首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondrial dysfunction and consequent energy depletion are the major causes of oxidative stress resulting to bring alterations in the ionic homeostasis causing loss of cellular integrity. Our previous studies have shown the age-associated interactive effects in rat central nervous system (CNS) upon co-exposure to chlorpyrifos (CPF) and cold stress leading to macromolecular oxidative damage. The present study elucidates a possible mechanism by which CPF and cold stress interaction cause(s) mitochondrial dysfunction in an age-related manner. In this study, the activity levels of Krebs cycle enzymes and electron transport chain (ETC) protein complexes were assessed in the isolated fraction of mitochondria. CPF and cold stress (15 and 20 °C) exposure either individually or in combination decreased the activity level of Krebs cycle enzymes and ETC protein complexes in discrete regions of rat CNS. The findings confirm that cold stress produces significant synergistic effect in CPF intoxicated aging rats. The synergism between CPF and cold stress at 15 °C caused a higher depletion of respiratory enzymes in comparison with CPF and cold stress alone and together at 20 °C indicating the extent of deleterious functional alterations in discrete regions of brain and spinal cord (SC) which may result in neurodegeneration and loss in neuronal metabolic control. Hence, co-exposure of CPF and cold stress is more dangerous than exposure of either alone. Among the discrete regions studied, the cerebellum and medulla oblongata appears to be the most susceptible regions when compared to cortex and SC. Furthermore, the study reveals a gradual decrease in sensitivity to CPF toxicity as the rat matures.  相似文献   

2.
Although tomato seeds (an industrial by-product) are known to contain several bioactive compounds, studies describing their health effects are limited. Previously, we evidenced that aqueous extract of tomato seeds (TSE) markedly attenuated rotenone (ROT)-induced oxidative stress and neurotoxicity in Drosophila system. This study investigated the neuroprotective effect of TSE in a chronic ROT model of neurotoxicity in mice. Initially, we assessed the potential of oral supplements of TSE to modulate the levels of endogenous markers of oxidative stress in brain regions of mice. Subsequently, employing a co-exposure paradigm, the propensity of TSE (100 mg/kg bw, 3 weeks) to attenuate ROT-induced behavioral phenotype (gait abnormalities, anxiety-like state), oxidative dysfunctions and neurotoxicity was examined. We found that mice provided with TSE supplements exhibited progressive improvement in gait pattern and exploratory behavior. TSE markedly offset ROT-induced oxidative impairments, restored reduced glutathione levels, antioxidant defenses (superoxide dismutase, glutathione peroxidase) and protein carbonyls content in brain regions. Specifically, TSE effectively diminished ROT induced elevation in the activity levels of acetylcholinesterase and restored the dopamine levels in striatum. Interestingly, in mitochondria, TSE was able to restore the activity of mitochondrial complexes and redox state. Collectively, our findings in the chronic ROT model demonstrate the ability of TSE to alleviate behavioral phenotype, oxidative stress, mitochondrial dysfunction and neurotoxicity. Further studies in dopaminergic cell models are necessary to understand the precise molecular mechanism/s by which tomato seed bioactives offer significant neuroprotection.  相似文献   

3.
Excessive exposure to fluoride poses several detrimental effects to human health particularly the kidney which is a major organ involved in its elimination from the body. The influence of taurine on fluoride-induced renal toxicity was investigated in a co-exposure paradigm for 45 days using five groups of eight rats each. Group I rats received normal drinking water alone, group II rats were exposed to sodium fluoride (NaF) in drinking water at 15 mg/L alone, group III received taurine alone at a dose of 200 mg/kg group IV rats were co-administered with NaF and taurine (100 mg/kg), while group V rats were co-administered with NaF and taurine (200 mg/kg). Administration of taurine significantly reversed the fluoride-mediated decrease in absolute weight and organo-somatic index of the kidney in the exposed rats. Taurine significantly prevented fluoride-induced elevation in plasma urea and creatinine levels in the exposed rats. Moreover, taurine restored fluoride-mediated decrease in the circulatory concentrations of triiodothyronine, thyroxine, and the ratio of triiodothyronine to thyroxine. Taurine ameliorated fluoride-mediated decrease in renal antioxidant status by significantly enhancing the antioxidant enzyme activities as well as glutathione level in the exposed rats. Additionally, taurine inhibited fluoride-induced renal oxidative damage by markedly decreasing the hydrogen peroxide and malondialdehyde levels as well as improved the kidney architecture in the treated rats. Collectively, taurine protected against fluoride-induced renal toxicity via enhancement of thyroid gland function, renal antioxidant status, and histology in rats.  相似文献   

4.
Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These results suggest that fluoride-induced ROS generation causes mitochondrial damage and DNA damage, which may lead to impairment of ameloblast function. To counteract this impairment, SIRT1/autophagy is induced via JNK signaling to protect cells/ameloblasts from fluoride-induced oxidative damage that may cause dental fluorosis.  相似文献   

5.
Arsenic and fluoride are major contaminants of drinking water. Mechanisms of toxicity following individual exposure to arsenic or fluoride are well known. However, it is not explicit how combined exposure to arsenic and fluoride leads to cellular and/or DNA damage. The present study was planned to assess (i) oxidative stress during combined chronic exposure to arsenic and fluoride in drinking water, (ii) correlation of oxidative stress with cellular and DNA damage and (iii) mechanism of cellular damage using IR spectroscopy. Mice were exposed to arsenic and fluoride (50 ppm) either individually or in combination for 28 weeks. Arsenic or fluoride exposure individually led to a significant increase in reactive oxygen species (ROS) generation and associated oxidative stress in blood, liver and brain. Individual exposure to the two toxicants showed significant depletion of blood glutathione (GSH) and glucose 6-phosphate dehydrogenase (G6PD) activity, and single-stranded DNA damage using a comet assay in lymphocytes. We also observed an increase in the activity of ATPase, thiobarbituric acid reactive substance (TBARS) and a decreased, reduced and oxidized glutathione (GSH?:?GSSG) ratio in the liver and brain. Antioxidant enzymes like superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) were decreased and increased in liver and brain respectively. The changes were more pronounced in liver compared to brain suggesting liver to be more susceptible to the toxic effects of arsenic and fluoride. Interestingly, combined exposure to arsenic and fluoride resulted in less pronounced toxic effects compared to their individual effects based on biochemical variables, IR spectra, DNA damage (TUNEL and comet assays) and histopathological observations. IR spectra suggested that arsenic or fluoride perturbs the strength of protein and amide groups; however, the shifts in peaks were not pronounced during combined exposure. These results thus highlight the role of arsenic- or fluoride-induced oxidative stress, DNA damage and protein interaction as the major determinants of toxicity, along with the differential toxic effects during arsenic-fluoride interaction during co-exposure. The study further corroborates our earlier observations that at the higher concentration co-exposures to these toxicants do not elicit synergistic toxicity.  相似文献   

6.
Reactive oxygen species are generated as a result of a number of physiological and pathological processes which can promote multiple forms of oxidative damage including protein oxidation, and thereby influence the function of a diverse array of cellular processes. In our previous study we have reported that co-exposure to chlorpyrifos and cold stress in aging rats markedly influence the toxic outcome as a result of oxidative stress. In the present study, key neurochemical/enzymes were measured in order to evaluate the macromolecular alterations in response to experimentally co-induced chlorpyrifos and cold stress (15 and 20°C) either concurrently or individually in vivo for 48 h in discrete regions of brain and spinal cord of different age group rats. CPF and cold stress exposure either individually or in combination substantially increased the activity/levels of protein carbonyls, AST, ALT and decreased protein thiols, DNA, RNA and total proteins in discrete regions of CNS. Overall, the effects of co-exposure were appreciably different from either of the exposures. However, synergistic-action of CPF and cold stress at 15°C showed higher dyshomeostasis in comparison with CPF and cold stress alone and together at 20°C indicating the extent of oxidative macromolecular damage in discrete regions of brain and spinal cord. Furthermore, the present study demonstrates that macromolecular oxidative damage is highly pronounced in neonates and juveniles than the young adults.  相似文献   

7.
The key role of osteoblasts in skeletal fluorosis makes the exploration of the possible mechanisms of the fluoride-induced oxidative stress of osteoblasts of great importance. In this article, the in vitro effects of fluoride on the oxidative stress of osteoblasts are presented. To study the inhibitory effect of baicalein on the oxidative stress of osteoblasts, the antioxidant activity of baicalein was evaluated for osteoblasts exposed to fluoride. Calvarial osteoblasts were prepared and respectively treated with α-MEM (5% calf serum) containing 0.5, 1.0, 2.0, 4.0, 8.0, 12.0, and 20.0 mg/L fluoride for 48 h. Baicalein (10 μmol/L) was added to the cells for the same period of time as that of the fluoride treatment. Low concentrations of fluoride (0.5–2 mg F-/L) stimulated the mitochondrial activity of osteoblasts and produced significant reaction to the oxidative stress, whereas high concentrations of fluoride (≽12 mg F-/L) inhibited cell proliferation and the activity of antioxidant enzymes. This suggests that the oxidative stress induced by low concentrations of fluoride might mediate or participate in the process of fluoride inducing the proliferation of osteoblasts. The viability of osteoblasts in the high concentrations of fluoride with the addition of 10 μmol/L baicalein (≽12 mg /L) was higher than those of the same level of fluoride-treated groups without the addition of baicalein. The protective role of baicalein is obvious as an inhibitor of lipid peroxidation against the damage induced by the high concentration of fluoride.  相似文献   

8.
Methyl-3-O-methyl gallate (M3OMG) is a rare natural product that showed promising in vitro antioxidant activities. In this study, the protective role of synthetic M3OMG against sodium fluoride (NaF)-induced oxidative stress in rat brain was evaluated. Animals were treated with either M3OMG (10 and 20 mg/kg i.p.), vitamin C (10 mg/kg i.p.) as the standard antioxidant or the vehicle (5 % dimethyl sulfoxide; 1 ml/kg) for 1 week. Oxidative stress was induced in the brain by adding 600 ppm NaF in the drinking water for 7 days. At the end of the treatment period, the levels of thiobarbituric acid reactive substances (TBARS), reduced glutathione and the activities of antioxidant enzymes (superoxide dismutase and catalase) were evaluated in brain homogenates. M3OMG treatment mitigated the NaF-induced oxidative stress through normalization of the level of TBARS, reduced levels of glutathione and by the restoration of the diminished antioxidant enzyme activities. In conclusion, M3OMG could have a potential for treating neurotoxicity induced by fluoride or related environmental pollutants.  相似文献   

9.
10.
The present study is aimed to evaluate the protective effect of ferulic acid (FA) on fluoride-induced oxidative hepatotoxicity in male Wistar rats. Fluoride (25 mg/L) was given orally to induce hepatotoxicity for 12 weeks. Hepatic damage were assessed using status of pathophysiological markers like serum marker enzymes like aspartate transaminase, alanine transaminase, alkaline phosphatase, acid phosphatase, gamma glutamyl transferase, lactate dehydrogenase, bilirubin, lipid profile, total protein content levels, and histopathological studies. Treatment with FA significantly reduced the degree of histological abberations and rescued lipid peroxidation, as observed from reduced levels of lipid hydroperoxides, nitric oxide, restored levels of enzymic and non-enzymic antioxidants, and total protein content, with a concomitant decline in the levels of marker enzymes and lipid profile in fluoride-induced rats. These results suggest that ferulic acid has the ability to protect fluoride-induced hepatic damage.  相似文献   

11.
Although coenzyme Q10 (CoQ10) supplementation has shown to reduce pain levels in chronic pain, the effects of CoQ10 supplementation on pain, anxiety, brain activity, mitochondrial oxidative stress, antioxidants, and inflammation in pregabalin-treated fibromyalgia (FM) patients have not clearly elucidated. We hypothesised that CoQ10 supplementation reduced pain better than pregabalin alone via reducing brain activity, mitochondrial oxidative stress, inflammation, and increasing antioxidant levels in pregabalin-treated FM patients. A double-blind randomised placebo-controlled trial was conducted. Eleven FM patients were enrolled with 2 weeks wash-out then randomly allocated to 2 treatment groups; pregabalin with CoQ10 or pregabalin with placebo for 40 d. Then, patients in CoQ10 group were switched to placebo, and patients in placebo group were switched to CoQ10 for another 40 d. Pain pressure threshold (PPT), FM questionnaire, anxiety, and pain score were examined. Peripheral blood mononuclear cells (PBMCs) were isolated to investigate mitochondrial oxidative stress and inflammation at day 0, 40, and 80. The level of antioxidants and brain positron emission tomography (PET) scan were also determined at these time points. Pregabalin alone reduced pain and anxiety via decreasing brain activity compared with their baseline. However, it did not affect mitochondrial oxidative stress and inflammation. Supplementation with CoQ10 effectively reduced greater pain, anxiety and brain activity, mitochondrial oxidative stress, and inflammation. CoQ10 also increased a reduced glutathione levels and superoxide dismutase (SOD) levels in FM patients. These findings provide new evidence that CoQ10 supplementation provides further benefit for relieving pain sensation in pregabalin-treated FM patients, possibly via improving mitochondrial function, reducing inflammation, and decreasing brain activity.  相似文献   

12.
Regardless of the circumstantial evidences on the involvement of fluoride on the etiology and pathogenesis of fluorosis, several lines of evidences strongly indicate the influence of modulator factors such as duration of fluoride exposure, age, temperature, and physical activity. This study has been designed to investigate the combined influence of intermittent exercise and temperature stress on the modulation of fluoride toxicity. Three-month-old Wistar male rats were exposed to high sodium fluoride (600 ppm) through drinking water for 1 month and the rats were then subjected to swimming exercise at different temperatures (20°C, 25°C, 30°C, and 35°C). Oxidative stress indices analyzed showed fluoride-induced oxidative stress in biological tissues studied like brain, heart, liver, and kidney. Exercise regimen coupled with different temperatures were found to be effective in bringing the oxidative stress indices to near normal level indicating decreased free radical production which may be a compensatory mechanism to counteract against the detrimental effects of fluoride. Further, the deleterious effects of fluoride significantly reduced at 25°C and 30°C demonstrating that the thermoneutral temperatures were effective in reducing the toxicity level.  相似文献   

13.
Methanol ingestion is neurotoxic in humans due to its metabolites, formaldehyde and formic acid. Here, we compared the cytotoxicity of methanol and its metabolites on different types of cells. While methanol and formic acid did not affect the viability of the cells, formaldehyde (200–800 μg/mL) was strongly cytotoxic in all cell types tested. We investigated the effects of formaldehyde on oxidative stress, mitochondrial respiratory functions, and apoptosis on the sensitive neuronal SK-N-SH cells. Oxidative stress was induced after 2 h of formaldehyde exposure. Formaldehyde at a concentration of 400 μg/mL for 12 h of treatment greatly reduced cellular adenosine triphosphate (ATP) levels. Confocal microscopy indicated that the mitochondrial membrane potential (MMP) was dose-dependently reduced by formaldehyde. A marked and dose-dependent inhibition of mitochondrial respiratory enzymes, viz., NADH dehydrogenase (complex I), cytochrome c oxidase (complex IV), and oxidative stress-sensitive aconitase was also detected following treatment with formaldehyde. Furthermore, formaldehyde caused a concentration-dependent increase in nuclear fragmentation and in the activities of the apoptosis-initiator caspase-9 and apoptosis-effector caspase-3/-7, indicating apoptosis progression. Our data suggests that formaldehyde exerts strong cytotoxicity, at least in part, by inducing oxidative stress, mitochondrial dysfunction, and eventually apoptosis. Changes in mitochondrial respiratory function and oxidative stress by formaldehyde may therefore be critical in methanol-induced toxicity.  相似文献   

14.
The phenolic diterpene carnosic acid (CA, C20H28O4) exerts antioxidant, anti-inflammatory, anti-apoptotic, and anti-cancer effects in mammalian cells. CA activates the nuclear factor erythroid 2-related factor 2 (Nrf2), among other signaling pathways, and restores cell viability in several in vitro and in vivo experimental models. We have previously reported that CA affords mitochondrial protection against various chemical challenges. However, it was not clear yet whether CA would prevent chemically induced impairment of the tricarboxylic acid cycle (TCA) function in mammalian cells. In the present work, we found that a pretreatment of human neuroblastoma SH-SY5Y cells with CA at 1 μM for 12 h prevented the hydrogen peroxide (H2O2)-induced impairment of the TCA enzymes (aconitase, α-ketoglutarate dehydrogenase (α-KGDH), succinate dehydrogenase (SDH)) and abolished the inhibition of the complexes I and V and restored the levels of ATP by a mechanism associated with Nrf2. CA also exhibited antioxidant abilities by enhancing the levels of reduced glutathione (GSH) and decreasing the content oxidative stress markers (cellular 8-oxo-2′-deoxyguanosine (8-oxo-dG), and mitochondrial malondialdehyde (MDA), protein carbonyl, and 3-nitrotyrosine). Silencing of Nrf2 by small interfering RNA (siRNA) abrogated the protective effects elicited by CA in mitochondria of SH-SY5Y cells. Therefore, CA prevented the H2O2-triggered mitochondrial impairment by an Nrf2-dependent mechanism. The specific role of Nrf2 in ameliorating the function of TCA enzymes function needs further research.  相似文献   

15.
In this study, we investigated the antioxidant and protective properties of date fruit aqueous extract (DFAE) on trichloroacetic acid (TCA)-induced nephrotoxicity in rat. Oral administration of TCA as drinking water (0.5 and 2 g/L) daily for 2 months caused nephrotoxicity as evident by elevated levels of plasma creatinine, urea, and uric acid. Activity of antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx), was decreased, whereas superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were increased along with histopathological injuries. The oral administration of DFAE (4 mL/kg/day) to TCA-treated groups proved some significant correction by increasing the antioxidant activity of the CAT and GPx enzymes and normalizing the SOD activity and the MDA level (p?<?0.05). It also protected kidney's histology and normalized the functions of this organ. It could be concluded that DFAE has a protective role against TCA-induced oxidative stress in rat, thereby protecting the renal tissue from TCA-induced damage.  相似文献   

16.
Fluoride toxicity and alcohol abuse are the two serious public health problems in many parts of the world. The current study was an attempt to investigate the effect of alcohol administration and age on fluoride toxicity in rat intestine. Six and 18 months old female Sprague Dawley rats were exposed to sodium fluoride (NaF, 25 mg/kg), 30 % ethanol (EtOH, 1 ml/kg), and NaF+EtOH (25 mg/kg+1 ml/kg) for a period of 20, 40, and 90 days. The levels of lipid peroxidation were increased, while the content of reduced glutathione, total, and protein thiol was decreased with NaF treatment. Under these conditions, animals showed an age-related decline in the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase which were further aggravated upon NaF or/and EtOH treatment. Mitochondrial respiration rate and the activities of complexes I, II, and IV enzymes of electron transport chain were decreased, while the levels of nitric oxide and citrulline were increased with age and NaF or/and EtOH treatment. Histological examination revealed large reactive lymphoid follicles, excess of lymphocytes in lamina propria of villi, villous edema, focal ileitis, necrosis of villi, and ulceration in NaF- or/and EtOH-treated animals in both the age groups. These findings suggest that fluoride mediate its toxic effects on intestine through oxidative stress and mitochondrial dysfunctions which are further augmented with alcohol consumption and advancing age.  相似文献   

17.
Altered redox dynamics contribute to physiological aging and Parkinson’s disease (PD). This is reflected in the substantia nigra (SN) of PD patients as lowered antioxidant levels and elevated oxidative damage. Contrary to this observation, we previously reported that non-SN regions such as caudate nucleus and frontal cortex (FC) exhibited elevated antioxidants and lowered mitochondrial and oxidative damage indicating constitutive protective mechanisms in PD brains. To investigate whether the sub-cellular distribution of antioxidants could contribute to these protective effects, we examined the distribution of antioxidant/oxidant markers in the neuropil fractions [synaptosomes, non-synaptic mitochondria and cytosol] of FC from PD (n = 9) and controls (n = 8). In the control FC, all the antioxidant activities [Superoxide dismutase (SOD), glutathione (GSH), GSH peroxidase (GPx), GSH-S-transferase (GST)] except glutathione reductase (GR) were the highest in cytosol, but several fold lower in mitochondria and much lower in synaptosomes. However, FC synaptosomes from PD brains had significantly higher levels of GSH (p = 0.01) and related enzymes [GPx (p = 0.02), GR (p = 0.06), GST (p = 0.0001)] compared to controls. Conversely, mitochondria from the FC of PD cases displayed elevated SOD activity (p = 0.02) while the GSH and related enzymes were relatively unaltered. These changes in the neuropil fractions were associated with unchanged or lowered oxidative damage. Further, the mitochondrial content in the synaptosomes of both PD and control brains was ≥five-fold lower compared to the non-synaptic mitochondrial fraction. Altered distribution of oxidant/antioxidant markers in the neuropil fractions of the human brain during aging and PD has implications for (1) degenerative and protective mechanisms (2) distinct antioxidant mechanisms in synaptic terminals compared to other compartments.  相似文献   

18.
The BMP/Smad signaling pathway plays an important role in the viability and differentiation of osteoblast; however, it is not clear whether this pathway is involved in the fluoride-induced osteoblast differentiation. In this study, we investigated the role of BMP/Smad signaling pathway in fluoride-induced osteoblast-like Saos-2 cells differentiation. Cells were exposed to fluoride of different concentrations (0, 0.1, 0.2, 0.4, 0.8, and 1.6 mM), and cell proliferation was determined using WST assays. The expression of osteoblast marker genes such as osteocalcin (BGP) and bone alkaline phosphatase (BALP) were detected by qRT-PCR. We found that fluoride enhanced the proliferation of Saos-2 cells in a dose-dependent manner and 0.2 mM of fluoride resulted in a higher expression of osteoblast marker genes. In addition, immunofluorescence analysis showed that the promotion effects of 0.2 mM of fluoride on Saos-2 cells differentiation were associated with the activation of the BMP/Smad pathway. Expression of phosphorylated Smad1/5(p-Smad1/5) was higher in cells exposed to 0.2 mM of fluoride. Plasmid expression vectors encoding the short hairpin RNA (shRNA) targeting Smad4 gene were used to block the BMP/Smad pathway, which resulted in a significantly reduced expression of BGP and BALP as well as their corresponding mRNA. The mRNA levels after transfection remained low even in the presence of fluoride. The present results reveal that BMP/Smad signaling pathway was altered during the period of osteogenesis, and that the activities of p-Smad1/5 were required for Saos-2 cells viability and differentiation induced by fluoride.  相似文献   

19.
Paraquat (PQ) administration consists in a chemical model that mimics phenotypes observed in Parkinson’s disease (PD), due to its ability to induce changes in dopaminergic system and oxidative stress. The aim of this study was to evaluate the actions of PQ in behavioral functions of adult zebrafish and its influence on oxidative stress biomarkers in brain samples. PQ (20 mg/kg) was administered intraperitoneally with six injections for 16 days (one injection every 3 days). PQ-treated group showed a significant decrease in the time spent in the bottom section and a shorter latency to enter the top area in the novel tank test. Moreover, PQ-exposed fish showed a significant decrease in the number and duration of risk assessment episodes in the light–dark test, as well as an increase in the agonistic behavior in the mirror-induced aggression (MIA) test. PQ induced brain damage by decreasing mitochondrial viability. Concerning the antioxidant defense system, PQ increased catalase (CAT) and glutathione peroxidase (GPx) activities, as well as the non-protein sulfhydryl content (NPSH), but did not change ROS formation and decreased lipid peroxidation. We demonstrate, for the first time, that PQ induces an increase in aggressive behavior, alters non-motor patterns associated to defensive behaviors, and changes redox parameters in zebrafish brain. Overall, our findings may serve as useful tools to investigate the interaction between behavioral and neurochemical impairments triggered by PQ administration in zebrafish.  相似文献   

20.
Aluminum nanoparticles (AlNPs) are among the most abundantly produced nanosized particles in the market. There is limited information about the potential harmful effects of aluminum oxide due to its particle size on human health. Considering the toxic effects of Al on brain as its target tissue, in this study, the toxicity of nanoparticles, microparticles, and ionic forms of Al on rat brain and isolated mitochondria was evaluated. Sixty male Wistar rats were divided into ten groups (six rats each), in which group I was the control, and the other groups were administered different doses of Al nanoparticles, Al microparticles (AlMP), and Al ionic forms (2, 4, and 8 mg/kg, i.p.) for 28 days. After 24 h, the animals were killed, brain tissue was separated, the mitochondrial fraction was isolated, and oxidative stress markers were measured. Also, mitochondrial function was assayed by MTT test. The results showed that all forms of Al particles induced ROS formation, lipid peroxidation, protein oxidation, glutathione depletion, mitochondrial dysfunction, and gait abnormalities in a dose-dependent manner. In addition, Al particles decreased mitochondrial membrane potential. These data indicated that oxidative stress might contribute to the toxicity effects of Al. Comparison of oxidative stress markers between all forms of Al revealed that the toxic effect of AlNP on brain tissue was substantially more than that caused by AlMP and bulk form. This study showed more neurotoxicity of AlNPs compared to other forms on brain oxidative damage that probably is due to more penetration into the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号