thymol to BSA. The results of UV‐vis spectroscopy and Arrhenius' theory showed the complex formation in the interaction of thymol and BSA. Negligible conformational changes in BSA by thymol were observed in fluorescence experiments, and the same results were also obtained from UV‐vis studies. Results of molecular docking indicated that the subdomain IA of BSA was the binding site for thymol.  相似文献   

17.
The interaction of a recently certified kinase inhibitor Tofacitinib (TFB) with bovine serum albumin (BSA) has been studied, by spectroscopic and molecular docking studies. Spectrofluorimetric measurements at 3 different temperatures (288, 298, and 310 K) showed that TFB quench the intrinsic fluorescence of BSA upon forming a nonfluorescent complex. The intrinsic fluorescence data showed that TFB binds to BSA with binding constant (K b) of approximately 104M−1, affirming a significant affinity of TFB with BSA. The decrease in Stern‐Volmer quenching constant with increasing temperature exhibited the static mechanism of quenching. Negative value of ΔG (−6.94 ± 0.32 kcal·mol−1), ΔH (−7.87 ± 0.52 kcal·mol−1), and ΔS (−3.14 ± 0.42 cal·mol−1·K−1) at all 3 temperatures declared the reaction between BSA and TFB to be spontaneous and exothermic. Far‐UV circular dichroism spectroscopy results demonstrated an increase in helical content of BSA in the presence of TFB. Moreover, dynamic light scattering measurements showed that TFB resulted into a decrease in the hydrodynamic radii (from 3.6 ± 0.053 to 2.9 ± 0.02 nm) of BSA. Molecular docking studies confirmed that TFB binds near site II on BSA, hydrogen bonding, and hydrophobic interaction were involved in the BSA‐TFB complex formation. The present study characterizing the BSA‐TFB interaction could be significant towards gaining an insight into the drug pharmacokinetics and pharmacodynamics and also in the direction of rational drug designing with better competence, against emerging immune‐mediated diseases, ie, alopecia and rheumatoid arthritis.  相似文献   

18.
The binding interaction of the cobalt(II) 1,10-phenanthroline complex (Co(phen) 3 2+ , phen = 1,10-phenanthroline) with bovine serum albumin (BSA) was investigated by fluorescence spectroscopy combined with UV–Vis absorption and circular dichroism measurements under simulative physiological conditions. The experiment results showed that the fluorescence intensity of BSA was dramatically decreased owing to the formation of Co(phen) 3 2+ –BSA complex. The corresponding association constants (K a) between Co(phen) 3 2+ and BSA at four different temperatures were calculated according to the modified Stern–Volmer equation. The enthalpy change (ΔH°) and entropy change (ΔS°) were calculated to be ?2.73 kJ mol?1 and 82.27 J mol?1?K?1, respectively, which suggested that electrostatic interaction and hydrophobic force played major roles in stabilizing the Co(phen) 3 2+ –BSA complex. Site marker competitive experiments indicated that the binding of Co(phen) 3 2+ to BSA primarily took place in site I of BSA. A value of 4.11 nm for the average distance r between Co(phen) 3 2+ (acceptor) and tryptophan residues of BSA (donor) was derived from Förster’s energy transfer theory. The conformational investigation showed that the presence of Co(phen) 3 2+ resulted in the change of BSA secondary structure and induced the slight unfolding of the polypeptides of protein, which confirmed the microenvironment and conformational changes of BSA molecules.  相似文献   

19.
The transport of more than 90% of the drugs viz. anticoagulants, analgesics, and general anesthetics in the blood takes place by albumin. Hence, albumin is the prime protein needs to be investigated to find out the nature of drug binding. Serum albumin molecules are prone to glycation at elevated blood glucose levels as observed in diabetics. In this piece of work, glycation of bovine serum albumin (BSA) was carried out with glyceraldehyde and characterized by molecular docking and fluorometry techniques. Glycation of BSA showed 25% loss of free amino groups and decreased protein fluorescence (60%) with blue shift of 6 nm. The present study was also designed to evaluate the binding of colchicine (an anti-inflammatory drug) to native and glycated BSA and its ability to displace 8-analino-1-nephthalene sulfonic acid (ANS), from the BSA–ANS complex. Binding of ANS to BSA showed strong binding (Ka = 4.4 μM) with native conformation in comparison to glycated state (Ka = 8.4 μM). On the other hand, colchicine was able to quench the fluorescence of native BSA better than glycated BSA and also showed weaker affinity (Ka = 23 μM) for glycated albumin compared with native state (Ka = 16 μM). Molecular docking study showed that both glyceraldehyde and colchicine bind to common residues located near Sudlow’s site I that explain the lower binding of colchicine in the glycated BSA. Based on our results, we believe that reduced drugs-binding affinity to glycated albumin may lead to drugs accumulation and precipitation in diabetic patients.  相似文献   

20.
In order to evaluate biological potential of a novel synthesized complex [Nd(dmp)2Cl3.OH2] where dmp is 29-dimethyl 110-phenanthroline, the DNA-binding, cleavage, BSA binding, and antimicrobial activity properties of the complex are investigated by multispectroscopic techniques study in physiological buffer (pH 7.2).The intrinsic binding constant (Kb) for interaction of Nd(III) complex and FS–DNA is calculated by UV–Vis (Kb = 2.7 ± 0.07 × 105) and fluorescence spectroscopy (Kb = 1.13 ± 0.03 × 105). The Stern–Volmer constant (KSV), thermodynamic parameters including free energy change (ΔG°), enthalpy change (?H°), and entropy change (?S°), are calculated by fluorescent data and Vant’ Hoff equation. The experimental results show that the complex can bind to FS–DNA and the major binding mode is groove binding. Meanwhile, the interaction of Nd(III) complex with protein, bovine serum albumin (BSA), has also been studied by using absorption and emission spectroscopic tools. The experimental results show that the complex exhibits good binding propensity to BSA. The positive ΔH° and ?S° values indicate that the hydrophobic interaction is main force in the binding of the Nd(III) complex to BSA, and the complex can quench the intrinsic fluorescence of BSA remarkably through a static quenching process. Also, DNA cleavage was investigated by agarose gel electrophoresis that according to the results cleavage of DNA increased with increasing of concentration of the complex. Antimicrobial screening test gives good results in the presence of Nd(III) complex system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号