首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Divalent metal ion transporter 1 (DMT1) is a recently identified metal-ion transporter that appears to mediate the absorption of iron in the intestine. DMT1 mRNA is also present in discrete areas of the brain. In this study, we examined the expression of DMT1 mRNA in developing rat brain. DMT1 mRNA was found by in situ hybridization in the striatum, cortex, hippocampus and cerebellum. During development, DMT1 mRNA was found in Purkinje and granule cells in the cerebellum at post-natal day (PND) 14 and PND 30. DMT1 mRNA was also expressed in the external granular layer of the cerebellum at PND 14. No change in the level of DMT1 mRNA was observed by Northern analysis in the cerebellum at different ages between PND 1 and 21. DMT1 was found by Northern analysis in cultures of rat astrocytes. Activation of protein kinase C increased the expression of DMT1 in kidney epithelial cells but not astrocytes from newborn rats. Because DMT1 is expressed in a wide variety of types of cells, we suggest that it plays an important role in metal homeostasis in the brain.  相似文献   

2.
Shen WY  Ren G  Zhu YR 《动物学研究》2012,33(3):298-303
该实验分析饥饿和恢复投喂对异育银鲫血液IGF-1和IGFBP-1水平和肝脏IGF-1、白肌IGF-1RmRNA表达量的影响。结果显示:饥饿期(14d)血液中IGF-1和IGFBP-1水平逐渐下降,在饥饿第14天均出现显著性降低(P<0.05);恢复投喂后第1天IGF-1迅速恢复到对照组水平,而IGFBP-1水平仍显著低于对照组(P<0.05),随后逐渐升高,直至于恢复投喂第14天后显著高于对照组水平(P<0.05);饥饿期肝脏IGF-1mRNA表达量呈下降趋势,但与对照组无显著性差异(P>0.05);恢复投喂初期(第1、3天),IGF-1mRNA表达量仍继续下降(P<0.05),对营养条件的变化反应滞后,至第7天,表达水平恢复到对照组水平。白肌IGF-1RmRNA表达水平在饥饿第3天出现显著性下降(P<0.05),继续饥饿其水平出现补偿性升高;恢复投喂后第14天IGF-1RmRNA表达量显著高于对照组水平(P<0.05)。该结果揭示恢复投喂期高水平的IGFBP-1含量和IGF-1RmRNA表达量可能通过提高IGF-1的促生长作用参与异育银鲫的补偿生长调节。  相似文献   

3.
4.
5.
Abstract: To determine the regional and cellular distribution of the metabotropic glutamate receptor mGluR7a, we used rabbit anti-peptide polyclonal-targeted antibodies against the C-terminal domain of mGluR7a. Here we report that immunocytochemistry at the light-microscopic level revealed that mGluR7a is widely distributed throughout the adult rat brain, with a high level of expression in sensory areas, such as piriform cortex, superior colliculus, and dorsal cochlear nucleus. In most brain structures, mGluR7a immunoreactivity is characterized by staining of puncta and fibers. However, in some regions, including the locus ceruleus, cerebellum, and thalamic nuclei, both cell bodies and fibers are immunopositive. The changes in levels of mGluR7a during development were investigated with immunoblotting and immunocytochemical analysis. Immunoblot analysis revealed that the levels of mGluR7a are differentially regulated across brain regions during postnatal development. In cortical regions (hippocampus, neocortex, and olfactory cortex), mGluR7a levels were highest at postnatal day 7 (P7) and P14, then declined in older rats. In contrast, mGluR7a levels were highest at P7 in pons/medulla and cerebellum and decreased markedly between P7 and P14. In these regions, mGluR7a immunoreactivity was at similar low levels at P14 and P21 and in adults. Immunocytochemical analysis revealed that staining for mGluR7a was exceptionally high in fiber tracts in P7 animals relative to adults. Furthermore, the pattern of mGluR7a immunoreactivity in certain brain structures, including cerebellum, piriform cortex, and hippocampus, was significantly different in P7 and adult animals. In summary, these data suggest that mGluR7a is widely distributed throughout the rat brain and that this receptor undergoes a dynamic, regionally specific regulation during postnatal development.  相似文献   

6.
The expression of cyclin-dependent kinase 5 (Cdk5) and its regulatory subunits, p35 and p39, was investigated in rat brain from embryonic day 12 (E12) to postnatal 18 months (18M). The Cdk5 protein levels increased from E12 to postnatal day 7 (P7) and remained at this level until 18M. The Cdk5 kinase activity and the levels of both p35 mRNA and protein were low at E12, became prominent at E18-P14 but then decreased in the adult and aged rat brains of 3M to 18M. In comparison, the expression pattern of p39 appeared to have an inverse relationship to that of Cdk5 and p35. In regional distribution studies, p35 protein levels and Cdk5 kinase activity were significantly higher in the cerebral cortex and hippocampus, but lower in the cerebellum and striatum. These results suggested that Cdk5, p35 and p39 might have region-specific and developmental stage-specific functions in rat brain.  相似文献   

7.
Galanin is a modulator of fast transmission in adult brain and recent evidence suggests that it also acts as a trophic factor during neurogenesis and neural injury and repair. Previous studies in our laboratory have identified galanin mRNA in Purkinje cells of adult and developing rat (but not adult mouse) cerebellum; and galanin-binding sites in adult mouse (but not rat) cerebellum. The post-natal development of the cerebellum provides a unique and convenient model for the investigation of developmental processes and to learn more about putative cerebellar galanin systems, the current study examined the presence and distribution of galanin-like-immunoreactivity (- LI), [(125)I]-galanin binding sites and galanin receptor-1 (GalR1) mRNA in post-natal mouse cerebellum. Using autoradiography and in situ hybridization, [(125)I]-galanin binding sites and GalR1 mRNA were first detected on post-natal day 10 (P10) in the external germinal layer of all lobes and high levels were maintained until P14. Quantitative real-time PCR assays detected GalR1 mRNA in whole cerebellum across the post-natal period, with a strong induction and peak of expression at P10. Assessment of galanin levels in whole cerebellum by radioimmunoassay revealed relatively similar concentrations from P5 to P20 and in adult mice (80-170 pg/mg protein), with a significantly higher concentration (250 pg/mg, p < 0.01) detected at P3. These concentrations were some four- to six-fold lower than those in adult forebrain samples. Using immunohistochemistry, galanin-like-immuno-reactivity was observed in prominent fibrous elements within the white matter tracts of the cerebellum at P3-5 and in more punctate elements in the internal granule cell layer and associated with the Purkinje cell layer at P12 and P20. Increased levels of GalR1 mRNA and galanin binding (attributed to GalR1) in the external granule cell layer at P10-12/(14) coincide with granule cell migration from the external to the inner granule cell layer and together with demonstrated effects of other neuropeptide-receptor systems suggest a role for GalR1 signalling in regulating this or related developmental processes.  相似文献   

8.
The expression of a novel calcyclin (S100A6) binding protein (CacyBP) in different rat tissues was determined by Western and Northern blotting. Polyclonal antibodies against recombinant CacyBP purified from E. coli exhibited the highest reaction in the brain and weaker reaction in liver, spleen, and stomach. CacyBP immunoreactivity was also detected in lung and kidney. Densitometric analysis showed that the concentration of CacyBP in the soluble fractions of total brain and cerebellum is approximately 0.17 and 0. 34 ng/microg protein, respectively. Northern blotting with a specific cDNA probe confirmed the high level of CacyBP expression in the rat brain and lower levels in other tissues examined. Immunohistochemistry and in situ hybridization of rat brain sections revealed strong expression of CacyBP in neurons of the cerebellum, hippocampus, and cortex. The in situ hybridization detected CacyBP in hippocampus as early as P7 (postnatal day 7) and a peak of expression at P21, and the expression signal was preserved until adulthood. In the entorhinal cortex, the peak of expression was observed at P7, whereas in the cerebellum it was seen at P21. The results presented here show that CacyBP is predominantly a neuronal protein. (J Histochem Cytochem 48:1195-1202)  相似文献   

9.
Compelling evidence has now demonstrated direct biological actions of sex steroids at the cerebellum. Likewise, the expression of key steroidogenic factors, such as the steroidogenic acute regulatory protein (StAR), cytochrome P450 side chain cleavage (P450scc), and aromatase, at this neural site has been reported. Little is known, however, about the regulation of their genes in the cerebellum. Assessment of StAR, P450scc, and aromatase mRNAs in the cerebellum of male and female rats revealed that the expression of these genes is developmentally regulated, with the highest levels at early postnatal ages in both sexes and with significantly higher mRNA levels in postnatal males. Expression of these genes in the female remained unaltered after perinatal androgenization and along the estrous cycle. In contrast, damage of cerebellar afferent neurons of the inferior olivary nucleus evoked a significant increase in StAR, P450scc, and aromatase mRNA levels at this site, as well as a transient elevation in StAR mRNA at the cerebellum. Finally, enhancement of cAMP levels in cultured cerebellar neurons induced a significant increase in StAR and aromatase mRNA levels. In summary, we present herein novel evidence for the developmentally regulated and partially sexually dimorphic pattern of expression of StAR, P450scc, and aromatase genes in the rat cerebellum. These observations, together with the finding that the mRNA levels of these steroidogenic molecules are sensitive to injury and are regulated by intracellular cAMP, strongly suggest that local steroidogenesis is likely to play an important role during development and adaptation to neurodegenerative processes in the olivocerebellar system.  相似文献   

10.
Insulin-like growth factor-1 (IGF-1) is believed to play a role in the regulation of brain growth. The identity of cells responsible for its synthesis in the immature brain, however, has not been established. To identify potential sites of IGF-1 synthesis, in situ hybridization has been utilized to localize IGF-1 mRNA in the murine brain during the first postnatal month. Although IGF-1 mRNA was detected in all regions of the neonatal brain, there was considerable regional variation in the level of expression. Neurons were the principle sites IGF-1 mRNA expression and expression was typically restricted to one or two neuronal cell types within each region. In the cerebellar cortex, for example, only Purkinje cells hybridized to the IGF-1 probe. In contrast to gray matter, IGF-1 labeled cells were rarely found in presumptive white matter tracts of the forebrain. The hybridization signal was most prominent in regions where neurogenesis persisted after birth, including the cerebellum, olfactory bulb, and hippocampal complex. The timing of IGF-1 mRNA expression appeared to be temporally related to local neuronal proliferation. The number of labeled cells and intensity of hybridization signal was greatest during the first 2 postnatal weeks, a period of rapid neuronal proliferation in these regions. At the end of the first month, when neurogenesis had essentially ceased, IGF-1 signal strength had declined to background levels. The temporal and spatial pattern IGF-1 mRNA expression in the immature CNS was consistent with a role for locally produced IGF-1 in the regulation of brain development.  相似文献   

11.
Numerous investigators have provided data supporting essential roles for insulin-like growth factor-I (IGF-I) in development of the brain. The aim of this study was to immunohistochemically determine the distinct regional distribution pattern of IGF-1 receptor (IGF-IR) expression in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14), with comparison between male/female and right/left hippocampi. We found an overall significant increase in distribution of IGF-IR-positive (IGF-IR+) cells in CA1 from P0 until P14. Although, no marked changes in distribution of IGF-IR+ cells in areas CA2 and CA3 were observed; IGF-IR+ cells in DG decreased until P14. The smallest number of immunoreactive cells was present in CA2 and the highest number in DG at P0. Moreover, in CA1, CA3, and DG, the number of IGF-IR+ cells was markedly higher in both sides of the hippocampus in females. Our data also showed a higher mean number of IGF-IR+ cells in the left hippocampus of female at P7. By contrast, male pups showed a significantly higher number of IGF-IR+ cells in the DG of the right hippocampus. At P14, the mean number of immunoreactive cells in CA1, CA3, and DG areas found to be significantly increased in left side of hippocampus of males, compared to females. These results indicate the existence of a differential distribution pattern of IGF-IR between left–right and male–female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left–right asymmetry in the hippocampus.  相似文献   

12.
OBJECTIVE: To investigate the kinetics of insulin-like growth factor-1 receptor (IGF-1R) expression in PHA-stimulated T lymphocytes. METHODS: IGF-1R protein and mRNA were detected by flow cytometry and RT-PCR respectively, between 0 and 48 h after cell activation. RESULTS: Few minutes after T lymphocytes were activated, internalization of the IGF-1R from the cell membrane was observed, achieving the lower level between 1 and 6 h and was accompanied by a reduction in its mRNA. This was followed by re-expression of IGF-1R on the cell surface and an increase in IGF-1R mRNA levels in the cytoplasm, reaching levels higher than those recorded initially after 48 h activation. CONCLUSION: This down- and up-regulation suggests that restoration of IGF-1R would be the result of receptor recycling and de novo synthesis and highlights its importance for T lymphocyte proliferation.  相似文献   

13.
The regulators of G protein signaling (RGS) proteins modulate heterotrimeric G protein signaling. RGS8 belongs to B/R4 subfamily of RGS proteins and is specifically expressed in Purkinje cells of adult cerebellum. Here, to examine the expression of RGS8 mRNA in developing cerebellum, we performed in situ hybridization. Apparent signals for expression of RGS8 mRNA were first detected on day 9 after birth, then RGS8 mRNA expression in Purkinje cells increased up to day 21, and its levels decreased to some extent in adult Purkinje cells. We also studied the expression of RGS7, which is expressed in Golgi cells in the granule cell layer of adult cerebellum. The expression of RGS7 mRNA was recognized in 7 day neonatal cerebellum. When examined with anti-RGS8 antibody, the RGS8 protein was already excluded from nucleus on day 9, and was distributed in cell body and dendrites in differentiating Purkinje cells of 14 day neonates.  相似文献   

14.
15.
16.
The IGF/IGF-1R system, which includes the IGF, IGF-1R, and IGFBPs proteins, plays an important role in the development and growth of colorectal cancer. We previously reported that in the HT29 human colon cancer cell line EGCG, the major biologically active component of green tea, inhibits activation of the RTKs EGFR, HER2, and HER3, and that this is associated with inhibition of multiple downstream signaling pathways. Since IGF-1R is also a RTK, in this study we examined the effects of EGCG on the activity of IGF/IGF-1R system in human colon cancer cells. We found that the colon cancer cell lines Caco2, HT29, SW837, and SW480 express high levels of the IGF-1R receptor, and that both SW837 and SW480 cells display constitutive activation of this receptor. Treatment of SW837 cells with 20 microg/ml of EGCG (the IC50 concentration for growth inhibition) caused within 6 h a decrease in the phosphorylated (i.e., activated) form of the IGF-1R protein. At 12 h, there was a decrease in the levels of both IGF-1 protein and mRNA and within 3-6 h there was an increase in the levels of both IGFBP-3 protein and mRNA. The increased expression of the latter protein was sustained for at least 48 h. When SW837 cells were treated with EGCG for a longer time, i.e., 96 h, a very low concentration (1.0 microg/ml) of EGCG also caused inhibition of activation of IGF-1R, a decrease in the IGF-1 protein, and an increase in the IGFBP-3 protein. EGCG also caused a decrease in the levels of mRNAs that encode MMPs-7 and -9, proteins that proteolyze IGFBP-3. In addition, treatment with EGCG caused a transient increase in the expression of TGF-beta2, an inducer of IGFBP-3 expression. These findings expand the roles of EGCG as an inhibitor of critical RTKs involved in cell proliferation, providing further evidence that EGCG and related compounds may be useful in the chemoprevention or treatment of colorectal cancer.  相似文献   

17.
The functional benefit of cell transplantation after a myocardial infarction is diminished by early cell losses. IGF-1 enhances cell proliferation and survival. We hypothesized that IGF-1-transfected smooth muscle cells (SMCs) would enhance cell survival and improve engraftment after cell transplantation. The IGF-1 gene was transfected into male SMCs and compared with SMCs transfected with a plasmid vector (vector control) and nontransfected SMCs (cell control). IGF-1 mRNA (n=10/group) and protein levels (n=6/group) were higher (P <0.05 for all groups) at 3, 7, and 14 days compared with controls. VEGF was also increased in parallel to enhanced IGF-1 expression. IGF-1-transfected cells demonstrated greater cell proliferation, stimulated angiogenesis, and decreased caspase-3 activity after simulated ischemia and reperfusion (P <0.05 for all groups compared with vector or cell controls). A uniform left ventricular injury was produced in female rats using a cryoprobe. Three weeks later, 2 x 10(6) cells from three groups were implanted into the scar. One week later, IGF-1-transfected SMCs had increased myocardial IGF-1 and VEGF levels, increased Bcl2 expression, limited cell apoptosis, and enhanced vessel formation in the myocardial scar compared with the two control groups (P <0.05 for all groups). The proportion of SMCs surviving in the implanted region was greater (P <0.05) in the IGF-1-transfected group than in the vector or cell controls. Gene enhancement with IGF-1 improved donor cell proliferation, survival, and engraftment after cell transplantation, perhaps mediated by enhanced angiogenesis and reduced apoptosis.  相似文献   

18.
Cardiovascular morbidity and mortality are far less in pre-menopausal women compared to age-matched men. Ovarian hormones are believed to be mainly responsible for this "female advantage" in cardiovascular function although the underlying mechanism has not been fully elucidated. A gender difference exists in vascular nitric oxide (NO) synthesis, which may play a key role in ventricular function and cardiac remodeling. This study was designed to compare NO production, basal NO synthase (NOS) expression and activity, as well as insulin-like growth factor I (IGF-1)-induced response on NOS activity in left ventricular myocytes from age-matched adult male and female Sprague-Dawley rats. NO production and protein expression of NOS, IGF-1 receptor (IGF-1R) and IGF binding protein-3 (IGFBP-3) were measured by Griess assay and Western blot analysis, respectively. NOS activity was evaluated by conversion of (3)H-arginine to (3)H-citrulline. Basal NO production, endothelial NOS expression and NOS activity were both significantly higher in female left ventricular myocytes than their male counterparts. However, protein expression of inducible and neuronal NOS as well as IGFBP-3 was comparable between the two genders. IGF-1R expression was less in female than male group. IGF-1 (10(-10)-10(-6) m) induced a concentration-dependent inhibition of NOS activity in male myocytes with a maximal inhibition of 22.2%. However, the IGF-1-induced inhibition in NOS activity was not present in left ventricular myocytes from female rats. These data revealed a gender difference in myocardial basal NO levels, endothelial NOS expression, basal NOS activity and IGF-1-induced inhibition on NOS activity, which may contribute to the gender-related difference of cardiac function.  相似文献   

19.
Developmental changes of preprocholecystokinin mRNA (CCK mRNA) and cholecystokinin-like immunoreactivity (CCK-LI) were examined in rat brain regions (frontal cortex, colliculi, hippocampus, striatum, and cerebellum) using RNA dot blot assays with cholecystokinin (CCK) cDNA and radioimmunoassay, respectively. The CCK-LI levels in all regions examined were very low at birth. Excluding the cerebellum, the levels in these regions increased postnatally and reached adult values at 28 days of age. In contrast to CCK-LI, CCK mRNA levels changed dramatically during development. A considerable amount of CCK mRNA was detected in the frontal cortex and hippocampus at birth. The changes in the level of CCK mRNA in the frontal cortex and colliculi paralleled those of CCK-LI, including a rapid increase from 7 to 14 days of age. The synthesis of CCK mRNA preceded the appearance of CCK-LI. CCK mRNA levels in the hippocampus and striatum exhibited a transient increase, with a peak at 14 days of age. In the adult brain, the CCK mRNA levels were high in the frontal cortex, moderate in the hippocampus and colliculi, and low in the striatum. The cerebellum contained only a negligible amount of CCK mRNA during development. The relatively high level of CCK-LI compared with the low level of CCK mRNA in the striatum supports the idea that most of the striatal CCK-LI is supplied from extrastriatal regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
雌激素对成骨细胞增殖及IGF-2表达的调控作用   总被引:1,自引:0,他引:1  
目的 探讨雌激素对大鼠成骨细胞功能的影响及胰岛素样生长因子2(insulin-like growth factor 2,IGF-2)表达的调控机理。方法应用1×10^-10mol/L、1×10^-8mol/L、1×10^-6mol/L浓度的雌二醇(estradiol,172)分别作用原代培养的新生大鼠颅盖骨成骨细胞24h;采用MTT法和对硝基酚磷酸盐法检测成骨细胞增殖能力和细胞中碱性磷酸酶(ALP)活性;应用实时定量PCR和Western印迹杂交分析成骨细胞中IGF-2的mRNA和蛋白质的表达规律。结果1×10^-6mol/L浓度的磁使大鼠成骨细胞增殖能力和ALP活性分别增加了67%和55%,使IGF-2的mRNA与蛋白质的表达水平分别增加了90%和140%,差异有统计学意义(P〈0.05)。结论雌激素对成骨细胞中IGF-2基因的表达具有正性调控作用。成骨细胞中IGF-2的高表达可能与雌激素调节成骨细胞增殖和分泌功能相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号